CSE 1720

Lecture 7
Inheritance

Goals/To do:

Good practices for the
declaration and instantiation of
objects within a class hierarchy

Take advantage of
polymorphism when desiging
apps

Create, modify, and iterate
over a collection of Shapes;
use services of Graphics2D
for manipulating and/or
operating upon the shape
objects

Goals/To understand:

understand a class in terms of
its position within a hierarchy
understand the Object class
in terms of its position at the
top of the class hierarchy
recognize and understand
subclass features from their
APls

distinguish between early and
late binding

understand and distinguish
among non-primitive types
defined by: classes, abstract
classes and interfaces.

understand generic collections

3

Announcements:

* Lectures 7-10 assigned reading: Ch 9, JBA

Key Concepts

* We live in a world of many objects.
+ Many apps require us to represent the world (albeit
partially)

» To do this, we look to identify groups of objects
— what is common among objects within a group?
< similarity in terms of attributes and methods.
— what sets objects apart within a group?
- differences of identity and state
» We abstract the world in terms of classes and instances
of these classes.
— e.g., there are many object; a whole bunch of these objects are
Cars. There are many actual cars, and these can be seen as
instances of the class Car (each with a make, model, etc).

Key Concepts Key Concepts

 aclass defines a new non-primitive type + today: we will discuss a “regular” parent class with a
« there are different types of classes child class
— child classes, parent classes — CreditCard, RewardCard
— “regular” classes, abstract classes, interface classes later: an abstract parent class
— Arc2D, child class Arc2D.Double, Arc2D.Float
* We can use these different types of classes to achieve — Rectangularshape, child classes: Arc2D, E11ipse2D,
Iayered abstraction in our apps Rectangle2D, RoundRectangle2D

 later: an interface parent class

— Shape, child class RectangularShape, Line2D,
CubicCurv2D, QuadCurv2D

The CreditCard class The CreditCard class
* The CreditcCard class encapsulates a credit + Information about the card number:
card and maintains information about it. — 8 characters long, consisting of:
» Each card object has the following attributes: « a 6-digit string
— card number : String » a dash, and
— holder's name : String + a MOD-9 check digit.
— issue date : Date — a digit such that the sum of all 6+1 = 7 digits will be a
multiple of 9

— expiry date : Date
— credit limit : double
— balance owing : double

— it is added to detect possible transmission errors

— the client of the constructor must specify the
6-digit string

The state of a CreditCard The CreditCard class
object T i,

expiry date is issue

type :: lib :: CreditCaﬁﬁ/ date + 2 years
« credit limit defaults to
CreditCard(int, String)é—”/, $1000
. . CreditCard(int, String, double) « issue date defaults to
card number ° Strlng CreditCard(int, String, double, Date) moment of invocation,
Card Name : Strlng +char<.3e(double): boz?lean + expiry date is issue
. +credit(double): void date + 2 years
i1ssueDate : Date +equals (Object): boolean - limit is specified
. +getBalance(): double
expiryDate : Date +getExpiryDate() : Date « issue date defaults to
: J : . +getIssueDate() : Date moment of invocation,
creditLimit : double +getLimit() : double + limit and expiry are
balance : double *tgetName() : String specified
+getNumber () : String
+hashCode() : int
+isSimiliar() : boolean
+pay(double) : void
+setExpiryDate(Date) : boolean
+setLimit (double) : boolean
+toString(): String
9 10

Now let’s consider a specialized
version of the credit card... Now let’s look at RewardCard

» Areward credit card is just like a credit card, with the * RewardCard IS-A CreditCard
addition of a points balance + RewardCard is a specialization of CreditCard
* every purchase amount contributes towards the holder’s « RewardCard is a child class of CreditCard

points balance
» Every $20 worth of purchase results in 1 point.

* CreditCard is a generalization of RewardCard

* how to spot specialization in the API:
— look for extends in the class header

public class RewardCard
extends CreditCard

11 12

A series of sample apps

— L07App01 demonstrates the existence of the inherited method
getName ()

— LO07App02 demonstrates the existence of the overridden method
toString();

— L07App03 demonstrates the existence of another overridden
method

— L07App04 demonstrates the existence of an new method in a
child class (and shows how the child method cannot be used on
an instance of the parent)

— L07App05 demonstrates the existence of an polymorphic
method

— LO07App06 demonstrates the need to manually cast an object to
a child instance

13

