
CSE 1720	

Lecture 7	

Inheritance	

Announcements:  
"
•  Lectures 7-10 assigned reading: Ch 9, JBA"

2"

Goals/To do: 
"
•  Good practices for the

declaration and instantiation of
objects within a class hierarchy 
"

•  Take advantage of
polymorphism when desiging
apps"

•  Create, modify, and iterate
over a collection of Shapes;
use services of Graphics2D
for manipulating and/or
operating upon the shape
objects!

Goals/To understand:"
 "
•  understand a class in terms of

its position within a hierarchy "
•  understand the Object class

in terms of its position at the
top of the class hierarchy!

•  recognize and understand
subclass features from their
APIs"

•  distinguish between early and
late binding"

•  understand and distinguish
among non-primitive types
defined by: classes, abstract
classes and interfaces."

•  understand generic collections  
"

3	

Key Concepts 
	

•  We live in a world of many objects."
•  Many apps require us to represent the world (albeit

partially)"
•  To do this, we look to identify groups of objects"

–  what is common among objects within a group? "
•  similarity in terms of attributes and methods."

–  what sets objects apart within a group? "
•  differences of identity and state!

•  We abstract the world in terms of classes and instances
of these classes. "
–  e.g., there are many object; a whole bunch of these objects are

Cars. There are many actual cars, and these can be seen as
instances of the class Car (each with a make, model, etc)."

4	

Key Concepts 
	

•  a class defines a new non-primitive type!
•  there are different types of classes"

–  child classes, parent classes"
–  “regular” classes, abstract classes, interface classes"

•  We can use these different types of classes to achieve
layered abstraction in our apps!

5	

Key Concepts 
	

•  today: we will discuss a “regular” parent class with a

child class"
–  CreditCard, RewardCard!

•  later: an abstract parent class"
–  Arc2D, child class Arc2D.Double, Arc2D.Float!
–  RectangularShape, child classes: Arc2D, Ellipse2D,
Rectangle2D, RoundRectangle2D!

•  later: an interface parent class"
–  Shape, child class RectangularShape, Line2D,
CubicCurv2D, QuadCurv2D!

6	

The CreditCard class 
"

7"

•  The CreditCard class encapsulates a credit
card and maintains information about it. "

•  Each card object has the following attributes: "
–  card number : String"
–  holder's name : String"
–  issue date : Date"
–  expiry date : Date"
–  credit limit : double"
–  balance owing : double "

The CreditCard class 
"

8"

•  Information about the card number:"
– 8 characters long, consisting of:"
•  a 6-digit string "
•  a dash, and "
•  a MOD-9 check digit. "

–  a digit such that the sum of all 6+1 = 7 digits will be a
multiple of 9"

–  it is added to detect possible transmission errors"

–  the client of the constructor must specify the
6-digit string"

The state of a CreditCard
object"

9"

card number : String!
card Name : String !
issueDate : Date!
expiryDate : Date!
creditLimit : double!
balance : double!

The CreditCard class 
"

10"

type :: lib :: CreditCard!

CreditCard(int, String)!
CreditCard(int, String, double)!
CreditCard(int, String, double, Date)!
+charge(double): boolean!
+credit(double): void!
+equals(Object): boolean!
+getBalance(): double!
+getExpiryDate() : Date!
+getIssueDate() : Date!
+getLimit() : double!
+getName() : String!
+getNumber() : String!
+hashCode() : int!
+isSimiliar() : boolean!
+pay(double) : void!
+setExpiryDate(Date) : boolean!
+setLimit(double) : boolean!
+toString(): String!

•  issue date defaults to
moment of invocation,"

•  expiry date is issue
date + 2 years"

•  credit limit defaults to
$1000!

•  issue date defaults to
moment of invocation,"

•  expiry date is issue
date + 2 years"

•  limit is specified!

•  issue date defaults to
moment of invocation,"

•  limit and expiry are
specified!

Now let’s consider a specialized
version of the credit card…	

•  A reward credit card is just like a credit card, with the

addition of a points balance "
•  every purchase amount contributes towards the holder’s

points balance"
•  Every $20 worth of purchase results in 1 point."

11	

Now let’s look at RewardCard	

•  RewardCard IS-A CreditCard!
•  RewardCard is a specialization of CreditCard!
•  RewardCard is a child class of CreditCard!
•  CreditCard is a generalization of RewardCard !

•  how to spot specialization in the API:"
–  look for extends in the class header "

12	

A series of sample apps 
	

–  L07App01 demonstrates the existence of the inherited method
getName()!

–  L07App02 demonstrates the existence of the overridden method
toString(); "

–  L07App03 demonstrates the existence of another overridden
method"

–  L07App04 demonstrates the existence of an new method in a
child class (and shows how the child method cannot be used on
an instance of the parent)"

–  L07App05 demonstrates the existence of an polymorphic
method"

–  L07App06 demonstrates the need to manually cast an object to
a child instance"

13	

