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CSE-3421: Exercises
with answers

1. Independence

Answer #1.2 (page 23) from the textbook: What is logical data independence and why is it
important?

A short paragraph is sufficient.

The textbook defines both the concepts logical data independence and physical data in-
dependence. The latter is something more often brought up when listing the merits of
relational database systems.
The relational model allows for logical data independence in that we can insulate users—
and queries and application programs written on a database—from changes made to the
database’s schema. The view facility allows us to write views (which act as virtual tables)
on the schema. We can then somewhat guarantee that these views will stay the same
over time. When we change the logical schema itself (the definitions of the tables that
compose the database), we only need to modify the views’ definitions accordingly. The
changes then are transparent to queries and application programs written beforehand.
Relational databases provide then tools for supporting logical data independence, while
many other database models (non-relational) do not. This is quite useful in practice.
However, the textbook may oversell it. A huge problem with any database is that chang-
ing the schema typically does affect the users, the application programs, and pre-written
queries. We would have to have been very judicious as designers to have properly in-
sulated the schema via views in all the ways we should have done in hindsight. That is
why it is so important to make a solid design for the database schema initially, so that
the changes needed on it over time are fewer.
The relational model allows for physical data independence too, which states that how
the data is stored is independent from how it is presented logically to the users (and
queries and application programs). This “presentation” is simply the (logical) schema.
Any changes to how the data is physically organized are transparent to the users under
the relation model simply because they can only interact with the database “logically” via
the schema (that is, writing SQL with the schema). Changes to the physical database
are common, and are often made to improve the database system’s performance.
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2. The House Database

You have just moved to Washington, D.C., to work for the U.S. House of Representatives
(the “House”) as a database specialist. For your first job, they want you to design a database
to keep track of votes taken in the House. (A counterpart to you working for the U.S. Senate
is designing a similar database for tracking votes in the Senate.)

The database will track votes taken in the House during the current two-year congressional
session. It should record each U.S. state (for instance, Texas) with its name, number of
representatives, and region in which the state is located (northeast, mid-atlantic, midwest,
and so forth). Each congress-creature, er, I mean representative, in the House is to be
described by his or her name, the district (by district number) that he or she represents, the
year when he or she was first elected, and the political party to which he or she belongs (for
instance, Republican, Democrat, Independent, Green, Reform, Other). The database should
track each bill (legislation) with its name, the date on which its vote was taken, whether the
bill passed or failed (so the domain is yes and no), and its sponsors (the representatives who
proposed the bill). The database should track how each representative voted on each bill
(yes, no, abstain, absent).

a. Design an entity-relationship (E-R) schema diagram for the above enterprise. Be careful
to ensure that each of the attributes would be restricted to legal values (no pun. . .).
State clearly any assumptions that you make. Also state any business rules—logic to
which the database should adhere—that are not captured in your E-R diagram.

State represents Representative

Bill

sponsors votes

num_reps

region

district

party

year_elected

name

outcome vote_date

vote

state_name rep_name

Many students added an arrow from the entity box Reprensentative to the relation-
ship votes to make it a many-one rel-ship instead of a many-many rel-ship. Their
argument was that a representative gets one vote on a given bill, not more than
one. This many-one is the wrong logic, however! The Bill entity box represents the
collection of all bills that come to the floor of the house. A representative votes on
each bill, so he or she votes on many bills. And, of course, each bill is voted on by
many representatives. So the rel-ship votes is properly many-many.
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But what about the fact that we want to ensure that a representative can only vote
once on a given bill? We have it already! That is why it was natural to model
votes as a rel-ship. Any given pair of a particular representative and a particular
bill can show up in the rel-ship at most once. This same pair showing up “again”
is impossible by the definition of what a rel-ship is. A relationship is a set (not
a multi-set, or bag) of these combinations (for votes, pairs of representatives and
bills).
There is no easy way to represent via the E-R diagram that we are restricting the
values of how a representative votes to a certain small set of legal values. (Why?)
However, in a relational schema, this would be simple to do.
A representative can be uniquely identified by the state and the district# (within the
state) that he or she represents. So it makes since to make the entity Representative
a weak entity on entity State. First, a representative cannot exist without a state
to represent. Second, the natural key for representative is the state’s name plus the
district#.

b. Do you have any derived attributes in your diagram? Would these be problematic in
the implemented database?

A derived attribute is any piece of information that we could derive from the other
information in the database. Generally, we like to avoid derived attribute because
this is a redundancy and so can cause trouble. (What are we to think when the
attribute’s value and the value that we could derive for it are different?)
We have several in our design. The number of representatives for a state (num reps)
can be computed by counting the number of Representative “records” associated with
that state. The outcome of a bill can be deduced by how many votes in favor it
received.
Relational purists will usually eliminate any derived attributes from the design. Real-
world designers will sometimes allow a derived attribute in the design if they feel
there is good reason for it. We just should be aware of them and weigh the advantages
and disadvantages.
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3. Airplane, the SEQUEL (no pun. . .)

You have become a world-renowned specialist in airline database design. (Nothing like spe-
cializing, eh?) Scoundrel Airlines has come to you for help. Your mission, should you decide
to accept it, is to design an E-R schema for the Airline’s database for flight information and
reservations. They provide you the following specifications.

Scoundrel Airlines wants to keep information on its airplanes. They want to record the
airports that they fly into and out of. Airport information should include the airport’s code
(such as ‘RIC’ for the Richmond-Williamsburg International (?) Airport), the name of the
airport, the primary city it serves, and in which state or province it is. The database should
keep track of the types of airplanes that the Airline owns, capturing the information of the
number of seats, the manufacturer, and the model name.

The database should model the fact that only certain types of airplane can land at certain air-
ports. For instance, jumbo jets can land at RIC, but not at the Newport News-Williamsburg
International (???) Airport (PHF). Every airplane is of a given airplane type.

The database needs to keep track of flights. A leg of a trip is denoted by its departure
information (from airport X, departure time) and its arrival information (to airport Y, arrival
time). A particular airplane is assigned to a given flight leg on a given day. Each flight leg
has a number of seats available to be reserved. Each seat on the airplane is reserved for a
given customer, recording his or her name and telephone number.

A flight is made up of a sequence of legs, for which they want to record the flight number,
the flight fare, and whether the flight flies on weekdays or not.

Design an E-R schema diagram to model Scoundrel Airline’s database. Again, state clearly
any assumptions that you make, and state any rules that are not captured in your E-R
diagram.
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It is important that we distinguish between a leg, a schedule entry of a non-stop flight
between two airports, and an instance of that actual leg occuring on a given day. We
named the occurrence of a leg a hop. It is a hop which uses a particular airplane, and
for which we sell seats. So we had to build this distinction into our design.
We have seen this type/instance dichotomy before. A course is a listing in the course
catalog, while a class is an instance of a course offerred in a given semester meeting
in a given room at a given time and taught by a given instructor. In our movie-rental
database, we had copy and movie. The latter was the catalog entry about the particular
movie and the former referred to the physical video tape or DVD with the movie on it.
We had to keep track of the copies to know which customers have returned their rentals.
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Figure 1: E-R diagram for Question 4.

4. YRB.com

You have just been hired at the famous company YRB.com (York River Books) which sells
books over the Internet. They have been having problems with their database designs and
have hired you as a database expert to help fix them.

Figure 1 shows the core of the E-R diagram that represents YRB.com’s main database to
track sales of books to customers.

Customers belong to “clubs”, such as AAA, student, professor, AOL subscriber, AARP, and
so forth. There can be several “offers” available for a book which determines its price based
upon the clubs to which a customer belongs.

a. How does one determine the price a given customer paid for a given book? Should an
attribute price be added to buys?

Which Offers a Customer has “bought” is recorded by the rel-ship buys. An offer is
for a given book, so it is easy to tell the book the customer bought by going through
the offer he or she bought it under. We can look up the assciated Offer “record” from
the buys entry to see the price the customer paid for the book.
The customer may have bought the same book several times through different offers
each with a different price. So we may not get just one answer.

b. Is it possible for two customers to buy the same book but for different prices? If so, how
is this possible? If not, how does the logic of the E-R diagram prohibit this?

Sure. They can each buy the book but through different offers (with different prices).

c. Does the customer always pay the lowest price for which he or she is eligible (eligible)?
If not, is there an easy way to modify the E-R diagram in order to assure this?
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No. The logic of the diagram does not ensure this. In fact, there is no way that
we could ensure this via E-R. The E-R model does not give us any way to refer to
actual values in the database, so there is no way to “talk about” lowest price in E-R.
We could handle this later in application programs we write on the database to run
the bookstore, of course, if this is important.

d. Does the E-R diagram ensure that the Offer under which a customer buys a book is, in
fact, legitimate? That is, an offer is for a particular club’s members. Are we guaranteed
that the customer belongs to the corresponding club? Why or why not?

No, it does not. The rel-ships belongs to and buys are independent. We can put
entries in buys without having to check with belongs to. The rel-ship buys relates a
customer and an offer. There is no club information involved.
Again, this is not to say we could not handle such a business rule outside of the
design. We could check it within the application programs and queries we build on
the database for running the bookstore. It just is not enforced by the design. (So if
we were to allow customers to fill out their own orders using SQL, they could buy
books under offers for which they are not eligible.)
Ideally, if we could redesign the E-R so that it did protect against this, then the
database system would ensure that customers only buy books through offers for which
they are eligible club-wise. We would not have to be sure to handle this ourselves
in our queries and APPs. Such a design would be then a more elegant solution (as
long as the design were not horrendously complex).
In this case, it is possible to fix this in E-R. A solution is provided in the class notes.
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5. The Fix

Consider again YRB.com’s database (the E-R in Figure 1).

a. There is a serious flaw (at least one) in the design in Figure 1, at least in as far as any
bookseller would be concerned. What is the flaw?

Well, there are numerous flaws, especially for a real-world bookstore.
A big obvious one, though, is that a customer can buy a given book via a given offer
only once! This is because we modeled buys as a rel-ship. We want that a customer
could buy the same book more than once. There are many natural situations for this,
and from the point of view of the bookstore, is only to be encouraged.

b. Redesign the E-R from Figure 1 to fix this.

To fix this, we could replace the rel-ship buys with an entity, say named Purchase.
We could make Purchase a weak entity on Offer, since a purchase has to be for
something. We could then make the attribute when a partial key. (Its type in the
relational implementation would most likely be timestamp, recording the date and
time.) We should add an attribute quantity to store the number of copies of the book
that they are buying. We would want to allow them to buy more than a single copy
at a time!
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Person(ssn, name, gender, job, studio, title, year)
FK (studio) refs Studio,
FK (title, year) refs Movie

Category(cat)
Movie(title, year, length, director, studio, cat)

FK (director) refs Person (ssn),
FK (studio) refs Studio,
FK (cat) refs Category

Cast(ssn, title, year, character)
FK (ssn) refs Person,
FK (title, year) refs Movie

Studio(studio, city)

Figure 2: Movies and Casts.

6. Reverse Engineering

A relational schema for movies and casts is given in Figure 2. The primary key for each
relation is indicated by the underlined attributes, as ssn in Person. Attributes that are
starred, as director in Movie, are not nullable (not null). (Likewise, any attribute which is
part of the primary key is not nullable.) The foreign keys for each table are written as FK
. . ., and refs is shorthand for references.

The attributes title and year in table Person indicate that person’s favorite movie. The
attribute job of Person is allowed two values: ‘actor’ or ‘director’. Only actors are allowed
to act in (Cast) movies. Only directors are allowed to direct (director). A movie is produced
by a studio. A person (actor or director) can be contracted by a studio (but by at most one
studio), as indicated by studio in Person.

Reverse engineer this into a reasonable entity-relationship diagram that reflects the same logic
of this relational schema and the explanation of the domain above.
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There is no evidence that table Cast was derived from an entity. Indeed, it is consistent
with how we would render a many-many rel-ship. So we make cast a rel-ship in our
diagram. We handled a person’s job by making an ISA hierarchy which divides people
into two sub-entities, directors and actors. It is sensible to do this because directors and
actors participate in different rel-ships. There is no attribute job in the diagram since
the ISA handles the distinction.
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Figure 3: A, B, C’s

7. Scheming

Write a relational schema for the E-R in Figure 3. You may use the short-hand style like
in Figure 2 from Question 6, rather than in full SQL CREATE TABLE statements. (Do this
for all the components of the diagram—A, B, C, etc.—not just for part of it.) Be certain
to capture the participation and key constraints from the E-R diagram in your relational
schema, where possible. Do not introduce any tables that are not necessary. Note that R is
a many-many-many.
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A(a, c, g)
FK (c) refs C % Handles S

B(b, d, x, y)
FK (x, y) refs B (b, d) % Handles Q

C(c)
R(a, b, c, d, f)

FK (a, c) refs A,
FK (b, d) refs B,
FK (c) refs C

Each entity is made a table. The many-one rel-ships Q and S do not have to be made
tables. Each can be handled as a FK within the table representing the entity with the
arrow. Furthermore, we have to do it this way to capture the manditory participation in
each case. We have to do it this way for S because A is a weak entity on C, and we could
not capture this correctly if S were its own table. For Q, we could not force that every
B tuple participates in the Q rel-ship, and is thus related to another B tuple, otherwise.
Q seems odd since it is a recursive rel-ship, relating B to itself. But we have seen these
before. For instance, imagine that B is Employee and Q is the rel-ship manages. Now
you might think that we could render B and Q as

B(b, d) FK (b, d) refs B

However, this would be wrong! This would only allow each B tuple to be associated with
itself via rel-ship Q! There is no sense in this. So each employee is his or her own boss.
(Well, actually, that doesn’t sound so bad . . ..) So we have to introduce extra columns
to hold the rel-ship Q. Here, we introduced x and y. For employee, we might introduce
an attribute manager to reference, say, the managers’ ssn.
A is weak on C. So its key is the union of its attributes marked as being part of the key
(a), and the attributes that form C’s key (c).
Rel-ship R we have to make into a table since it is many-many-many. It relates three
entities (A, B, and C), so three FKs are needed, one to each of the entities’s tables.
Table R’s key is the union of the three entities’s keys. R has an attribute of its own, f.
so we include it as a column in its table.
Note there is an ambiguity in the E-R diagram regarding R. Is R only allowed to relate
an instance of A with an instance of C (and further with an instance of B, of course)
such that that A is weak on that C? This is the way we modeled it above. Or should R

be free to associate any A with any C with any B? If it is the later, we would have to
render table R as, say

R(a, b, c, d, e, f)
FK (a, e) refs A (a, e),
FK (b, d) refs B,
FK (c) refs C
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Figure 4: A, B, C’s

8. Extreme E-R

a. Redesign the E-R diagram from Figure 8 so that in the revised E-R diagram a technician
who conducts a test on an airplane is guaranteed to be an expert on that model of
airplane.
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This can be done easily by making an aggregation block around the rel-ship expert,
and changing the rel-ship performs to be between the aggregation expert and Test

Event.
Under a rule of design minimality, this works: performs associates a Test Event

(which is associated with a particular Airplane and hence with a particular Airplane

Model) with an “expert” (who is asscoiated with a particular Airplane Model).
That the airplane model has to be the same in both cases is forced in performs.

b. Write a relational schema derived from your E-R design in 8a. Again, you may use the
short-hand style as in Figure 2 from Question 6,
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FAA Test(faa#,max score)
Airplane Model(model#)
Airplane(vin,model#)

FK (model#) refs Airplane Model % Handles ‘of type’
Technician(emp#, name)
Expert(emp#,model#)

FK (emp#) refs Technician,
FK (model#) refs Airplane Model

Test Event(faa#, date,#hrs, score, vin,model#)
FK (faa#) refs FAA Test, % Handles ‘for’
FK (vin, model#) refs Airplane, % Handles ‘on’
FK (emp#, model#) refs Expert % Handles ‘performs’
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9. Normal. Is this normal?

Consider the relation schema ABCDEF with the following set of functional dependencies:

A 7→ B AE 7→ F
CD 7→ A CE 7→ F
BC 7→ D

a. What are the keys of the relationship ABCDEF above with respect to the set of functional
dependencies?

To help reduce the work, we note that neither C nor E appear on the right-hand-side
of any of the FDs. So they must belong in any candidate key.
We can check then to see if CE is a candidate key. If it is, we are done. It would be
the only candidate key. (Any other set of attributes that acts as “key” must contain
C and E, and so would be a super-key.)

CE 7→ F.

No, we don’t infer all the attributes when we compute the closure of CE. We only
get additionally F.
So we try A, B, D, and F, in turn, with CE to see if any of those work.

ACE 7→ BDF. Yes!
BCE 7→ ADF. Yes!
CDE 7→ ABF. Yes!
CEF 7→. No.

Three of them are candidate keys. Next, we need to look at subsets of four attributes
(with two of them being C and E). However, all are supersets of ACE, BCE, or CDE,
the candidate keys we know so far. So those could only be superkeys, and we need
not check them. The same is true for yet larger subsets of the attributes, so our
search is complete.

b. Is schema ABCDEF in BCNF? Why or why not?

Consider the second to last FD, AE 7→ F. AE is not equivalent to, nor a superset of,
any of the three candidate keys. Therefore, this FD violates BCNF, so the relation
is not in BCNF.
In fact, each FD in this example violates BCNF!

Is schema ABCDEF in 3NF? Why or why not?
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For 3NF, an FD is a violation iff the left-hand-side is not equivalent to, nor a su-
perset of, any candidate key, or the right-habd-side attribute is prime. (An attribute
is called prime if it appears as part of any of the candidate keys.) For A 7→ B,
CD 7→ A, and BC 7→ D, each of B, A, D appear in some candidate key, so none is
a problematic FD for 3NF. Attribute F, however, appears in none of the candidate
keys and so is not prime. Thus this will not excuse the last two FDs, AE 7→ F and
CE 7→ F. As we observed when checking for BCNF for AE 7→ F, AE is not equivalent
to, nor a superset of, any of the candidate keys. Therefore, AE 7→ F violates 3NF.
So does CE 7→ F.

Is schema ABCDEF in 2NF? Why or why not?

Again, the first three FDs cannot be problems because their right-hand-sides are
prime. Is AE 7→ F a problem for 2NF? 2NF says each FD must either have a prime
right-hand-side, or the left-hand-side cannot be a proper subset of any candidate key.
However, AE is a subset of candidate key ACE. So this violates 2NF too. Likewise,
so does CE 7→ F.
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10. Intersection by any other name. . .

Give two separate (independent) arguments (informal proofs) why the relational operator
∩ (intersection is algebraically redundant, given the relational operators σ (selection), π
(projection), 1 (join), ∪ (union), and − (set-difference). That is, show that an R.A. query
that uses intersection can always be rewritten as a query that does not.

So we want to find other R.A. ways to write R ∩ S.
Let R’s schema be R(A,B) and S’s schema be S(C,D). Then R 1A=C∧B=D S would mean
the same thing. In general, an equi-join between two tables that involves all the columns
is the same as an intersection between them.
An aside: Consider what R 1 S means. It is a natural join (the join columns are left
implicit). So we join on the attribute names in common. There are none! When the
join condition is empty, a join is equivalent then to the cross-product. So, in this case,
R 1 S is the same as R × S. So at one extreme, when the join equates all the columns,
the join is the same as intersection. At the other extreme, when the join involves no
columns, it is equivalent to cross-product.
Other equivalences we can pull from what we know with Venn-diagrams and set theory.
R ∩ S can be rewritten as ((R ∪ S) − (R − S)) − (R − S). This works for R.A. too.
Note that the parentheses are important above! Why?
R − (R − S) is yet another equivalent formula. Of course, so is S − (S − R) then.
Here, it really is clear why the parentheses matter.

Many would like to say R ∪ S. That’s fine for Venn-diagrams, but not for R.A. We do
not have a “complement” operator in R.A.!
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11. How many tuples for a tuppence?

Problem #4.2 from the textbook.

expression assumption min max

R1 ∪ R2 R1 & R2 are union compatable N2 N1 + N2

R1 ∩ R2 R1 & R2 are union compatable 0 N1

R1 − R2 R1 & R2 are union compatable 0 N1

R1 × R2 N1 × N2 N1 × N2

σa=5(R1) R1 has an attribute named a 0 N1

R1 ÷ R2 The set of attributes of R2 is a
subset of the attributes of R1

0 N1

R2 ÷ R1 The set of attributes of R1 is a
subset of the attributes of R2

0 ⌊N2/N1⌋
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12. What’s that in English?!

Problem #4.4 from the textbook.

For a. and b., the questions are bogus. I do not know what they mean. Apologies. The
rest are meaningful, though.
For c., we could get bogus answers. Say Parke, Inc., a supplier in Toronto makes only
cheap, red parts. Say Parke, Inc., a different supplier in Williamsburg makes only cheap,
green parts. They are different companies, but the same name. (They’d have different
sid’s, of course.) But the query would return Parke, Inc.. See why?
To protect against that problem, query d. does the right thing and intersects using the
key, sid. However, if we wanted the suppliers’ names back, this does not do that. Query
e. revises d. to also return the names.
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13. One of these things is not like the other.

Consider the schema R(A,B,C), S(A,D), and T(D,B,E). Consider the following relational
algebra expressions with respect to the above schema.

a. πB((σC=5(R) 1 σE=7(T)) 1 S)

b. πB(πA,B,D(σ(C=5)∧(E=7)(R 1 T)) ∩ (S × πB(T)))

c. πB((σC=5(R 1 S)) 1 (σE=7(S 1 T)))

d. πB(σC=5(R 1 S)) ∩ πB(σE=7(S 1 T))

e. πB(πA,B(σC=5(R)) 1 (S 1 πD,B(σE=7(T))))

One of these is not like the others. That is, one of them may evaluate differently from the
other four. Which one?

Give an example relation for which this one does evaluate to a different answer than the other
four, and show what the odd one evaluates to, and what the other four R.A. expressions
evaluate to.

To see what’s going on, we have to simplipy the formulas. Let us look at the selections
(σ’s) Each time, we select just the tuples of R such that C = 5; for S such that E = 7.
Note that columns C and E are not used in any other operation! They are not used in
any join condition, and we ultimately throw them away. (We only keep B in the end, in
each case.) So let R′ = πA,B(σC=5(R)) and let T′ = πD,B(σE=7(T)). Thus, the above are
equivalent to

a. πB((R′
1 T′) 1 S)

b. πB(πA,B,D(R′
1 T′) ∩ (S × πB(T)))

c. πB(R′
1 S) 1 (S 1 T′))

d. πB(R′
1 S) ∩ πB(S 1 T′)

e. πB(πA,B(R′) 1 (S 1 πD,B(T′)))

These are easier to look at and to understand. And they each mean the same thing as
the corresponding original.
Now, the order that joins are done in does not matter (unlike with set-difference). We
know that join is associative and it is reflexive. That is, ((R 1 T) 1 S) and (R 1 (T 1 S)
mean the same thing! And R 1 T and T 1 R must evaluate to the same thing. Since
join is associative, we often just write (R 1 T 1 S) for ((R 1 T) 1 S) since the order
in which the joins are evaluated does not matter. The ambiguity left by leaving out the
parentheses is immaterial in this case.
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Note the colums of R′ are A and B, and of T′ are D and B. So πA,BR′ is just R′, and
πD,BT′ is just T′. So, our queries now simplify to

a. πB(R′
1 T′

1 S)

b. πB((R′
1 T′) ∩ (S × πB(T)))

c. πB(R′
1 S 1 S 1 T′)

d. πB(R′
1 S) ∩ πB(S 1 T′)

e. πB(R′
1 S 1 T′)

Well, S 1 S is just S ∩ S which is, of course, just S. So now, queries a., c., and e. are
all clearly identical.
What is happening in query b.? Can we make that ‘∩’ between “S” and “R′

1 T′” a ‘1’
instead? Well, S’s attributes are A and D, but the attributes of R′

1 T′ are A, B, and
D. Clearly though, if, for any tuple from R′

1 T′, there is a tuple from S that matches
it on A and D, there must be a tuple from S× πB(T) that matches it exactly. Why? the
matching S tuple has been crossed with all the possible B’s, so one of them must match
with the B of the R′

1 T′ tuple. So, in this case, we can replace (R′
1 T′) ∩ (S × πB(T))

with R′
1 T′

1 S! Thus, query b. is the same as the others too.
Why is query d. different? The ‘∩’ would be equivalent to a ‘1’ if all the attributes were
involved. But we project to just B on both sides first. So more tuples can survive the
final cut than with the other four queries.
Consider the following example tables:

R

A B C

1 2 5
5 6 5

T

D B E

3 2 7
8 6 7

S

A D

1 8
5 3

For queries a., b., c., and e., the answer table is empty. For query d., though, it has
rows 〈2〉 and 〈6〉.
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14. Relational Algebra Queries. Parlez-vous l’algébra rélational?

Customer

cust# PK
cname

fav colour
phone#

Item

item# PK
prod# FK to Product

cust# FK to Customer

colour
date sold

Product

prod# PK
pname

cost
maker FK to Company

Avail Colours

prod# PK, FK to Product

colour PK

Consider the relational schema above. PK stands for primary key, and FK for foreign key. Not
all the schema is shown, but you do not need the parts not seen. Make natural assumptions
about what the table attributes mean.

Write a relational algebra query for each of the following.

a. Show, for each customer (reporting the customer’s name), the products by name that
come in the customer’s favourite colour.

πcname,pname((Customer 1fav colour=colour Avail Colour) 1 Product)

b. Show, for each customer (reporting the customer’s name), the products by name that
do not come in the customer’s favourite colour.

πcname,pname(
πcust#,cname,prod#,pname(Customer × Product) −
πcust#,cname,prod#,pname((Customer 1fav colour=colour Avail Colour) 1 Product)

)

c. List pairs of customers (columns: first cust#, first cname, second cust#, second cname)
such that the two customers own at least two products in common.

Write your query so that a pair is not listed twice. For instance, if 〈5, bruce, 7, parke〉 is
listed, then 〈7, parke, 5, bruce〉 should not be.

ρ(One, σc1#<c2#(
πc1#,cn1,prod#(ρ((cust# → c1#, cname → cn1), Customer 1 Item)) 1

πc2#,cn2,prod#(ρ((cust# → c2#, cname → cn2), Customer 1 Item))))

πc1#,cn1,c2#,cn2(σp1# 6=p2#(ρ((prod# → p1#),One) 1 ρ((prod# → p2#),One)))
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d. List customers who own items in all the available colours. That is, for every available
colour, the customer owns some item in that colour.

πcust#,cname(Customer) 1

(πcust#(Customer)−
πcust#((πcust#(Customer) × πcolour(Avail Colour)) − πcust#,colour(Item)))

Or

πcust#,cname,colour(Customer 1 Item) ÷ πcolour(Avail Colour)

e. List each customer by name, paired with the product(s) by name that he or she has
bought that was the most expensive (cost) of all the products he or she has bought.

Note that there actually may be ties. For instance, 〈bruce, ferrari〉 and 〈bruce, porsche〉
would both qualify if both were $80,000, and for everything else he has bought, each
item was less expensive than $80,000.

ρ(Costs, πcust#,cname,prod#,pname,cost((Customer 1 Item) 1 Product))

πcust#,cname,prod#,pname(
Costs − πcust#,cname,prod#,pname,cost(σcost<cost2(

Costs 1 πcust#,cname,cost2(ρ((cost → cost2),Costs)))))
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15. Domain Relational Calculus. Déjà vu to you too.

Write the same queries as in Question 14, but as domain relational calculus queries instead.

a. Show, for each customer (reporting the customer’s name), the products by name that
come in the customer’s favourite colour.

{〈C#, Cn, P#, Pn〉 |
∃Col(

∃Ph#(〈C#, Cn,Col, Ph#〉 ∈ Customer) ∧
〈P#, Col〉 ∈ Avail Colours ∧
∃Ct,M(〈P#, Pn,Ct,M〉 ∈ Product))}

b. Show, for each customer (reporting the customer’s name), the products by name that
do not come in the customer’s favourite colour.

{〈C#, Cn, P#, Pn〉 |
∃FC(

∃Ph#(〈C#, Cn, FC,Ph#〉 ∈ Customer) ∧
∃Ct,M(〈P#, Pn,Ct,M〉 ∈ Product) ∧
∀Col(〈P#, Col〉 ∈ Avail Colours →

FC 6= Col))}

c. List pairs of customers (columns: first cust#, first cname, second cust#, second cname)
such that the two customers own at least two products in common.

Write your query so that a pair is not listed twice. For instance, if 〈5, bruce, 7, parke〉 is
listed, then 〈7, parke, 5, bruce〉 should not be.

{〈C1#, Cn1, C2#, Cn2〉 |
∃FC,Ph#(〈C1#, Cn1, FC, Ph#〉 ∈ Customer) ∧
∃FC,Ph#(〈C2#, Cn2, FC, Ph#〉 ∈ Customer) ∧
∃P1#, P2#(

∃I#, Col,DS(〈I#, P1#, C1#, Col,DS〉 ∈ Item) ∧
∃I#, Col,DS(〈I#, P1#, C2#, Col,DS〉 ∈ Item) ∧
∃I#, Col,DS(〈I#, P2#, C1#, Col,DS〉 ∈ Item) ∧
∃I#, Col,DS(〈I#, P2#, C2#, Col,DS〉 ∈ Item) ∧
P1# 6= P2#) ∧

C1# < C2#}

d. List customers who own items in all the available colours. That is, for every available
colour, the customer owns some item in that colour.
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{〈C#, Cn〉 |
∃FC,Ph#(〈C#, Cn, FC,Ph#〉 ∈ Customer) ∧
∀Col, P#(〈Col, P#〉 ∈ Avail Colours →

(∃I#, P#,DS(〈I#, P#, C#, Col,DS〉 ∈ Item)))}

e. List each customer by name, paired with the product(s) by name that he or she has
bought that was the most expensive (cost) of all the products he or she has bought.

Note that there actually may be ties. For instance, 〈bruce, ferrari〉 and 〈bruce, porsche〉
would both qualify if both were $80,000, and for everything else he has bought, each
item was less expensive than $80,000.

{〈Cn,Pn〉 |
∃C#, FC, Ph#(〈C#, Cn, FC,Ph#〉 ∈ Customer ∧

∃I#, P#, Col,DS(〈I#, P#, C#, Col,DS〉 ∈ Item ∧
∃Cost,M(〈P#, Pn,Cost,M〉 ∈ Product ∧

∀I2#, P2#, Col2,DS2(〈I2#, P2#, C#, Col2,DS2〉 ∈ Item →
∀Pn2, Cost2,M2(〈P2#, Pn2, Cost2,M2〉 ∈ Product →

Cost ≥ Cost2)))))}

or

{〈Cn,Pn〉 |
∃C#, FC, Ph#(〈C#, Cn, FC,Ph#〉 ∈ Customer ∧

∃I#, P#, Col,DS(〈I#, P#, C#, Col,DS〉 ∈ Item ∧
∃Cost,M(〈P#, Pn,Cost,M〉 ∈ Product ∧

∀I2#, P2#, Col2,DS2(〈I2#, P2#, C#, Col2,DS2〉 ∈ Item →
∃Pn2, Cost2,M2(〈P2#, Pn2, Cost2,M2〉 ∈ Product ∧

Cost ≥ Cost2)))))}
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16. Decomposition. Totally lossless!

Consider the relation schema ABCDEF with the following set of functional dependencies:

A 7→ B AE 7→ F
CD 7→ A CE 7→ F
BC 7→ D

Provide a lossless-join decomposition that is in BCNF for ABCDEF above with respect to the
set of functional dependencies.

We start with ABCDEF. The FD A 7→ B breaks BCNF because {A} is not a key nor
superkey. Let us decompose using this to produce tables AB and ACDEF. This is a
lossless decompostion by definition, as the intersection of the two tables, A, is key for
one of them, AB.
Are we done? No, ACDEF is not in BCNF. CD 7→ A breaks BCNF for it. We recheck
and ACE and CDE are the candidate keys for ACDEF. So since CD is not a key nor
superkey (with respect to table ACDEF and all the FDs, implied too), then ACDEF is not
in BCNF. So we can decompose ACDEF into ACD and CDEF. Again, this is a lossless
decomposition. (I’m limiting myself to chosing lossless steps.)
Are we done? No, CDEF is not yet in BCNF. CE 7→ F breaks BCNF for it. We recheck
CDEF’s candidate keys: only CDE works. So CE is not a key nor superkey (with respect to
table CDEF and all the FDs, implied too). We can decompose CDEF then using CE 7→ F:
CDE and CEF. (Lossless, by definition, again.)
Are we done? We can find no FDs that pertain to CDE. Of course CDE has candidate
key; itself. We can find no FDs that pertain to CEF. It has a candidate key of CE. We
find no others. The only FD (implied or otherwise) that applies to CEF is CE 7→ F. So
both CDE and CEF are in BCNF.
All together, we have decomposed ABCDEF into AB, ACD, CDE, and CEF. This is a
losseless decomposition, as shown by the steps above. All four resulting tables are in
BCNF with respect to the FDs, so this is a BCNF decomposition.
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17. Decomposition. Lose something?

Consider again the relation schema ABCDE, and the same set of functional dependencies,
from Question 16. Dr. Dogfurry, the world famous database consultant, came up with the
following decomposition: AEF, AB, and ACD.

Is this a lossless join decomposition with respect to ABCDEF and the set of functional depen-
dencies?

No, this is not a lossless join decomposition. There are two ways to demonstrate this.
One is to devise example tables that obey the FDs and show that (natural) joining the
decomposed tables together result in more tuples than the original table. This is only
possible when the decomposition is lossy. The other way is to show that no lossless-join
decomposition tree exists that results in these three (and only these three) tables.
Let us pursue the latter approach. The join of AEF and ACD is lossy because A is not a
candidate key for either table. The joins of AB and AEF and of AB and ACD are lossless,
however, because A is a candidate key for AB.
Consider the first of these lossless joins, resulting in ABEF. Is the join of ABEF and the
remaining table ACD lossless? No, because A is not a candidate key for ABEF nor for
ACD. Consider the second of these lossless joins, resulting in ABCD. Is the join of ABCD
and the remaining table AEF lossless? No again, because A is not a candidate key for
ABCD nor for AEF.
We have run out of possibilities for how to join the three tables losslessly to regain the
original. So there is no lossless-join decomposition tree that works. Therefore, this
decomposition is lossy.
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18. Minimal Cover. Got you covered.

Given the set F of functional dependencies {AB 7→ C,A 7→ D,BD 7→ C}, find a minimal cover
of F .

To find a minimal cover, we first repeatedly eliminate an FD from the collection as long
as the remaining FDs imply the one we are eliminating. Second, we “generalize” the
remaining FDs by dropping as many of the attributes on the left-hand side of an FD as
possible while implying the same set of FDs.
Let us do that here. Can we drop BD 7→ C? No. The remaining two do not imply it.
Can we drop A 7→ D? No. The remaining two do not imply it. Can we drop AB 7→ C?
Yes! The remaining two do imply it. We know BD 7→ C. Since A 7→ D, by transitivity
AB 7→ C.
So we know have {A 7→ D,BD 7→ C}. Can we reduce in the second step by eliminating
any attributes on the left-hand sides? BD is the only possibility. Does D 7→ C follow
from the remaining? No. Does B 7→ C follow from the remaining? No. So we could not
“generalize” any.
The final answer: {A 7→ D,BD 7→ C}.
Half of folks answered this question incorrectly with the answer {AB 7→ C,A 7→ D}. It is
easy to think that since A implies D, then we can replace the A in AB 7→ C with D. But
that is applying FD transitivity in the wrong direction.
For example, let A be a person’s ssn, D be the person’s birthday, B be hour-of-day, and
C hourly wage. Then AB 7→ C says that ssn and hour-of-day together determines hourly-
wage. (So, for example, people may earn more on off-shift hours.) However, birthday
and hour-of-day would not determine hourly-wage. Be careful in reasoning with FDs. It
is easy to mess up.


