
JDBC: Priming

To compile the APP, javac needs to know where the
JDBC library is.

To run the APP, java needs to know how to locate the
database system in question.
Mainly, this is setting up the CLASSPATH and
LD_LIBRARY_PATH correctly for the local system.

On PRISM,

% source ˜db2leduc/.cshrc

will do it.

CSCE-3421—Winter 2009—Godfrey – p. 1/10



JDBC: Establishing the Driver

The driver manages the type of data source (database
system) with which the APP will be communicating via
JDBC.

import java.net.*;
import java.sql.*;
...
// Register the driver with DriverManager.
Class.

forName("COM.ibm.db2.jdbc.app.DB2Driver").
newInstance();

CSCE-3421—Winter 2009—Godfrey – p. 2/10



JDBC: The Connection

Which database is it?

// Conn. to the DBMS.
private Connection conDB;
// URL: Which database?
private String url;
...
// URL: This database.
url = "jdbc:db2:c3421m";
conDB = DriverManager.getConnection(url);
...
conDB.close();

Can throw a COM.ibm.db2.jdbc.DB2Exception .
Typically one connection per APP, not one per object!

CSCE-3421—Winter 2009—Godfrey – p. 3/10



JDBC: “Talking” to the DB

1. Compose SQL in a string.

2. Prepare the SQL statement.

3. Execute the statement.

4. Walk through the resulting cursor.

CSCE-3421—Winter 2009—Godfrey – p. 4/10



Building the SQL Query

A query is pure SQL in a Java string.

// The SQL text.
String queryText = "";
// The query handle.
PreparedStatement querySt = null;
// A cursor.
ResultSet answers = null;
...
queryText =

"SELECT COUNT(*) as #custs"
+ " FROM yrb_customer";

CSCE-3421—Winter 2009—Godfrey – p. 5/10



Preparing & Executing

Prepare the statement:

querySt =
conDB.prepareStatement(queryText);

Execute the statement:

answers = querySt.executeQuery();

Why two steps?

CSCE-3421—Winter 2009—Godfrey – p. 6/10



Walk the Cursor

if (answers.next()) {
int num_of_customers =

answers.getInt("#custs");
System.out.print("There are ");
System.out.print(num_of_customers);
System.out.println(

" number of customers.");
} else {

System.out.println(
"There are no customers.");

}

Can we ask answers how many rows there are? No.

CSCE-3421—Winter 2009—Godfrey – p. 7/10



Clean Up!

We’re used to Java garbage collecting for us. However, this
does not guarantee that these “objects” are deallocated
when we are done with them on the DBMS side.

// Close the cursor.
answers.close();
...
// We’re done with the handle.
querySt.close();
...
// Close the connection.
conDB.close();

CSCE-3421—Winter 2009—Godfrey – p. 8/10



Cursors: Properties

scrollability: Whether the cursor can move forward,
backward, or to a specific row.

updatability: Whether the cursor can be used to update
or delete rows.

holdability: Whether the cursor stays open after a
commit .

Typically, a cursor is not scrollable unless declared so and
provisions have been made.

CSCE-3421—Winter 2009—Godfrey – p. 9/10



Cursors: Bad Habits

while (custCR.next()) {
cid = custCR.getInt("cid");
salesST.setInt(1, cid);
salesCR = salesST.executeQuery();
salesCR.next();
sales = salesCR.getFloat("sales");
System.out.print(cid);
System.out.print(sales);

}

Never use a cursor to do what could have been done
instead in a query.

In procedural versus declarative, go declarative!

CSCE-3421—Winter 2009—Godfrey – p. 10/10


	JDBC: Priming 
	JDBC: Establishing the Driver 
	JDBC: The Connection 
	JDBC: ``Talking'' to the DB 
	Building the SQL Query 
	Preparing & Executing 
	Walk the Cursor 
	Clean Up! 
	Cursors: Properties 
	Cursors: Bad Habits 

