
CSE 1710	

Lecture 9	
Working with Images II	

Recap: the File class 
"

2"

java::io::File!

+separator: String!
⋮!

File(String)!
⋮!
+exists(): boolean!
+lastModified(): long!
+length(): long!
+getPath(): String!
⋮ !

The File class encapsulates information about and
operations on either potentially-existing files and already-
existing files."

just because an object is
instantiated for a pathname
doesn’t necessarily mean that
there is an actual file
corresponding to that pathname!

Recap: we know how to... 
"
•  distinguish between a directory and a “normal

file” "
–  both are considered to be files!

•  obtain a File object using a constructor, given
a pathname"

•  determine whether a file object corresponds to
an actual on the file system"

3"

Recap: the JFileChooser class 
"

4"

java::swing::JFileChooser!

+APPROVE_OPTION: int!
+CANCEL_OPTION: int!

JFileChooser()!
⋮!
+showOpenDialog(null): int!
+getSelectedFile(): File!
⋮ !

JFileChooser encapsulates information about and
operations on a file choice dialogue."

getSelectedFile() will
always return something, "
even before the dialog is
even opened!

Recap: Using the File or the
JFileChooser classes"

5"

java::io::File!

+separator: String!

File(String)!
⋮!
+exists(): boolean!
+lastModified(): long!
+length(): long!
+getPath(): String!
⋮ !

java::swing::JFileChooser!

+APPROVE_OPTION: int!
+CANCEL_OPTION: int!

JFileChooser()!
⋮!
+showOpenDialog(null): int!
+getSelectedFile(): File!
⋮ !

either approach will get
you a reference to a file
object!
and we need this
reference in order to…"

Recap: The Picture class 
"

6"

Picture!

Picture(String)!
⋮!
+explore(): void!
+show(): void!
+getPath(): String!
+toString(): String!
+getWidth(): String!
+getHeight(): String!
⋮!
+getPixel(int, int): Pixel!
+getPixels(): Pixel[]!
+blacken(int): void!
⋮ !

The string pathname
must correspond to a file
that exists on the file
system and that contains
pixel data!

The Picture class encapsulates information about and
operations on digital image files that contains pixel data"

Recap: we know how to... 
"
•  construct a Picture object from a

pathname"
•  invoke several methods on the Picture

object"
– show it, explore it"
– what is the file from which it has been rendered?"
– what is its width and height (in pixels)"

7"

About picture.show()

•  the VM needs to make use of the services
of the window manager for the image to
actually appear on the display"
– what does the window manager do?"
– why does the VM need to use its services?"

8"

First, a more fundamental
question…"

–  what is the desktop metaphor?"
•  a set of UI concepts that treat the computer display as if it

were the user’s real-world desktop"
•  desktop items include: paper documents, folders, desk

accessories (calculator, calendar)"
–  the purity of metaphor is now diluted "

•  it now includes things without real-world counterparts"
–  menu bars, task bars, docks, trashcans, "

–  key issues: "
•  the “desktop” real estate is limited "
•  desktop items need to overlap!

9"

What is this window manager
and why do I care?!

–  it is system software (not app software):"
•  operates computer hardware (the graphics card, in

this case)"
•  provides platform for running apps"

–  it provides display functionality for apps"
•  controls placement and appearance of windows"

–  open, close, minimize, maximize, move, resize"
•  implements look and feel of window decorators"

–  borders (decorative and functional aspects) "
–  titlebars (titles and/or functional aspects)"

10"

The window manager provides
services to the VM!

– VM: Hi WM, I have this app that wants to
draw some image data on the display…!

– WM: ok VM, here is some screen real estate.!
•  Your app can show the image within that region,

but not outside it.  
(It can try, but I will never permit it to happen)!
•  I (the WM) will decide what actually gets drawn.

(There may be overlapping windows, so your real
estate may be occluded)!
•  I (the WM) will not guarantee this region.  

(The user may move the window, or resize or
minimize it)" 11"

foreshadow to next lecture… 
! –  VM: Hi WM, I have this app that wants to draw

something graphical on the display…!
•  glyphs, circles, lines, arcs, etc!

–  WM: ok VM, here is some screen real estate.!
•  You better use the services of a class that will encapsulate all

of the complexity of device-dependent graphics display"
–  e.g. (for the purpose of illustration)"

»  how are pixels are addressed on the display device?"
»  what voltage to apply to illuminate a pixel at the its

maximum level?"
•  The class that encapsulates all of this is Graphics2D!

–  provides methods for drawing"
–  hides away device-dependent details"

12"

The take-away point!
– picture.show() does not actually directly

“commandeer” the display and draw on it "
–  the WM gives the app some real-estate, but

that real-estate is subject to events outside of
the app’s control"
•  e.g., user moves or occludes the window"

13"

How can an image be modified?!
1.  transformation of size"
•  proportional increase/decrease"
•  stretching"

2.  transformation of pixels"
•  change values in an absolute or relative way"
•  relocation"

3.  other?"

What is possible is determined by the services
offered by the class you are using to encapsulate
your image.! 14"

Intro: The Pixel class 
"

15"

Picture!

Picture(pathName)!
⋮!
+explore(): void!
+show(): void!
+getPath(): String!
+toString(): String!
+getWidth(): String!
+getHeight(): String!
⋮!
+getPixel(int, int): Pixel!
+getPixels(): Pixel[]!
+blacken(int): void!
⋮ !

The Pixel class encapsulates information about and
operations on a pixel in a digital image"

Pixel!

Pixel(DigitalPicture, int, int)!
⋮!
+getRed(): int!
+setRed(int): void!
<ditto for Green, Blue>"
⋮!
+getColor(): Color!
+setColor(): Color!
⋮!
+getRed(int): int!
+getGreen(int): int!
+getBlue(int): int!
⋮ !

Elaboration: The Pixel class 
"

16"

Pixel!

Pixel(DigitalPicture, int, int)!
⋮!
+getRed(): int!
+setRed(int): void!
<ditto for Green, Blue>"
⋮!
+getColor(): Color!
+setColor(): Color!
⋮!
+getRed(int): int!
+getGreen(int): int!
+getBlue(int): int!
⋮ !

a trio of sRGB (standard RGB) "
components can be represented
as a 24-bit integer:"
bits 0-7 " blue"
bits 8-15 green"
bits 16-23 red"
"
These static methods can extract
the color components from the
RGB int representation"

Intro: The Color class 
"

17"

java::awt::Color!

+BLACK: Color!
⋮!
+ORANGE: Color!
⋮!
+WHITE: Color!

Color(int, int, int)!
Color(int)!
⋮!
+getRed(): int!
+setRed(int): void!
<ditto for Green, Blue>"
⋮"
+HSBtoRGB(float,float,float):int!
⋮ !

The Color class encapsulates information about and
operations on the representation of color"

There are 26
pre-defined
colours!

takes the 24-bit single int
representation of a trio of
sRGB components"

Possible image modifications!
1.  for a particular pixel "
•  change values in an absolute way"

2.  for a particular row or column "
•  change values in an absolute way"
•  change values in a relative way (e.g., reverse the

image)"
3.  for all pixels in the image"
4.  for all pixels in a region of the image"

18"

0. Reference to a particular pixel!
–  for a particular pixel "
•  requires reference to a picture object!
•  accessor"

!myPict.getPixel(10, 10);!
•  constructor"

!new Pixel(myPict, 10, 10);!
!
both produce a reference to the same pixel!
"

19"

1. Modification of a particular
pixel!

–  for a particular pixel "
•  change a colour component"
•  change the colour (use of Color class)"

•  Egs"
!thePixel.setColor(Color.RED);!
!p.setColor(new Color(255, 0, 0));!
!p.setRed(MAX_VALUE);!

	
	

20"

2. Modification of a particular
row or column!

– need expression to indicate targeted pixels"
•  iterate over a column or row, using coordinates"

for (int rowIdx=0; rowIdx< MAX_ROWS; rowIdx++) {!
…!
}!

– convenience method to blacken row"
	myPict.blacken(ROW_INDEX + 25);!

21"

3. Modification of all pixels!
–  introduce notion of an array "
– easy way to iterate over all elements"
!
Pixel[] allPixels = myPict.getPixels();!
for (Pixel p : allPixels) {!
…!
}!

•  possibilities"
•  simulate sunset"
•  negative colour image"
•  implement color-greyscale conversion"

" 22"

