
CSE  1720	

Lecture  9	
Inheritance,  III	

Topics 
	
•  object serialization#
•  transformation of drawing space (rotate, shear, …)#
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Transient vs Persistent 
Representation of Objects	
•  we already know and understand that the VM makes use 

of heap space, which is transient memory#
–  transient since it lasts only as long as the program executes#

•  Objects represented in heap space are transient; when 
the app terminates, the object’s lifecycle will come to an 
end#

•  what if we want our program to make use of more 
persistent storage?  what are our options?#
–  we must read/write to a file#
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Object Serialization  
	
•  as we know, each object has its state, that is the values 

of each of its non-primitive attributes (“set 1”)#
–  the value of each of these non-primitive attributes is an object, 

which itself has a state (“set 2”)#
–  the values of each of the non-primitive attributes of the 

aggregated objects may in turn have state (“set 3”)#
–  and so on… this recursion will ultimately yield attributes that are 

primitive or string #
•  this process of recursing into the attributes is called 

serializing!
•  so to save an object means to serialize it#
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Example  
	
•  suppose an app builds up a set of Shape objects, using 

the object Set<Shape> to represent them.#
•  How can the object Set<Shape> be saved to a file so 

that it can be read into an app later on?#
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File I/O 
	
Use services of File to encapsulate a file from the file 
system:#
 
String myPathName = File.separator + "Users" + ! !

!File.separator + "mb” +!
! !File.separator + ”myObject.obj";  

File myFile = new File(myPathName);!

#
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File I/O 
	
The class Scanner provides services to encapsulate a 
stream of data and to read the data: #
 
Scanner input = new Scanner(myFile); !
 

•  we already know how to iterate over the tokens/lines in 
the file, via the hasNextLine()  and nextLine() 
methods#

•  the return type of these methods tell us the data types 
that can be read from the file#

•  look at API and see that various types can be read: 
String, int, float, boolean, etc, but no other types such as 
Set<Shape>!
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File I/O 
	
The class FileInputStream provides services to 
encapsulate a stream of input from a file (deliver its 
contents as bytes)#
 
FileInputStream fis= new FileInputStream(myFile); !
FileInputStream fis2 = new FileInputStream(myPathName); !
// in the constructor, can use the file object or the string name 
of the file 
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The class ObjectInputStream  
	
The class ObjectInputStream provides services to 
encapsulate a stream of input from a file (and deliver its 
contents as objects)#
 
ObjectInputStream ois= new ObjectInputStream(fis); !
// in the constructor, can use a file input stream 
 

The class ObjectInputStream provides the following 
method#
#
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The class ObjectInputStream  
	
So if we know the file myObj.obj contains an object of 
type Set<Shape>, how do we read this object so that we 
can use it?#
Approach #1 
 
Object obj1 = ois.readObject();!
Set<Shape> theSet = (Set<Shape>) obj1;!

#
Approach #2 
 
Set<Shape> theSet = (Set<Shape>) ois.readObject();;!

#
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Casting is potentially problematic 
	
The manual cast is a weak point in the process.  #
Manual casts are an opportunity for a run time error.  #
#
It is prudent to set up safeguards before performing the 
cast.#
#
See ex L09App02!
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Iterating over a collection read 
from a file	
#
See ex L09App03!
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Iterating over a collection  
	
E.g., see method getShapeCollection(int, int) 
from L09Utility!
See ex L09App04!
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The Graphics2D API 
#
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•  a Graphics2D object encapsulates the drawing region 
(in device space) and a set of supported drawing 
operations on that drawing region (in user space)#

•  All methods can be divided into two groups:#
–  Methods to draw a shape#
–  Methods that affect rendering#

Seven primary attributes of 
rendering (for Java 2D Graphics)#
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•  Fill (Paint)#
•  Stroke#
•  Font#
•  Transformation#
•  Clipping space#
•  Rendering hints#
•  Compositing rule#

Transformation  
#
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public void rotate(double theta);  
!
public void rotate(double theta,  

!double aroundPointX, double aroundPointY);  
!
public void scale(double scaleX, double scaleY);  
!
public void shear(double shearX, double shearY);  
!
public void translate(double translateX,  

!double translateY);!
!
There is also the method  
public void transform(AffineTransform transform)!
We will not discuss AffineTransform objects at this point!
!

http://docs.oracle.com/javase/tutorial/2d/advanced/transforming.html#



Transformation  
#
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!

•  Important point: it is drawing surface that is 
transformed, not the graphic primitives (the 
shapes) themselves.  #

•  When the primitives are rendered on the 
transformed surface, their appearances are 
altered!

Rotation  
	
See ex L09App05!
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Scale  
	
See ex L09App06!
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Shear 
	
See ex L09App07!
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Translate  
	
See ex L09App08!
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