
CSE 1720	

Lecture 13	

Exception Handling, Part II	

Reminder 
	

Midterm Exam"

Thursday, Feb 16, 10-11:30"
CLH J – Curtis Lecture Hall, Room J!
will cover all material up to and including Tues Feb 14th!

•  Lecture 12 (R, Feb 09) was our review and recap
session "

•  Tues, Feb 14 –valentine’s day celebration of continued
coverage of the topic of exceptions"

2	

Topics 
	

•  various Q’s in advance of the MT"
•  exception handling – sec 11.3"

3	
 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 11-4

11.3.1 The Hierarchy!
 	

Th	
rowable	
 	

Object	
 	

Exception	
 	
Error	
 	

RuntimeException	
 	
VirtualMachineError	
 	

IOException	
 	
AssertionError	
 	

PrinterException	
 	
AWTError	
 	

...	
 	
...	
 	

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-5"

11.3.2 OO Exception Handling!
•  all instances of Exception inherit features from

Throwable!

•  exceptions can be created, like any other object: 
Exception e = new Exception();!

•  exceptions can have methods invoked upon them,
e.g.  
getMessage, printStackTrace, etc.!

•  all exceptions have the methods: toString, getClass!
•  Creating an exception does not simulate an

exception. For that, use the throw keyword: 
 

Exception e = new Exception("test"); 
throw e;! "Copyright

© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-6"

Example!
Write an app that reads a string containing two
slash-delimited integers the first of which is
positive, and outputs their quotient using
exception handling. Allow the user to retry
indefinitely if an input is found invalid.!

As before but:!
•  What if the first integer is not positive?!
•  How do you allow retrying?!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-7"

Example, cont.!
for (boolean stay = true; stay;)  
{  
 try  
 {  
 // as before  
 if (leftInt < 0) throw(??);  
 …  
 output.println("Quotient = " + answer);  
 stay = false;  
 }  
 // several catch blocks  
}"

 Copyright
© 2006 Pearson
Education Canada Inc.

 Java By Abstraction
 11-8

for (boolean stay = true; stay;)
{
 try
 {
 // as before
 if (leftInt < 0) throw(??);
 …
 output.println("Quotient = " + answer);
 stay = false;
 }
 // several catch blocks
}

Example, cont.

The order may be
important

E.g. Runtime-
Exception with a
message

11.3.3 Checked Exceptions  
	

•  In the Exception hierarchy, there is an important

distinction between "
•  the branch of RuntimeException, and "

•  the other branches, such as IOException and
ClassNotFoundException!

•  the exceptions of type RuntimeException, in principle,
can be avoided through defensive programming!
•  such exceptions can be prevented from arising in the first

through careful programming"

•  as such, programming language ideology suggests that app
programmers should not be “forced” to handle such exceptions"

•  the Java compiler does not impose any rules; if you want to use defensive
programming, go knock yourself out!!!" 9	

11.3.3 Checked Exceptions  
	

•  Other exceptions such as IOException and
ClassNotFoundException, however, cannot be
easily validated even in principle!
•  how can the app realistically monitor, at all times, the state of

resources upon which it depends, such as network availability,
media availability, the file system, the functioning of the OS and
the WM ???"

•  these conditions are, in essence, “un-validatable” (this is a
made-up word  "

•  as such, programming language ideology suggests that app
programmers should be forced to handle such exceptions, at
least in some manner."

•  the Java compiler does impose conditions in this case"
10	

11.3.3 Checked Exceptions  
	

•  For “un-validatable” exceptions, the

compiler enforces the acknowledgement
rule. "

•  The “un-validatable” exceptions are
referred to as checked exceptions"
•  App programmers must acknowledge their existence"
•  The compiler ensures that the app either handles

checked exceptions or use “throws” in its main."

11	
 "Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-12"

Example!
Write a program that opens a File, given a
pathname, and then reads an object from that
file!
Hint: See L09App1 (reproduced as L12App01)!

"Copyright
© 2006 Pearson
Education Canada
Inc. "Java By
Abstraction" 11-13"

11.4 Building Robust Applications!

•  Thanks to the compiler, checked exceptions are never
"unexpected"; they are trapped or acknowledged!

•  Unchecked exceptions (often caused by the end user)
must be avoided and/or trapped!

•  Defensive programming relies on validation to detect
invalid inputs!

•  Exception-based programming relies on exceptions!
•  Both approaches can be employed in the same app!

•  Logic errors are minimized through early exposure, e.g.
strong typing, assertion, etc.!

Key points to remember:!

