
CSE 1720	

Lecture 5	
Aggregation, Graphics III	

2!

!
!
lab check-in!

Announcements:  
!
•  for labtest#1 (this week), be prepared to:!

–  create and draw a picture from a jpg file !
–  create and draw a blank white canvas with a specified

dimension!
–  superimpose on top of this picture additional 2D

Graphics!
–  be able to draw these 4 shapes: !

•  Line2D, Rectangle2D, RoundRectangle2D, Ellipse2D !
•  in various sizes and in various locations!
•  in filled and non-filled versions!
•  with various stroke thicknesses!
•  with various fills (other solid colours and/or gradient paint)!

3!

Goals/To do: 
!
•  How to create, copy, and

delegate to aggregates!
–  example aggregates: Pixel,

Picture, Graphics2D!

•  Create, modify, and iterate
over collections!

•  Implement traversal over a
collection!

•  Implement search within a
collection!

•  Use services of Graphics2D
for drawing !

Goals/To understand:!
 !
•  recognize aggregates from

their APIs 
!

•  characterize and distinguish
between two traversal
techniques 
	

•  distinguish between aliases,
shallow copies, and deep
copies of aggregrates  
!

•  understand the characteristics
of the “current settings”
graphical model  
!

4	

Today’s Topics 
!
•  Aggregations vs Composition!

5! 6!

!
!
Aggregation/Composition!

Recap: The class Date  
	

see L05App01.java!
– a Date object can be used to represent a

point in time!
–  the key attribute of any date object is its time

value (a long)!
•  the number of msec that have elapsed since unix

epoch, Jan 01 00:00:00 UTC 1970!
– accessor and mutator for Date object:!
•  getTime(), setTime(long)!

7	

What is state? 
What is an aggregate?	

–  objects have state!
•  primitive values do not have state, classes do not have state!
•  only objects have state!

–  objects have zero or more attributes and attributes
hold data !
•  data may be primitive or non-primitive!

–  the object’s state refers to the specific values for all
attributes of that object!

–  if one or more attributes have non-primitive values*,
then the object is an aggregate!

* not including Strings !!
8	

The Picture class is an
aggregate!
•  If you want to change the Picture, you can use various

accessors:!
–  getPixels() : Pixel[]!
–  getPixel(int, int) : Pixel!

•  once a reference to a Pixel object is obtained, you can
use the mutators of the Pixel class to change the pixel!
–  use the accessor of Picture + the mutator of Pixel!

•  conceptually, we are using an accessor not a mutator
to change the Picture!

9!

img::Picture! img::Pixel!*	 java::awt::Color!
1!

The state of a Picture object 
!
•  height : int!
•  width : int!
•  a collection of pixels : Pixels[]!
•  a graphics2D object : Graphics2D!
•  sourceFileName : String!
•  title : String!

10!

Looking ahead… 
!
•  suppose we want to observe the Picture object !
•  whenever the state of the Picture object changes,

some action should be triggered…!

•  we will introduce the idea of an observer later in the
course!

11!

The CreditCard class 
!

12!

•  The CreditCard class encapsulates a credit
card and maintains information about it. !

•  Each card object has the following attributes: !
–  card number : String!
–  holder's name : String!
–  issue date : Date!
–  expiry date : Date!
–  credit limit : double!
–  balance owing : double !

The CreditCard class 
!

13!

•  Information about the card number:!
– 8 characters long, consisting of:!
•  a 6-digit string !
•  a dash, and !
•  a MOD-9 check digit. !

–  a digit such that the sum of all 6+1 = 7 digits will be a
multiple of 9!

–  it is added to detect possible transmission errors!

–  the client of the constructor must specify the
6-digit string!

The CreditCard class 
!

14!

type :: lib :: CreditCard!

CreditCard(int, String)!
CreditCard(int, String, double)!
CreditCard(int, String, double, Date)!
+charge(double): boolean!
+credit(double): void!
+equals(Object): boolean!
+getBalance(): double!
+getExpiryDate() : Date!
+getIssueDate() : Date!
+getLimit() : double!
+getName() : String!
+getNumber() : String!
+hashCode() : int!
+isSimiliar() : boolean!
+pay(double) : void!
+setExpiryDate(Date) : boolean!
+setLimit(double) : boolean!
+toString(): String!

The state of a CreditCard
object!

15!

card number : String!
card Name : String !
issueDate : Date!
expiryDate : Date!
creditLimit : double!
balance : double!

The CreditCard class 
!

16!

type :: lib :: CreditCard!

CreditCard(int, String)!
CreditCard(int, String, double)!
CreditCard(int, String, double, Date)!
+charge(double): boolean!
+credit(double): void!
+equals(Object): boolean!
+getBalance(): double!
+getExpiryDate() : Date!
+getIssueDate() : Date!
+getLimit() : double!
+getName() : String!
+getNumber() : String!
+hashCode() : int!
+isSimiliar() : boolean!
+pay(double) : void!
+setExpiryDate(Date) : boolean!
+setLimit(double) : boolean!
+toString(): String!

•  issue date defaults to
moment of invocation,!

•  expiry date is issue
date + 2 years!

•  credit limit defaults to
$1000!

•  issue date defaults to
moment of invocation,!

•  expiry date is issue
date + 2 years!

•  limit is specified!

•  issue date defaults to
moment of invocation,!

•  limit and expiry are
specified!

The Picture class vs  
the CreditCard class!

17!

•  we used the accessor of Picture to mutate a
Picture object!

•  can we use the accessor of CreditCard to
mutate a CreditCard object?!

•  E.g.,!
–  use accessor getPixel(int, int), then mutate

the Pixel object via setColor(Color)!
–  use accessor getIssueDate(), then mutate the
Date object via setTime(long) !

Mutating a CreditCard object  
suppose we want to change the expiry date to one day
later…!

18!

•  see L05App02.java for an approach that does not work!
•  we used the accessor of CreditCard to gain access to the Date

object that corresponds to the expiry date attribute (or so we
thought)!

•  we use the mutator of the Date object to add one day’s worth of
msec to the Date object’s time attribute. !

•  But this did not change the expiry date of the credit card. !
•  Why not? Because the accessor of CreditCard returns a

reference to a copy of the Date object, not a reference to the
actual Date object.  
(compare to Picture, whose accessor returns references to the
actual Pixel objects, not copies of the Pixel objects)!

•  When a class has this behaviour, we describe it as composition  
(see Ch 8)!

