
CSE 1720	

Lecture 9	
Inheritance, III	

Topics 
	
•  object serialization#
•  transformation of drawing space (rotate, shear, …)#

2	

Transient vs Persistent
Representation of Objects	
•  we already know and understand that the VM makes use

of heap space, which is transient memory#
–  transient since it lasts only as long as the program executes#

•  Objects represented in heap space are transient; when
the app terminates, the object’s lifecycle will come to an
end#

•  what if we want our program to make use of more
persistent storage? what are our options?#
–  we must read/write to a file#

3	

Object Serialization  
	
•  as we know, each object has its state, that is the values

of each of its non-primitive attributes (“set 1”)#
–  the value of each of these non-primitive attributes is an object,

which itself has a state (“set 2”)#
–  the values of each of the non-primitive attributes of the

aggregated objects may in turn have state (“set 3”)#
–  and so on… this recursion will ultimately yield attributes that are

primitive or string #
•  this process of recursing into the attributes is called

serializing!
•  so to save an object means to serialize it#

4	

Example  
	
•  suppose an app builds up a set of Shape objects, using

the object Set<Shape> to represent them.#
•  How can the object Set<Shape> be saved to a file so

that it can be read into an app later on?#

5	

File I/O 
	
Use services of File to encapsulate a file from the file
system:#

String myPathName = File.separator + "Users" + ! !

!File.separator + "mb” +!
! !File.separator + ”myObject.obj";  

File myFile = new File(myPathName);!

#

6	

File I/O 
	
The class Scanner provides services to encapsulate a
stream of data and to read the data: #

Scanner input = new Scanner(myFile); !

•  we already know how to iterate over the tokens/lines in
the file, via the hasNextLine() and nextLine()
methods#

•  the return type of these methods tell us the data types
that can be read from the file#

•  look at API and see that various types can be read:
String, int, float, boolean, etc, but no other types such as
Set<Shape>!

7	

File I/O 
	
The class FileInputStream provides services to
encapsulate a stream of input from a file (deliver its
contents as bytes)#

FileInputStream fis= new FileInputStream(myFile); !
FileInputStream fis2 = new FileInputStream(myPathName); !
// in the constructor, can use the file object or the string name
of the file

8	

The class ObjectInputStream  
	
The class ObjectInputStream provides services to
encapsulate a stream of input from a file (and deliver its
contents as objects)#

ObjectInputStream ois= new ObjectInputStream(fis); !
// in the constructor, can use a file input stream

The class ObjectInputStream provides the following
method#
#

9	

The class ObjectInputStream  
	
So if we know the file myObj.obj contains an object of
type Set<Shape>, how do we read this object so that we
can use it?#
Approach #1

Object obj1 = ois.readObject();!
Set<Shape> theSet = (Set<Shape>) obj1;!

#
Approach #2

Set<Shape> theSet = (Set<Shape>) ois.readObject();;!

#

10	

Casting is potentially problematic 
	
The manual cast is a weak point in the process. #
Manual casts are an opportunity for a run time error. #
#
It is prudent to set up safeguards before performing the
cast.#
#
See ex L09App02!

11	

Iterating over a collection read
from a file	
#
See ex L09App03!

12	

Iterating over a collection  
	
E.g., see method getShapeCollection(int, int)
from L09Utility!
See ex L09App04!

13	

The Graphics2D API 
#

14#

•  a Graphics2D object encapsulates the drawing region
(in device space) and a set of supported drawing
operations on that drawing region (in user space)#

•  All methods can be divided into two groups:#
–  Methods to draw a shape#
–  Methods that affect rendering#

Seven primary attributes of
rendering (for Java 2D Graphics)#

15#

•  Fill (Paint)#
•  Stroke#
•  Font#
•  Transformation#
•  Clipping space#
•  Rendering hints#
•  Compositing rule#

Transformation  
#

16#

public void rotate(double theta);  
!
public void rotate(double theta,  

!double aroundPointX, double aroundPointY);  
!
public void scale(double scaleX, double scaleY);  
!
public void shear(double shearX, double shearY);  
!
public void translate(double translateX,  

!double translateY);!
!
There is also the method  
public void transform(AffineTransform transform)!
We will not discuss AffineTransform objects at this point!
!

http://docs.oracle.com/javase/tutorial/2d/advanced/transforming.html#

Transformation  
#

17#

!

•  Important point: it is drawing surface that is
transformed, not the graphic primitives (the
shapes) themselves. #

•  When the primitives are rendered on the
transformed surface, their appearances are
altered!

Rotation  
	
See ex L09App05!

18	

Scale  
	
See ex L09App06!

19	

Shear 
	
See ex L09App07!

20	

Translate  
	
See ex L09App08!

21	

