
CSE 1710	

Lecture 16	

Text, Strings	

Goals/To do: 
"
Given a string and a
character, derive the
frequency of the character
within the string!
"
Given a string, a target
character and a
replacement character,
implement character
substitution.!
!
Given a numeric value in
string format, parse into
numeric type!

Goals/To understand:"
 "
•  difference between char,

String, and StringBuffer  
"

•  The non-primitive String
masquerades as a primitive
type  
"

•  Pattern-matching abstractions
(regular expressions) 
	

•  The difference between raw
and formatted text; how to
separate content from
presentation  
"

2	

Unicode!
–  Unicode is a computing industry standard for the

consistent encoding, representation and handling of
text expressed in most of the world's writing
systems."

–  Java and other languages use Unicode"
"
–  a unicode character:"

•  is a non-negative numeric value "
•  has a corresponding character according to the Unicode

character tables (as defined by the Unicode Consortium)"
"
"
"

" 3	

4	

h*p://unicode.org/charts/PDF/U0000.pdf	

The letter J is found in  
column ‘004’ and  
row ‘A’, "
which makes ‘004A’"
"
This is a hexadecimal number, denoted
\u004A"
"
To convert a hexadecimal number to
decimal:"
"
d3d2d1d0 = d3×163 + d2×162 + d1×161 +d0×160"

!
where di takes on values [0, 15]"
the value 10 is denoted by A (or a)"
the value 11 is denoted by B"
the value 12 is denoted by C"
the value 13 is denoted by D "
the value 14 is denoted by E"
the value 15 is denoted by F"
"
so to convert \u004A to decimal:"
= 0 ×163 + 0 ×162 + 4 ×161 + 10 ×160"

= 4 ×16 + 10 × 1"
= 64 + 10 "
= 74"
"
"
"
 "

Unicode!
–  The Unicode Standard consists of a repertoire of

more than 109,000 characters covering 93 scripts"
•  Cyrillic, Latin, Bengali, Thai, Greek, …"
•  the basic set is “Controls and Basic Latin” "
•  U000.pdf, also see Appendix A of JBA"

–  Unicode value denoted \uXXXX, where XXXX is a
hexadecimal value"
•  the decimal value 15 is represented as \u000F 
"

–  unicode makes is possible to talk about the
distance between two character "

"

" 5	

How Java uses Unicode  
!

–  String and StringBuffer objects encapsulate a
string as a sequence of unicode characters!

–  the char primitive data type make use of unicode
as well"

"
"

"

6	

L16App1"

About the character sequence…!
–  the String and StringBuffer classes

encapsulate a string as a sequence of characters"
–  the sequence is indexed"

•  the first position is index “0”"
•  the final position is index “the length of the sequence

minus 1”"

–  String services to tell us about the sequence"
•  int : length()"
•  char : charAt(int)"
•  String : substring(int, int)"

–  first value is start index, inclusive; second value is end index,
exclusive"

–  what if index is out of bounds?"
–  what if end index is smaller than start index?"

"

7	

L16App2"

What if the sequence has no characters at all?!
•  this is the empty string"
•  the string has length zero!
•  what if you hear the term “null string”?  

what does this mean?"
–  not really a correct-formed phrase, there is no such

thing"
–  often used to mean a string reference that is set to

null."

8	

How can we modify the sequence?!
–  Once a string object is created, it cannot be changed."

•  This is called immutability"
•  Strings are immutable

–  Instead of modifying the sequence, we just create
new strings."

–  It is fast and easy, thanks to the + operator"

–  Given this, is it correct to say that String has
mutators?"
•  not technically; they are actually generators of new modified

objects"
!

9	

L16App2b"

Iterating over a String!
–  many different ways to iterate"
–  several different services to use… 
"

–  theString.toCharArray() "
•  provides array that we can iterate over "
•  for (char c : theString.toCharArray()) { }  
"

–  theString.charAt(index)"
•  we can iterate over index values"
"

–  theString.substring(startIndex,finishIndex)"
•  we can iterate over the starting index values"

10	

L16App3"

String matching/comparison (basic)!
–  does s1 match s2? "
–  does c1 match c2?  
"

–  what does the equality boolean operator == tell us?"
•  boolean isMatch = c1==c2;"
•  boolean isMatch = s1==s2;  
"

–  what does .equals(String) tell us?"
•  boolean isMatch = s1.equals(s2);  
"

–  what does .compareTo(String) tell us?"
•  int differingIndexPos = s1.compareTo(s2);"

"

11	

L16App4"

Difference between creation of String
objects!

–  can construct String objects two different ways"
•  implicit construction"

–  use the pretend “literal” format"
–  e.g.,  
String s1 = "Hello";"

•  explicit construction"
–  use keyword new"
–  e.g.,  
String s3 = new String("Hello");"

•  explicit construction always creates new object"
•  if object with the same state already exists, implicit

construction will re-use previously created object"

12	

Elaboration of “compareTo(String)”!
 
(sort of) “tell me whether the passed string comes before
this string in the dictionary”!
“aardvark”.compareTo(“anvil”)!
•  anvil does not come before aardvark in the dictionary,

so the result is no (negative value)"
“anvil”.compareTo(“aardvark”)!
•  aardvark does come before anvil in the dictionary, so

the result is yes (positive value)"
 
(better) “tell me whether the passed string comes before this string in
the dictionary and, for the first character that is the determining
factor, what is the distance”!
•  the second character is the determining factor (‘a’ vs ‘n’, there is a

distance of 13 between them)"
"

13	

Counting Character Frequency!

–  Given a string and a character, derive the
frequency of the character within the string!

–  need to put together iteration and comparsion!
1.  iterate over the string to examine each character"
2.  for each character, compare to target"
3.  conditionally update counter "

14	

L16App5"

L16App6"

