
CSE 1710	

Lecture 17	

Text, Strings (II)	

Goals/To do: 
"
Given a string and a
character, derive the
frequency of the character
within the string!
"
Given a string, a target
character and a
replacement character,
implement character
substitution.!
!
Given a numeric value in
string format, parse into
numeric type!

Goals/To understand:"
 "
•  difference between char,

String, and StringBuffer  
"

•  The non-primitive String
masquerades as a primitive
type  
"

•  Pattern-matching abstractions
(regular expressions) 
	

•  The difference between raw
and formatted text; how to
separate content from
presentation  
"

2	

Recap: Strings are “objects with benefits”"
–  Creating strings is not different from creating any other object"

•  A String object, like any other object, has a state"
•  the state of a string object: the sequence of characters that is

encapsulated"
–  However, string objects have some bonus features"

•  they can masquerade as primitive value!
•  they are efficient (but in exchange they are immutable)!

–  masquerade aspect #1"
•  string objects can be specified using literal-like syntax"

–  String s = “hello”; "(** creation of new objects only conditionally)!
–  System.out.println(“hello world”);"

–  masquerade aspect #2"
•  string objects can participate in expressions just like primitive-

value operands"
–  “hello” + 89  
"

"
"

"

3	

How to get String object from anything!
!

–  any object has toString() method"
•  this also includes String objects, in which case
toString() is redundant "

–  do primitive values have a toString() method?"
•  no"
•  so how do we transform? "

–  concatenate primitive value to the empty string"
– String str1 = “” + 9;"
– String str2 = “” + ‘x’;"

 
"

"
"

"

4	

How to get primitive values from String
objects"

–  suppose we have a sequence of characters"
–  suppose that sequences happens to be the same

as a literal value from a primitive type"
•  e.g., “897” “875l” “false” “C”"

–  Use any of these static methods"
•  Integer.parseInt(str)"
•  Short.parseShort(str)"
•  Byte.parseByte(str)"
•  Long.parseLong(str)"
•  Double.parseDouble(str)"
•  Float.parseFloat(str)"
•  Boolean.parseBoolean(str)"

–  look at API, note the contract re: parameter"
•  java.lang.NumberFormatException: Value out
of range."

"

 
"

"
"

"

5	

L17App1b"

L17App1c"

How to get primitive values from String
objects"

–  suppose we have a one-character String and we
want the corresponding char"
•  e.g., “C” “d” “9”"

–  there is a wrapper class Character(just like the
others)"

–  unfo, there is no
Character.parseCharacter(str) or other
such static method"

–  instead:  
char c = “C”.charAt(0)"

 
"

"
"

"

6	

String methods, recap!
"
assume str1, str2 are strings; idx1, idx2 are integers"
"

–  str1.length() returns an int"
•  tells us the number of characters in the object’s character sequence"

–  str1.charAt(idx1) returns a char "
•  gives us the character at the specified index "
•  remember the first character of a string that is n characters long is at

index 0 and the last character is at index n-1"
–  str1.equals(str2) returns a boolean"

•  tells us whether str2 has the same state as str1 "
•  not whether str2 is the same object as str1"

–  substring(idx1,idx2) returns a String"
•  gives a subset of the character sequence from the start index inclusive to

the end index exclusive"
"

" 7	

String methods, recap!
!

–  str1.compareTo(str2) returns an int"
•  gives us an int that is a coded message"

–  0 if if str1 and str2 are equal"
–  polarity (the sign, +ve or –ve) tells us whether str2 comes before str1 in the

dictionary."
–  dictionary uses lexicographic ordering"

•  if str1 and str2 are not equal, then the value is Unicode difference of
the first differing character"

•  if there is no index position at which they differ, then the value is the
length difference  
"

"

"

8	

String methods, some new ones!
assume str1, str2 are strings; idx1, idx2 are integers"
"

–  str1.toUpperCase() returns a String"
–  str2.toLowerCase() returns a String"

•  these are NOT mutators!!!"
•  each returns a String obj, which is an entirely new object that is

modified version of str1 "
•  str1 is not changed at all (in fact, it cannot be changed, since it is

immutable)"
–  str1.substring(idx1) returns a String"

•  just like str1.substring(idx1, idx2), with the assumption that
idx2 is the length of str1"

•  anything you do using str1.substring(idx1), you could also do with
str1.substring(idx1, idx2) "

•  CONVINCE YOURSELVES OF THIS"
"

"
"

"

9	

String methods!
!

–  str1.indexOf(str2) returns an int"
•  if str2 does not occur within str1, the method gives us the value -1"
•  if str2 does occur within str1, the method gives us a value which is the

index at which str2 occurs in str1’s character sequence"
–  if str2 occurs more than once within str1, the method gives us a value

which is the index at which str2 first occurs in str1’s character sequence"
"

–  str1.indexOf(str2, idx1) returns an int"
•  just like str1.indexOf(str2), but the methods looks at str1’s

character sequence only starting at index position idx1 onwards"

"
"

"

10	

Comparing strings: equals vs matches!
suppose we have two strings, str1 and str2"

–  str1.equals(str2) returns true iff "
•  str1 has the same state as str2"

–  str1.matches(str2) returns true iff "
•  str2 matches the pattern as stipulated by str2"
•  in this context (i.e., being a parameter to matches) "

–  str2 is interpreted as a regular expression!

11	

“hello”.matches(“hello”)!

REGEX criteria ! “hello” satisfies?!
the character h is in index position 0" yes"
the character e is in index position 1" yes"
the character l is in index position 2" yes"
the character l is in index position 3" yes"
the character o is in index position 4" yes"
no further characters in the sequence" yes"

Regular expressions: Simple classes!
–  a regular expression can also use special

characters and syntax to specify more patterns
more generally"

–  [abc] defines a simple class of characters "
"

12	

“hello”.matches(“[Hh]ello”)!

REGEX criteria ! str1 satisfies?!
the character H or h is in index position 0" yes"
the character e is in index position 1" yes"
the character l is in index position 2" yes"
the character l is in index position 3" yes"
the character o is in index position 4" yes"
no further characters in the sequence" yes"

L17App2"

Regular expressions: Simple classes using a
range!

–  [a-d] defines a simple class using a range"
"

13	

“hello”.matches(“[a-d]ello”)!

REGEX criteria ! str1 satisfies?!
the character a or b or c or d is in index
position 0"

yes"

the character e is in index position 1" yes"
the character l is in index position 2" yes"
the character l is in index position 3" yes"
the character o is in index position 4" yes"
no further characters in the sequence" yes"

L17App3"

Regular Expressions!

–  [a-d[f-h]] matches "
•  any of a,b,c,d,f,g,h "
•  the union of a-d and f-h"

–  [^a-d] matches "
•  any character that is NOT a, b, c, d,"

–  \d matches any digit"
•  same as: [0-9]"

–  \s matches any whitespace character:"
•  same as: [\t\n\x0B\f\r]"
•  vertical tab is \xOB, aka \u000B"

–  \w matches any word character: "
•  same as: [a-zA-Z_0-9]"
"

14	

L17App4"

L17App5"

L17App6"

L17App7"

Regular Expressions!

–  a* matches "
•  zero or more a’s"

–  a+ matches "
•  1 or more a’s"

–  a? matches "
•  0 or 1 a’s"

–  a{n,m} matches "
•  at least n a’s but not more than m a’s"
"

15	

Regular Expressions!
"
suppose we prompt the user for a time, with the
instructions that the time must be one of 3, 6, or 9 am
or pm "

•  acceptable: 9 am, 3 pm"
•  not acceptable: 10 am, 3 um, 9am, 9:00 am"

–  construct a regex to match this"
•  “[369] [ap]m”"

suppose we want to allow the space to be optional"
•  acceptable: 9am, 12 am, 12pm"
•  not acceptable: 10am, 9:00am"

–  construct a regex to match this"
•  “[369] ?[ap]m” or “[369][]?[ap]m”"
"
" 16	

