
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Relational Algebra

Chapter 4, Part A

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Relational Query Languages

� Query languages: Allow manipulation and retrieval
of data from a database.

� Relational model supports simple, powerful QLs:
� Strong formal foundation based on logic.

� Allows for much optimization.

� Query Languages != programming languages!
� QLs not expected to be “Turing complete”.

� QLs not intended to be used for complex calculations.

� QLs support easy, efficient access to large data sets.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Formal Relational Query Languages

� Two mathematical Query Languages form
the basis for “real” languages (e.g. SQL), and
for implementation:
� Relational Algebra: More operational, very useful

for representing execution plans.

� Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-
operational, declarative.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Preliminaries

� A query is applied to relation instances, and the
result of a query is also a relation instance.
� Schemas of input relations for a query are fixed (but

query will run regardless of instance!)

� The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.

� Positional vs. named-field notation:
� Positional notation easier for formal definitions,

named-field notation more readable.

� Both used in SQL

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Example Instances

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

� “Sailors” and “Reserves”
relations for our examples.

� We’ll use positional or
named field notation,
assume that names of fields
in query results are
`inherited’ from names of
fields in query input
relations.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Relational Algebra

� Basic operations:
� Selection () Selects a subset of rows from relation.

� Projection () Deletes unwanted columns from relation.

� Cross-product () Allows us to combine two relations.

� Set-difference () Tuples in reln. 1, but not in reln. 2.

� Union () Tuples in reln. 1 and in reln. 2.

� Additional operations:
� Intersection, join, division, renaming: Not essential, but

(very!) useful.

� Since each operation returns a relation, operations
can be composed! (Algebra is “closed”.)

σ
π

−
×

�

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Projection
sname rating

yuppy 9

lubber 8
guppy 5
rusty 10

π
sname rating

S
,

()2

age

35.0
55.5

πage S()2

� Deletes attributes that are not in
projection list.

� Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the (only) input relation.

� Projection operator has to
eliminate duplicates! (Why??)

� Note: real systems typically
don’t do duplicate elimination
unless the user explicitly asks
for it. (Why not?)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Selection

σ
rating

S>8
2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating

yuppy 9

rusty 10

π σ
sname rating rating

S
,

(())>8
2

� Selects rows that satisfy
selection condition.

� No duplicates in result!
(Why?)

� Schema of result
identical to schema of
(only) input relation.

� Result relation can be
the input for another
relational algebra
operation! (Operator
composition.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Union, Intersection, Set-Difference

� All of these operations take
two input relations, which
must be union-compatible:

� Same number of fields.

� `Corresponding’ fields
have the same type.

� What is the schema of result?

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age

22 dustin 7 45.0

S S1 2−
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Cross-Product
� Each row of S1 is paired with each row of R1.

� Result schema has one field per field of S1 and R1,
with field names `inherited’ if possible.

� Conflict: Both S1 and R1 have a field called sid.

ρ ((,),)C sid sid S R1 1 5 2 1 1→ → ×

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

� Renaming operator:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Joins

� Condition Join:

� Result schema same as that of cross-product.

� Fewer tuples than cross-product, might be
able to compute more efficiently

� Sometimes called a theta-join.

R c S c R S�� = ×σ ()

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S R
S sid R sid

1 1
1 1

��
. .<

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Joins

� Equi-Join: A special case of condition join where
the condition c contains only equalities.

� Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

� Natural Join: Equijoin on all common fields.

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1��

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Division

� Not supported as a primitive operator, but useful for
expressing queries like:

Find sailors who have reserved all boats.

� Let A have 2 fields, x and y; B have only field y:

� A/B =

� i.e., A/B contains all x tuples (sailors) such that for every y
tuple (boat) in B, there is an xy tuple in A.

� Or: If the set of y values (boats) associated with an x value
(sailor) in A contains all y values in B, the x value is in A/B.

� In general, x and y can be any lists of fields; y is the
list of fields in B, and x y is the list of fields of A.

{ }x x y A y B| ,∃ ∈ ∀ ∈

∪
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Examples of Division A/B

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2

s4 p2

s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3

s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Expressing A/B Using Basic Operators

� Division is not essential op; just a useful shorthand.
� (Also true of joins, but joins are so common that systems

implement joins specially.)

� Idea: For A/B, compute all x values that are not
`disqualified’ by some y value in B.
� x value is disqualified if by attaching y value from B, we

obtain an xy tuple that is not in A.

Disqualified x values:

A/B:

π πx x A B A((()))× −

π x A() − all disqualified tuples

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Find names of sailors who’ve reserved boat #103

� Solution 1: π σsname bid
serves Sailors((Re))=103

��

� Solution 2: ρ σ(, Re)Temp serves
bid

1
103=

ρ (,)Temp Temp Sailors2 1��

π sname Temp()2

� Solution 3: π σsname bid
serves Sailors((Re))=103

��

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Find names of sailors who’ve reserved a red boat

� Information about boat color only available in
Boats; so need an extra join:

π σsname color red
Boats serves Sailors((

' '
) Re)= �� ��

� A more efficient solution:

π π π σsname sid bid color red
Boats s Sailors(((

' '
) Re))= �� ��

A query optimizer can find this, given the first solution!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Find sailors who’ve reserved a red or a green boat

� Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

ρ σ(, (
' ' ' '

))Tempboats
color red color green

Boats= ∨ =

π sname Tempboats serves Sailors(Re)�� ��

� Can also define Tempboats using union! (How?)

� What happens if is replaced by in this query?∨ ∧

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Find sailors who’ve reserved a red and a green boat

� Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

ρ π σ(, ((
' '

) Re))Tempred
sid color red

Boats serves= ��

π sname Tempred Tempgreen Sailors(())∩ ��

ρ π σ(, ((
' '

) Re))Tempgreen
sid color green

Boats serves= ��

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Find the names of sailors who’ve reserved all boats

� Uses division; schemas of the input relations
to / must be carefully chosen:

ρ π π(, (
,

Re) / ())Tempsids
sid bid

serves
bid

Boats

π sname Tempsids Sailors()��

� To find sailors who’ve reserved all ‘Interlake’ boats:

/ (
' '

)π σ
bid bname Interlake

Boats=.....

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Summary

� The relational model has rigorously defined
query languages that are simple and
powerful.

� Relational algebra is more operational; useful
as internal representation for query
evaluation plans.

� Several ways of expressing a given query; a
query optimizer should choose the most
efficient version.

