
CSE 1720	

Lecture 11	
Exception Handling	

Reminder 
	
Midterm Exam"

Thursday, Feb 16, 10-11:30"
CLH J – Curtis Lecture Hall, Room J!
will cover all material up to and including Tues Feb 14th!

•  Tues, Feb 7 – topic: exceptions"
•  Thurs, Feb 9 – Midterm overview, Recap, Review, Study

preparation"
•  Tues, Feb 14 –valentine’s day celebration of continued

coverage of the topic of exceptions"

2	

Topics 
	
•  exception handling – Chapter 11"

3	 "Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-4"

An exception is an object that represents
information about an error state that has
arisen to the VM!

Examples of error states:!
-attempting to perform an illegal
operation, such as:!
input mismatch, divide by zero, invalid
cast, ...!

11.1 What Are Exceptions?!

What is a clean exit?  
What is a crash?	
•  A clean exit is when an app ends in a

controlled and orderly manner"
– flush all output buffers"
– complete all pending transactions"
– close all network connections"
–  free up all used resources"

•  A crash is a non-clean exit"
– abrupt termination"
– may be accompanied by error messages that

do not originate from the program " 5	 "Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-6"

Example: The Quotient app!
Given two integers, write a program to compute
and output their quotient. !

output.println("Enter the first integer:");  
int a = input.nextInt();  
output.println("Enter the second:");  
int b = input.nextInt();"

int c = a / b;  
output.println("Their quotient is: " + c);"

Throwing exceptions 
	
•  example L11AppQuotient demonstrates arithmetic

operation throwing an exception"
•  example L11App01 demonstrates arithmetic operation

throwing an exception"
•  example L11App02 demonstrates difference between int

and double quotient/division and modulo operation, in
terms of exception-throwing behaviours"

7	

“Throwers” of exceptions 
	
•  methods (as per the post condition)"
•  arithmetic operators"

–  integer division, integer modulo"
–  not floating point division, floating point modulo"

8	

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-9"

“Legal” Issue  
If an exception is thrown by an
implementer, was this part of its contract? !

“Logistical” Issue  
If an exception is thrown, what should the
client do about it?!

11.1 The important issues:! Recap  
	
•  implementers offers services in the form of utility and

non-utility classes"
•  we, as clients, make use of the services offered by

implementers"
–  utility classes are classes that cannot be instantiated; for utility

classes to be useful, their methods and/or fields should be static"
–  non-utility classes are classes that can be instantiated; the may

include both non-static and static methods and/or fields"
•  the “terms and conditions of use” for services are

described in the API"
–  pre conditions"
–  post condition (the specification of the return and/or the condition

under which an exception is thrown)"
10	

Recap  
	•  “no precondition” means pre is true (sec 2.3.3)!

–  precondition is “the statement that the client should ensure is true
as a condition of using this service”"

–  if pre is true, then the client doesn’t need to do anything"
•  “returns” and “throws” are parts of the post condition"

11	

Ways to think about the “throws”
section of the API…	
 WRONG"

–  Exceptions are thrown as punishment to a client for
violating the pre-condition. "

–  Thrown exceptions are like run-time errors: they are
bad and a sign that something went wrong.	

 CORRECT	
–  The API does not (should not) specify what happens if

the precondition is not met."
–  When the API specifies that an exceptions is thrown

in a particular scenario, this is part of the post
condition"

12	

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-13"

There are three sources that can lead to
exceptions:!

The End User  
Garbage-in, garbage-out!

The Programmer  
Misunderstanding requirements and/or contracts!

The Environment  
The VM, the O/S, the H/W, or the network!

11.1 What Are Exceptions?!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-14"

11.1.1 Exception Handling!

Valid
Operation?

Programmer,
End User, or
Environment

Sources

Incorrect
Operations

Error

Logic
Error

Caught?

Handler

Runtime

Error

yes yes

no
Exception

no

• An error source can lead to an incorrect operation!
• An incorrect operations may be valid or invalid!

• An invalid operation throws an exception!
• An exception becomes a runtime error unless caught !

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-15"

Example, cont.!
Here is a sample run:!
Enter the first integer:  
8!

Enter the second:  
0!

Exception in thread "main"
java.lang.ArithmeticException: / by zero"

 at Quotient.main(Quotient.java:16)"

In this case: 
 - The error source is the end user.  
 - The incorrect operation is invalid  
 - The exception was not caught!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-16"

Example, cont.!
Anatomy of an error message:!
Enter the first integer:  
8!

Enter the second:  
0!

Exception in thread "main"
java.lang.ArithmeticException: / by zero"

 at Quotient.main(Quotient.java:16)"

Message!Stack trace!Type!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-17"

11.1.2 The Delegation Model!
• We, the client, delegate to method A !

• An invalid operation is encountered in A!

• A can either handle it or delegate it!
• If A handled it, no one would know!
• Not even the API of A would document this!
• Otherwise, the exception is delegated to us!

• We can either handle it or delegate it !
• If we handle it, need to use try-catch!

• Otherwise, we delegate to the VM!
• The VM’s way of handling exceptions is to cause a

runtime error.! "Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-18"

11.1.2 The Delegation Model!
• We, the client, delegate to method A !

• A delegates to method B!

• An invalid operation is encountered in B!
• B can either handle it or delegate it!

• If B handled it, no one would know!
• Not even the API of B would document this!
• Otherwise, the exception is delegated to A!

• A can either handle it or delegate it !

• If A handled it, no one would know; otherwise it
comes to us...!

• We can either handle it or delegate it!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-19"

The Delegation Model Policy:!

Handle or Delegate Back!

Note:!
•  Applies to all (components and client)!
•  The API must document any back

delegation!

•  It does so under the heading: “Throws”!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-20"

Example: SubstringApp!
Given a string containing two slash-delimited
substrings, write a program that extracts and
outputs the two substrings.!

int slash = str.indexOf("/");  
String left = str.substring(0, slash);  
String right = str.substring(slash + 1);  
output.println("Left substring: " + left);  
output.println("Right substring: " + right);"

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-21"

Example, cont.!
Here is a sample run with str = “14-9”!
int slash = str.indexOf("/");  
String left = str.substring(0, slash);  
String right = str.substring(slash + 1);  
output.println("Left substring: " + left);  
output.println("Right substring: " + right);"

java.lang.IndexOutOfBoundsException:  
String index out of range: -1  
at java.lang.String.substring(String.java:1480)  
at Substring.main(Substring.java:14)"

The trace follows the delegation from line 1480 within
substring to line 14 within the client.!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-22"

Example, cont.!
Here is the API of substring:!
String substring(int beginIndex, int endIndex)  
Returns a new string that…"

Parameters:  
beginIndex - the beginning index, inclusive.  
endIndex - the ending index, exclusive. "

Returns:  
the specified substring. "

Throws:  
IndexOutOfBoundsException - if the beginIndex is
negative, or endIndex is larger than the length of this
String object, or beginIndex is larger than endIndex."

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 11-23

11.2.1 The basic try-catch!

try
{ ...
 code fragment
 ...
}
catch (SomeType e)
{ ...
 exception handler
 ...
}
program continues

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-24"

Example!
Redo the last example with exception handling!

try  
{  
 int slash = str.indexOf("/");  
 String left = str.substring(0, slash);  
 String right = str.substring(slash + 1);  
 output.println("Left substring: " + left);  
 output.println("Right substring: " + right);  
}  
catch (IndexOutOfBoundsException e)  
{  
 output.println("No slash in input!");  
}  
output.println("Clean Exit."); // closing"

Catching exceptions 
	
•  example L11App01 demonstrates arithmetic operation

throwing an exception"
•  example L11App02 demonstrates difference between int

and double quotient/division and modulo operation, in
terms of exception-throwing behaviours"

•  example L11App03 demonstrates basic try-catch block"

25	 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 11-26

11.2.2 Multiple Exceptions!
 try

{ ...
}
catch (Type-1 e)
{ ...
}
catch (Type-2 e)
{ ...
}
...
catch (Type-n e)
{ ...
}
program continues

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-27"

Example!
Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-28"

Example!
Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.!

Note that when exception handling is used, do
not code defensively; i.e. assume the world is
perfect and then worry about problems. This
separates the program logic from validation.!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-29"

Example, cont.!
try  
{  
 int slash = str.indexOf("/");  
 String left = str.substring(0, slash);  
 String right = str.substring(slash + 1);  
 int leftInt = Integer.parseInt(left);  
 int rightInt = Integer.parseInt(right);  
 int answer = leftInt / rightInt;  
 output.println("Quotient = " + answer);  
}  
catch (?)  
{  
 
}"

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 11-30

Example, cont.!
catch (IndexOutOfBoundsException e)
{
 output.println("No slash in input!");
}
catch (NumberFormatException e)
{
 output.println("Non-integer operands!");
}
catch (ArithmeticException e)
{
 output.println("Cannot divide by zero!");
}

output.println("Clean Exit."); // closing

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 11-31

11.3.1 The Hierarchy!
 	

Th	rowable	 	

Object	 	

Exception	 	Error	 	

RuntimeException	 	VirtualMachineError	 	

IOException	 	AssertionError	 	

PrinterException	 	AWTError	 	

...	 	...	 	

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-32"

11.3.2 OO Exception Handling!
•  They all inherit the features in Throwable!
•  Can create them like any other object: 

Exception e = new Exception();!
•  And can invoke methods on them, e.g. 

getMessage, printStackTrace, etc.!
•  They all have a toString!

•  Creating one does not simulate an exception. For
that, use the throw keyword: 
 

Exception e = new Exception("test"); 
throw e;!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-33"

Example!
Write an app that reads a string containing two
slash-delimited integers the first of which is
positive, and outputs their quotient using
exception handling. Allow the user to retry
indefinitely if an input is found invalid.!

As before but:!
•  What if the first integer is not positive?!
•  How do you allow retrying?!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-34"

Example, cont.!
for (boolean stay = true; stay;)  
{  
 try  
 {  
 // as before  
 if (leftInt < 0) throw(??);  
 …  
 output.println("Quotient = " + answer);  
 stay = false;  
 }  
 // several catch blocks  
}"

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 11-35

for (boolean stay = true; stay;)
{
 try
 {
 // as before
 if (leftInt < 0) throw(??);
 …
 output.println("Quotient = " + answer);
 stay = false;
 }
 // several catch blocks
}

Example, cont.

The order may be
important

E.g. Runtime-
Exception with a
message

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-36"

11.3.3 Checked Exceptions!
•  App programmers can avoid any RuntimeException

through defensive validation!

•  Hence, we cannot force them to handle such
exceptions!

•  Other exceptions, however, are "un-validatable", e.g.
diskette not inserted; network not available… !

•  These are “checked” exceptions!
•  App programmers must acknowledge their existence!

•  How do we enforce that? !
•  The compiler ensures that the app either handles

checked exceptions or use “throws” in its main.!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-37"

Example!
Write a program that finds out the IP address of
a given web server.!
Hint: Use the Socket class (Lab 11)!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-38"

11.4 Building Robust Applications!

•  Thanks to the compiler, checked exceptions are never
"unexpected"; they are trapped or acknowledged!

•  Unchecked exceptions (often caused by the end user)
must be avoided and/or trapped!

•  Defensive programming relies on validation to detect
invalid inputs!

•  Exception-based programming relies on exceptions!
•  Both approaches can be employed in the same app!

•  Logic errors are minimized through early exposure, e.g.
strong typing, assertion, etc.!

Key points to remember:!

