CSE 1720

Lecture 5
Aggregation, Graphics I11

Announcements:

« for labtest#1 (this week), be prepared to:
— create and draw a picture from a jpg file

— create and draw a blank white canvas with a specified
dimension
— superimpose on top of this picture additional 2D
Graphics
— be able to draw these 4 shapes:
 Line2D, Rectangle2D, RoundRectangle2D, Ellipse2D
* in various sizes and in various locations
« in filled and non-filled versions
« with various stroke thicknesses
« with various fills (other solid colours and/or gradient paint)

lab check-in

Goals/To do:

* How to create, copy, and
delegate to aggregates

— example aggregates: Pixel,
Picture, Graphics2D

+ Create, modify, and iterate
over collections

* Implement traversal over a
collection

* Implement search within a
collection

* Use services of Graphics2D
for drawing

Goals/To understand:

* recognize aggregates from
their APIs

» characterize and distinguish
between two traversal
techniques

« distinguish between aliases,
shallow copies, and deep
copies of aggregrates

» understand the characteristics
of the “current settings”
graphical model

Today’s Topics

« Aggregations vs Composition

Aggregation/Composition
5 6
Recap: The class Date What is state?
What is an aggregate?
see LO5App01l. java — objects have state
_ . « primitive values do not have state, classes do not have state
a]?att'e ?bject can be used to represent a + only objects have siale
pointin Im.e S — objects have zero or more attributes and attributes
—the key attribute of any date object is its time hold data
value (a Iong) + data may be primitive or non-primitive
 the number of msec that have elapsed since unix — the object’s state refers to the specific values for all
epoch, Jan o1 00:00:00 UTC 1970 attributes of that object
— accessor and mutator for Date object: — if one or more attributes have non-primitive values™,

. getTime(), setTime (long) then the object is an aggregate

* not including Strings

The Picture class is an
aggregate

If you want to change the Picture, you can use various
accessors:

— getPixels() : Pixell[]

— getPixel(int, int) : Pixel

once a reference to a Pixel object is obtained, you can
use the mutators of the Pixel class to change the pixel
— use the accessor of Picture + the mutator of Pixel
conceptually, we are using an accessor not a mutator
to change the Picture

1
img::Pixel ‘Q‘{ java::awt::Color ‘

9

*
[e

Looking ahead...

suppose we want to observe the Picture object

whenever the state of the Picture object changes,
some action should be triggered...

we will introduce the idea of an observer later in the
course

1

The state of a Picture object

* height : int

* width : int

» acollection of pixels : Pixels]]
» agraphics2D object : Graphics2D
* sourceFileName : String

* title : String

The CreditCard class

* The CreditCard class encapsulates a credit
card and maintains information about it.
+ Each card object has the following attributes:
— card number : String
— holder's name : String
— issue date : Date
— expiry date : Date
— credit limit : double
— balance owing : double

The CreditcCard class

* Information about the card number:

— 8 characters long, consisting of:
* a 6-digit string
* adash, and

» a MOD-9 check digit.

— a digit such that the sum of all 6+1 = 7 digits will be a
multiple of 9

— it is added to detect possible transmission errors

— the client of the constructor must specify the
6-digit string

13

The state of a CreditcCard
object

card number : String
card Name : String
issueDate : Date
expiryDate : Date
creditLimit : double
balance : double

15

The CreditCard class

type :: lib :: CreditCard

CreditCard(int, String)
CreditCard(int, String, double)
CreditCard(int, String, double, Date)
+charge(double): boolean
+credit(double): void
+equals(Object): boolean
+getBalance(): double
+getExpiryDate() : Date
+getIssueDate() : Date
+getLimit() : double

+getName() : String
+getNumber () : String
+hashCode() : int

+isSimiliar() : boolean
+pay(double) : void
+setExpiryDate(Date) : boolean
+setLimit (double) : boolean
+toString(): String

The CreditcCard class

issue date defaults to
moment of invocation,
« expiry date is issue

type :: lib :: Creditca&d/ date + 2 years
« credit limit defaults to

CreditCard(int, String)é—”// $1000
CreditCard(int, String, double) . issue date defaults to

CreditCard(int, String, double, Date) moment of invocation,

+charge(double): boolean + expiry date is issue
+credit(double): void date + 2 years
+equals(Object): boolean « limit is specified
+getBalance(): double
+getExpiryDate() : Date » issue date defaults to
+getIssueDate() : Date moment of invocation,
+getLimit() : double + limit and expiry are
+getName() : String specified
+getNumber() : String
+hashCode() : int
+isSimiliar() : boolean
+pay(double) : void
+setExpiryDate(Date) : boolean
+setLimit (double) : boolean
+toString(): String

The Picture class vs
the CreditcCard class

* we used the accessor of Picture to mutate a
Picture object
» can we use the accessor of CreditCard to
mutate a CreditcCard object?
 E.g,
— use accessor getPixel (int, int),then mutate
the Pixel object via setColor (Color)

— use accessor getIssueDate (), then mutate the
Date object via setTime (long)

17

Mutating a CreditCard object

suppose we want to change the expiry date to one day
later...

* see L05App02.java for an approach that does not work

» we used the accessor of CreditCard to gain access to the Date
object that corresponds to the expiry date attribute (or so we
thought)

» we use the mutator of the Date object to add one day’s worth of
msec to the Date object’s time attribute.

» But this did not change the expiry date of the credit card.

* Why not? Because the accessor of CreditCard returns a
reference to a copy of the Date object, not a reference to the
actual Date object.

(compare to Picture, whose accessor returns references to the
actual Pixel objects, not copies of the Pixel objects)

* When a class has this behaviour, we describe it as composition
(see Ch 8)

