
CSE 1720	

Lecture 4	
Aggregation, Graphics II	

Announcements:  
"
•  labs this week:"

–  preparation for labtest #1; sample problems/tasks"
–  guided demo: gesture tracking (MaxMSP)"

•  labs next week:"
–  labtest #1"
–  given a description of some shape- and string-based

images, implement the drawing using the services of
Graphics2D!

–  analogous to labtest #2 from cse1710 (which was
based on pixel-based image modification)!

2"

Goals/To do: 
"
•  How to create, copy, and

delegate to aggregates"
–  example aggregates: Pixel,

Picture, Graphics2D!

•  Create, modify, and iterate
over collections!

•  Implement traversal over a
collection!

•  Implement search within a
collection"

•  Use services of Graphics2D
for drawing !

Goals/To understand:"
 "
•  recognize aggregates from

their APIs 
!

•  characterize and distinguish
between two traversal
techniques 
	

•  distinguish between aliases,
shallow copies, and deep
copies of aggregrates  
"

•  understand the characteristics
of the “current settings”
graphical model  
"

3	

Today’s Topics 
"
•  Java 2D API Concepts"
•  Collections, Collection Traversal"
•  Aggregations vs Composition"

4"

5"

"
"
2D Graphics!

The Java 2D API… 
A Basic Overview"

6"

•  apps that use graphics must launch a window "
–  thus, such apps involve the window manager, as

discussed last lecture"
•  what if the app wants to draw something?"

–  how can the app do so?"
–  before answering, let’s first emphasize AGAIN that

the technically correct way to pose this question is: "
•  what if the app wants to specify something to be drawn?"
•  the window manager actually does the drawing"

"

How to draw something… 
"

7"

•  the app asks the display window to access its
Graphics2D object"

•  the app uses the Graphics2D object to specify
what is to be drawn"

Coordinate spaces 
 From: http://docs.oracle.com/javase/tutorial/2d/overview/coordinate.html"

8"

•  The Java 2D API maintains two coordinate spaces:"
–  User space – The space in which graphics primitives are specified"
–  Device space – The coordinate system of an output device such as a

screen, window, or a printer"
•  User space is:"

–  a device-independent logical coordinate system. "
–  the coordinate space that your program uses. "

•  All geometries passed into Java 2D rendering routines are specified
in user-space coordinates."

•  When it is time to render the graphics, a transformation is applied to
convert from user space to device space. The origin of user space
is the upper-left corner of the component’s drawing area."

The Graphics2D API 
"

9"

•  a Graphics2D object encapsulates the drawing region
(in device space) and a set of supported drawing
operations on that drawing region (in user space)"

•  All methods can be divided into two groups:"
–  Methods to draw a shape"
–  Methods that affect rendering"

•  The state of a Graphics2D object is, in part, the
current settings for the following attributes:"
–  The stroke width, the way the strokes are joined together"
–  The current translation, rotation, scaling, and shearing values"
–  The paint color"
–  The fill pattern"

How to draw something… 
revisited"

10"

•  the app asks the display window to access its
Graphics2D object"

•  E.g.,"
!Graphics2D graphicsObj = myPict.getGraphics();"

•  the app uses the Graphics2D object to specify
what is to be drawn"
–  assign settings as desired"
–  draw shape (shape will use settings)"
–  reassign settings as desired"
–  draw shape (shape will use updated settings)"
–  … and so on…"

How to draw… 
"

11"

ref: h.p://java.sun.com/developer/technicalArticles/GUI/java2d/java2dpart1.html	
How to draw… 
"

12"

About the shapes… 
"

13"

•  Classes for each of these seven shape
primitives can be found in the API."
– use Rectangle2D, not Rectangle!

•  The constructors can be found in the
nested classes!

•  You can use the Double versions"
•  E.g.,"

!Rectangle2D shape1 = !
! !new Rectangle2D.Double(0, 0, 20, 50);!

Construct a shape object… 
"

14"

!!

Graphics2D graphicsObj = myPict.getGraphics();!
Rectangle2D shape1 = !

! !new Rectangle2D.Double(0, 0, 20, 50);!
graphicsObj.draw(shape1);!
Rectangle2D shape2 = !

! !new Rectangle2D.Double(60, 60, 20, 50);!
graphicsObj.fill(shape2);!
!

Various settings 
"

15"

•  Stroke :"
–  The default is a solid line of width 1.0"
–  to change:"

BasicStroke newStroke = new BasicStroke(4.0f);!
graphicsObj.setStroke(newStroke);!

•  Paint Color:"
–  The default is Color.WHITE"
–  to change:"

graphicsObj.setColor(Color.BLUE);!

Various settings 
"

16"

•  Paint Color, better version:"
–  to change:"

graphicsObj.setPaint(Color.BLUE);!
!

•  also can do this (fancier): 
"

Point p1 = new Point(0, 0);  
Point p2 = new Point(50, 50);  
GradientPaint paint1 = !

!new GradientPaint(p1, Color.RED, p2, Color.MAGENTA, true);  
graphicsObj.setPaint(paint1);!

!
!

17"

"
"
Collections!

About Collections… 
"

18"

The course material that concerns
collections (e.g., traversal, static/dynamic
allocation, etc) will make a lot more sense if
you have a crystal clear understanding
about what a collection actually is!

So what is a collection anyway?  
"

19"

Let’s start with what a collection is NOT."
"
A collection is NOT a set."
•  A set is, by definition, a collection that

does not contain duplicate elements."
"
A collection is NOT a list."
•  A list is, by definition, an ordered

collection."

So what is a collection anyway?  
"

20"

In terms of what a collection is, all we really can
say is:"
•  a collection is a thing that has elements."
"
In terms of what a collection does, we can say
some more:"
•  a collection is a thing that lets you add/remove

and traverse the elements."
•  a collection is a thing that can report its size"

The Forest Gump way of
defining a collection"

21"

A collection is what a collection does.!
 !
Does it have elements that I can traverse?!
Does it let me add elements?!
Does it let me remove elements?!
Does it tell me its size?!

!Then it is a collection.*"
"
*a collection does a few other things, but we will talk about these later"

The JBA way of  
defining a collection"

22"

"
A collection is an aggregate in which the
multiplicity is variable and in which the
aggregated parts are called elements."

What does “traverse” mean?  
"

23"

A traversal can be thought of as a trip that
visits each element once and only once. "
JBA, p.318"
What this means:"
•  No element can be missed"
•  No element can be visited more than

once."

What does “traverse” NOT
mean?"

24"

That the elements will be visited in any particular
order!
•  Even if you traverse a given collection several

times, you should not assume that the elements
will be visited in the same order."

•  There is no order defined over the elements
(even if the elements are things that you may
commonly think of as having a “natural” order,
such as numbers)"

What does “traverse” NOT
mean?"

25"

That you are able to do “partial trips”"
•  e.g., visit “every other element” or “the first half

of the elements” or any other trip that is anything
other than the complete traversal of all the
elements"

•  A collection simply is not defined to provide this."
•  This is just a variant of trying to impose a

particular order on the elements of the
collection."

Iterator-Based Traversal 8.2.4 
"

26"

If collection is a variable that refers to a
collection object, then the following enhanced for
loop will be provided:"
for (ElementType e : collection) {!

!// visit element e!
}!

OK, but what is ElementType?"
…a collection is an aggregate, which means, by definition a class
that has as one of its features an attribute that is non-
primitive. !
What is this non-primitive type?!
Don’t know – let’s just call it ElementType for the time being…"

Iterator-Based Traversal 8.2.4 
"

27"

Another version of iterator-based traversal is…"
"
while (collection.hasNext()) {!

!ElementType e = collection.next();!
}!
!
!
It is equivalent to the enhanced for loop version…"
(see the API of the Iterable interface)"
!

Indexed Traversal 8.2.3 
"

28"

A sneaky bit of material that has the potential to confuse…"
"
we just emphasized that traverse does not mean visiting
the elements in any particular order… but… 
"
Sometimes a collection may, in addition to its requisite
methods, also support an indexing scheme for its
elements, such as via this method:"
!
public ElementType get(int index)!

Indexed Traversal 8.2.3 
"

29"

If there is an indexing scheme, then we can implement full
and even partial traversals…"
!
for (int i = 0; i < collection.size(); i++) {!

!ElementType e = collection.get(i);!
}!

Since collection is a collection, it
must have a size() method"

Where can I get me a collection?  
"

30"

•  the Portfolio class implements a collection of
CreditCard elements; use the static method
getRandom() to get a randomly-populated collection"

•  the Picture class implements getPixels(), which returns
an array of Pixel[]. The array is not a collection
(technically speaking), but provides the identical
behaviours"

•  If you want to create and populate your own collection, I
recommend you wait until we cover section 9.3.3,
Generics"

Where can I get me a collection?  
"

31"

•  the Portfolio class implements a collection of
CreditCard elements; use the static method
getRandom() to get a randomly-populated collection"

•  the Picture class implements getPixels(), which returns
an array of Pixel[]. The array is not a collection
(technically speaking), but provides the identical
behaviours"

Where can I get me a collection?  
"

32"

What if I want to create and populate my own collection:"
1.  use a constructor to create an empty collection"
2.  add the elements one by one"

•  its not possible* to create and populate a collection all in
one step"

*well, a collection may provide constructors that allow the
client to specify the initial content of a collection by passing a
reference to another collection; such constructors are for
convenience only and are implemented using the two steps
above anyway. 
"
we will do this once we cover section 9.3.3, Generics!

A design tradeoff 
"

33"

When a new, empty collection is created, a block of run-time memory will
be allocated for this object. "
How large should this block be?"
•  If the block is too small: "

–  then the size will be quickly exceed. When this happens, a whole new
empty collection will need to be created, using a larger block and all of the
elements copied over."

•  If the block is too large:"
–  a significant amount of memory will sit empty and cannot be used for

anything else  
"

The extreme form of the small block version is to start with a block so
small that is it not big enough to hold even a single element. Then the
amount of memory that is used grows and shrinks as the collection
grows and shrinks."

Static vs Dynamic"

34"

sec 8.2.1"

