
CSE 1710	

Lecture 14	
Recap and Review of Core Concepts	

How should the program react if an input is
invalid? 
"
possible reactions: !
1.  exception-based approach!
2.  message-based approach!
3.  friendly approach!
!
•  The key thing is that there should be a reaction.!
•  Invalid input must not be allowed to propagate

through. !
–  this may result in a logic error that may go undetected (a bad

situation!)! 2	

RQ3.22!

What is a class? "
–  a definition!

–  e.g., a description of
what a car consists of 
!

–  gets created in advance!
•  it is compiled, is bytecode!

–  it (the bytecode) gets
loaded into runtime
memory by the VM upon
invocation of an app !

3!

RQ2.12!
What is an object? "

–  an actual instance of the
thing that was defined!

–  e.g., the representation of
a particular car!

–  gets created at runtime!
!

!
–  it gets “born” during

runtime, it “dies” during
runtime, has a state
throughout runtime!

What is state?"
–  an object has state!

•  primitive values do not have state, classes do not have
state, only objects have state!

–  objects have zero or more attributes!
–  attributes hold data !

•  data may be primitive or non-primitive!
•  contrast with methods, which do computation!

–  methods may also serve to change the values of the object’s
attributes!

»  term for such methods?!
–  methods may also serve to provide information about the

values of the object’s attributes!
»  term for such methods?!

–  “an object’s state” refers to the specific values for
all attributes of that object"

4	

RQ2.12, pre4.24, pre4.27!

What is state? A Pixel object example"
•  Examine the API for Pixel !

–  any public attributes? !
–  can we make any inferences?!
–  obtain a reference to a particular pixel object – probe

its state using methods (L14App1)!
•  What are the “legal” values for the attributes?!

–  has x, y position, must be within bounds of image!
–  has R, G, B components, must be in range [0, 255]!
–  alpha component must be in range [0, 255]!
–  has an image to which it belongs !

•  What is an illegal state for a Pixel object?!
–  if any component is out of range!

5	

RQ4.24, 4.26!

Accessors"
•  What is an accessor?!

–  returns info about the state of an object!
•  Naming convention?!

–  if return is boolean: isXXX()!
–  if return is not boolean: getXXX()
getRed(), …!

6	

RQ4.24, 4.26!

Accessors"
•  Is getAverage() an accessor?!

–  we know the average component value is a
secondary value!
•  derived on the basis of the three component values!

–  the value might be:!
•  computed each time we invoke the method!
•  represented using a variable, computed each time any of the

components change!
–  we, as the client, do not know and should not know!

•  if we did, this would be breaking the encapsulation!

7	

RQ4.24, 4.26!

Accessors"
•  Can the return of an accessor be void? !

–  this would be incompatible with the definition
of accessor !

–  aside – how is void different from null? null is a value; it is
valid to assign this value to any object reference. void is one of
the possible returns of a method. It is used to describe the
behaviour of a method (namely, it does not return a value of any
type). If a method has a non-void non-primitive return, then
perhaps the method may return null as the value of its return,
but this really depends on the contract of the method. (e.g., in
the class Pixel, getColor() returns a value of type Color, but
this method should never return null.)!

8	

RQ4.25!

Mutators!
•  What are some examples of mutators from
Pixel?!
– setRed(int), setBlue(int),
setGreen(int)!

– setColor(Color)!
•  What is a mutator in general?!

– provides a means to change the state of an
object!

– more correct:!
•  provides a means to possibly change the state of

an object!
! 9	

RQ4.27!

Does the mutator always mutate an
object?"

– what if the parameter value does not make
sense?!
•  thePixel.setRed(-50);!
•  thePixel.setRed(256);!

–  look to the API!
•  just because there is a contract doesn’t mean it’s a
good one	

– mutators enforce the condition that the object
not be allowed to go into an illegal state!

– why isn’t there a mutator for x, y position?!
•  the class does not provide services for changing

them	
!

10	

preRQ4.29!

Mutators!
•  What is the return of Pixel’s mutators?!

– void!
•  In principle, what could be another type of

return for a mutator?!
– boolean!
– and what would this indicate?!
•  indicates whether the requested mutatation was

successful!

11	

RQ4.28!

Mutators and illegal states"
•  How does a mutator enforce that the

object is always in a legal state?!
–  it enforces conditions prior to any change to

the object state!

12	

RQ4.29!

Why are there no public attributes in Pixel?"
•  it has good design:!

1.  the client can only change object state through mutators!
•  the mutators can enforce conditions!

2.  the data type(s) and variable names are encapsulated
(know “what” not “how”)!
•  knowing that the colour components are represented (“what”)!
•  vs knowing how the colour components are is represented (e.g.,

as three separate int variables vs an array vs a vector etc)
(“how”)!

•  if attributes were public… (both of these things are undesirable)!
–  any client could come along and change them, and the

class could not impose any conditions!
–  clients would know about the “how” – they only need to

know about the “what”	 13	

RQ4.30!

What if the mutators don’t enforce any
conditions?  
Can/should the attributes be public in
that case?"
•  No, not even in this case!!
•  the implementer needs to encapsulate!

–  implementer may want to add conditions later!
–  implementer may want to change way the

object state is represented (variable names
and/or types)	

14	

RQ4.31!

How can we delete the Pixel object?"
•  cannot delete directly !

–  there is no method or keyword to be invoked!
•  possible techniques!

– set reference to null!
–  this will result in object deletion by the

Garbage Collector (but only if there are no
other references to the object)!

•  What do we call an object that has no
references to it?!
– an orphan!

15	

RQ4.22, 4.23, 4.21!

How does Pixel’s toString() method
behave?"
•  returns a string like this: 
Pixel red=60 green=87 blue=34!

•  Purpose?!
–  provide a textual description!

•  Is toString() obligatory? !
–  yes, all classes must have it!

•  Example of implicit invocation? !
–  in println(…) (also as operand in string concatenation)!

•  Default behaviour?!
–  returns the class of the object and its location in memory (as a

hexadecimal number) (e.g., PrintStream has the default
implementation)!

16	

RQ4.17-4.20!

How does Pixel’s equals() method
behave?"
•  Look at API – we see that the method is inherited from

Object!
–  Consider L14App2!

•  How does the Java-added method determine equality?!
–  it asks the question: are these two references referring to the

same object in memory?!
–  contrast with the question: are these two references referring to

objects that have the same state?!
•  Is the equals method obligatory?!

–  yes, all classes must have it!

17	

RQ4.15,4.16!

Since two Pixel objects were deemed equal
using equals, are they also equal using ==? "
•  in this case, yes, because:!

–  we know equals is using the default version of equals,
which is based on ==!

•  in general, not necessarily, because:!
–  the test == is true only if the two objects are the same!
–  a class may define the method equals to return true if two

objects are different but have the same state	

18	

RQ4.14!

What about the converse:"
If two were deemed equal using ==, are they
also equal using equals? "
•  yes, always!
•  a class can implement equals in whichever way

makes sense to it, with one caveat:!
–  the identity property must be preserved !
–  an object must always be equal to itself	

19	

RQ4.13!

L14App3 – Discussion "
•  two different Pixel objects !

–  either can be mutated and have effect on the Picture!
•  Walk-through the four steps involved in creating an

instance of a Pixel object [line!
–  locate the class (in memory)!

•  it was loaded by the class loader!
–  declare the reference !
–  instantiate the class!

•  the copying model – each object has a set of attributes that get
copied!

–  assign the reference!
•  What if the fourth step were omitted?!

–  object will not have a reference to it; it will be orphaned!20	

RQ4.4, 4.8!

If Pixel had a static attribute, how would it
this be handled at run-time? "
•  in step 3, the static attribute would not be copied to

the object!

21	

RQ4.4, 4.8!

Why could we say that thePixel2 is an
address of an address? "
•  thePixel2 (or any variable) is merely a location in

memory that holds a value!
•  in the case of thePixel2, the value it holds is

another location!
•  the variable is an address in memory, and that

address holds another address!

22	

RQ4.11!

