

Example Instan	ces	R1	<u>sid</u> <u>bio</u> 22 10 58 10	<u>d d</u> 01 10/1 03 11/1	ay 10/96 2/96			
 "Sailors" and "Reserves" relations for our examples 	S1 S2	<u>sid</u>	sname	rating	age			
 We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations. 		22	dustin	7	45.0			
		31	lubber	8	55.5			
		58	rusty	10	35.0			
		sid	sname	rating	age			
		28	yuppy	9	35.0			
		31	lubber	8	55.5			
		44	guppy	5	35.0			
		58	rusty	10	35.0			
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5								

Joins <i>Equi-Join</i>: A special case of condition join where the condition <i>c</i> contains only <i>equalities</i>. 										
	sid	sname	rating	age	bid	day				
	22	dustin	7	45.0	101	10/10/96				
	58	rusty	10	35.0	103	11/12/96				
$S1 \bowtie_{sid} R1$										
 <i>Result schema</i> similar to cross-product, but only one copy of fields for which equality is specified. 										
♦ <u>Natural Join</u> : Equijoin on all common fields.										
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke										

Division

- Not supported as a primitive operator, but useful for expressing queries like: Find sailors who have reserved all boats.
- Let A have 2 fields, x and y; B have only field y:

• $A/B = \{\langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$

- i.e., *A*/*B* contains all *x* tuples (sailors) such that for *every y* tuple (boat) in *B*, there is an *xy* tuple in *A*.
- *Or*: If the set of *y* values (boats) associated with an *x* value (sailor) in *A* contains all *y* values in *B*, the *x* value is in *A*/*B*.
- In general, x and y can be any lists of fields; y is the list of fields in B, and x ∪ y is the list of fields of A. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- Several ways of expressing a given query; a query optimizer should choose the most efficient version.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke