
CSE 1720	

Lecture 21	
Model-‐‑View-‐‑Controller	

Model View Controller
– a software architecture "
– separates the aspects of program logic from

the aspects of presentation and input handling!
– was first devised in 1979 as part of Smalltalk"
•  Smalltalk was an early object-oriented language

developed at Xerox PARC"

2	

The Model
•  manages the behavior and data of the application

domain"
•  responds to requests for information about its state

(usually from the view)"
•  responds to instructions to change state (usually

from the controller)"
•  notifies observers (usually views) when the

information changes so that they can react."

3	

The View
•  renders the model into a form suitable for

interaction (as a user interface)"
•  different views are possible for any given model

(e.g., for different purposes)"
•  multiple views can exist for a single model."

4	

The Controller
•  receives user input"
•  initiates a response by modifying the the model"

5	

In our apps…
•  each of the model, view, controller are

encapsulated by a single class"
•  this may not be true in other, more complex

applications"

6	

L15App1	

7	

View
Perceive

Present

Express

The previous slide represents
the architecture of L15App1

– The class L15Frame encapsulates the view
of the system (what the user sees)"

– The user has limited interactivity with the view"
•  can resize/move/iconify "
•  these functions are provided via the window

manager (and not the app itself)"

8	

Recall:
ObserverMouseMotion
•  the user interacts with the view and this object listens for

events that have been dispatched"
–  these events are dispatched whenever the user performs mouse

motion actions"
•  this object causes some information to be printed to the

console, but does not actually change the view!
–  as a listener, it is pretty lame (it doesn’t do much)!

•  the other Observer* class definitions implement various
other listeners; they fall into the same category"

•  BUT THEY DO DEMONSTRATE A CONCEPT!"

9	

L15App2	

10	

View

Controller

Perceive
Present

Translate
Express

The previous slide represents
the architecture of L15App2

– The class L15Frame encapsulates the view
of the system (what the user sees)"

– The user does interact with a component that
fulfills the role of the controller, the
ObserverMouseMotion

11	

We want to build an app with
true GUI-style interactivity…"

–  Step 1: first, we need to build up the data model that
will support the interaction"

–  This is the motivation behind the classes PolkaDot
and PolkaDotDataModel

–  PolkaDotDataModel is responsible for keeping
track of what should be drawn on the view"

–  PolkaDot encapsulates information about each
polka dot that is to be drawn"

–  This model supports a set of polka dots; if you want
your GUI to show other things, you will need a
different model!

12	

View delegates to the model…"
–  Step 2: the view must delegate to the model; it knows

it needs to paint something on its components, but
what to paint needs to be derived from the model"

–  The class CanvasPanel implements a class that
makes use of such delegation"

–  the result of this approach is L20App1

13	

L20App1	

14	

View

Model

ConsultPerceive
Present

Express

!
!
!
!

!
But L20App1 app is not interactive!!
"

15	

We need a controller …"
–  consider the class DotControllerTrivial
–  it is a MouseListener"

•  it can detect mouse events "
•  it does not, however, translate mouse events into any sort of

impact on the GUI"
•  it just prints info to the console"
•  it is just a trivial controller"

–  possibilities for mouse actions, "
•  a new polka dot appears"
•  the nearest polka dot shrinks/increases"
•  the nearest polka dot changes color"
•  the nearest polka dot toggles between filled/unfilled

16	

L20App2	

17	

View

Controller

Model

ConsultPerceive
Present

Translate
Express

Let’s use a non-trivial
controller…"

–  consider the class DotController
–  it is a MouseListener"

•  it can detect mouse events "
•  for every mouse click action, it generates a new random

polka dot and adds it to the model"
–  Now look at the model"

•  any time the state of the model changes, notice that the
model notifies any and all of its listener

18	

But our view is out of sync with
the model…"

–  the class that implements our view is
L20FrameBasicVersion

–  it takes the model as a parameter to the constructor,
but doesn’t coordinate with the model in any
meaningful way…"
•  the model notifies any listeners that it has changed, but the

view is not listening for this"

19	

Getting the view in sync with the
model…"

–  it is very similar to L20FrameBasicVersion,  
except for the addition of the following:"

myDataModel.addListener(this);

also, the method changed() is implemented"

–  this means that the view is listening for change
events that the model may dispatch"
•  anytime the model invokes notifyModelHasChanged(), the

method iterates over all model listeners and invokes their
changed() method"

20	

L20App3	

21	

View

Controller

Model

Change

NotifyPerceive
Present

Translate
Express

•  Now the flow of control is complete"
–  The user interacts with the user interface"
–  The controller handles the input event"
–  The controller notifies the model of the user action"
–  The view listens to the model and, upon changes to the model,

regenerates itself"
–  The user interface waits for further user interactions. This

restarts the control flow cycle."
•  This is the template for all MVC applications"
"

22	

