

Balanced K-ary Trees
АВ DE GH JK MN PQ ST VW YZ
What is the <i>height</i> (depth) H of the shallowest possible, balanced K-ary tree, if we keep data / records in leaf <i>and</i> non-leaf nodes?
$\lceil \log_K (N+1) \rceil$
CEE-411-Dunkasa Mangarinat System-Codiny - 3: 59

K-ary Trees!

- If K is large, the height of the tree will be small! We shall rename K as F—as the textbook uses—for *fan-out*.
 Make a *node* the size of a page.
- So does *F* really save us anything?
 - Not on #comparisons, but yes on #I/O's:

 (log₂ F)(log_F N/R) = log₂ N/R comparisons still,
 but just log_F N/R I/O's.
 - (N =#records in all, R = #records per page.)
- Design choice: Okay, should we keep records in non-leaves or not?
- How do we keep an F-ary tree balanced on *inserts* and *deletes*?

B Trees & B+ Trees

- The **B tree** and, subsequently, the **B+ tree** models are K-ary tree models with a particular balance rule.
 - For B trees, records (or data entries) are kept in non-leaf nodes *and* leaf nodes.
 - For B+ trees, records (or data entries) are kept just in leaf nodes (*data pages*). Non-leaf nodes are called *index pages*.
- We *trade off* space for the balance strategy: Each node (equal to a page) can be up to half empty.
- All leaves are at the same depth.
 - Tree grows when a leaf page is split, and when the index pages up to the root must consequently be split.

CSE-4411-Database Managament Systems-Godfrey - p. 8/9

B Trees versus **B**+ Trees

Advantages of B trees:

- May use fewer tree nodes than a corresponding $B{\rm +}$ tree.
- Sometimes possible to find the search-key value *before* reaching a leaf node.

Advantages of B+ trees:

- Only a *small* fraction of searches are found *before* a leaf page.
- Non-leaf pages can contain more index keys than the B tree's non-leaf page can contain records (or entries), so the fan-out (F) is more.

CSE-4411—Database A

ent Systems-Godfrey - p. 9/9

- Insertion and deletion is easier.
- implementation is easier.

