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CSE 3402: Intro to Artificial Intelligence  
Game Tree Search 

● Required readings: Chapter 5, sections 5.1, 
5.2, 5.3, 5.7. 
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Generalizing Search Problems 
● So far: our search problems have assumed 

agent has complete control of environment 
■ state does not change unless the agent (robot) 

changes it.  
● makes a straight path to goal state feasible. 

● Assumption not always reasonable 
■ stochastic environment (e.g., the weather, traffic 

accidents).  
■ other agents whose interests conflict with yours 
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Generalizing Search Problems 
●  In these cases, we need to generalize our 

view of search to handle state changes that 
are not in the control of the agent. 

● One generalization yields game tree search 
■ agent and some other agents. 
■ The other agents are acting to maximize their 

profits 
● this might not have a positive effect on your 

profits.  
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Two-person Zero-Sum Games 

● Two-person, zero-sum games 
■ chess, checkers, tic-tac-toe, backgammon, go, “find 

the last parking space” 
■ Your winning means that your opponent looses, and 

vice-versa.  
■ Zero-sum means the sum of your and your 

opponent’s payoff is zero---any thing you gain 
come at your opponent’s cost (and vice-versa). Key 
insight: 

■ how you act depends on how the other agent acts (or 
how you think they will act) 
● and vice versa (if your opponent is a rational player) 
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More General Games 
● What makes something a game? 
■ there are two (or more) agents influencing state 

change 
■ each agent has their own interests 
● e.g., goal states are different; or we assign 

different values to different paths/states 
■ Each agent tries to alter the state so as to best 

benefit itself. 

6 CSE 3402 Winter 2012 Fahiem Bacchus & Yves Lesperance 

More General Games 
● What makes games hard? 

■ how you should play depends on how you think 
the other person will play; but how they play 
depends on how they think you will play; so how 
you should play depends on how you think they 
think you will play; but how they play should 
depend on how they think you think they think 
you will play; … 
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More General Games 

● Zero-sum games are “fully competitive” 
■  if one player wins, the other player loses 
■ e.g., the amount of money I win (lose) at poker is the 

amount of money you lose (win) 
● More general games can be “cooperative” 
■ some outcomes are preferred by both of us, or at 

least our values aren’t diametrically opposed 
● We’ll look in detail at zero-sum games 
■ but first, some examples of simple zero-sum and 

cooperative games 
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Game 1: Rock, Paper Scissors 
● Scissors cut paper, 

paper covers rock, rock 
smashes scissors 

● Represented as a 
matrix: Player I chooses 
a row, Player II chooses 
a column 

● Payoff to each player in 
each cell   (Pl.I / Pl.II) 

● 1: win, 0: tie, -1: loss 
■ so it’s zero-sum 

R P S 

0/0 

0/0 

0/0 

-1/1 

-1/1 

-1/1 1/-1 

1/-1 

1/-1 
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Game 2: Prisoner’s Dilemma 
● Two prisoner’s in separate cells, DA doesn’t 

have enough evidence to convict them 
● If one confesses, other doesn’t:  
■ confessor goes free 
■ other sentenced to 4 years 

● If both confess (both defect) 
■ both sentenced to 3 years 

● Neither confess (both cooperate) 
■ sentenced to 1 year on minor charge 

● Payoff: 4 minus sentence 

Coop Def 

3/3 

1/1 

0/4 

4/0 

Coop 

Def 
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Game 3: Battlebots 
● Two robots: Blue & Red 
■ one cup of coffee, one tea left 
■ both robots prefer coffee (value 10) 
■ tea acceptable (value 8) 

● Both robot’s go for Coffee 
■ collide and get no payoff 

● Both go for tea: same 
● One goes for coffee, other for tea: 
■ coffee robot gets 10 
■ tea robot gets 8 

C T 

0/0 

0/0 

10/8 

8/10 

C 

T 
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Two Player Zero Sum Games 

● Key point of previous games: what you should 
do depends on what other guy does 

● Previous games are simple “one shot” games 
■ single move each 
■  in game theory: strategic or normal form games 

● Many games extend over multiple moves 
■ e.g., chess, checkers, etc. 
■  in game theory: extensive form games 

● We’ll focus on the extensive form 
■ that’s where the computational questions emerge 
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Two-Player, Zero-Sum Game: Defn 
● Two players A (Max) and B (Min) 
● set of positions P (states of the game) 
● a starting position s ∊ P (where game begins) 
● terminal positions T ⊆ P (where game can end) 
● set of directed edges EA between states (A’s 
moves) 

● set of directed edges EB  between states (B’s 
moves) 

● utility or payoff function U : T → ℝ (how good is each 
terminal state for player A) 
■ why don’t we need a utility function for B? 
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Intuitions 

● Players alternate moves (starting with Max) 
■ Game ends when some terminal p ∊ T is reached 

● A game state: a position-player pair 
■ tells us what position we’re in, whose move it is 

● Utility function and terminals replace goals 
■ Max wants to maximize the terminal payoff 
■ Min wants to minimize the terminal payoff 

● Think of it as: 
■ Max gets U(t), Min gets –U(t) for terminal node t 
■ This is why it’s called zero (or constant) sum 
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Tic-tac-toe: States  
Turn=Max(X) Turn=Max(X) 

Min(O) 

Turn=Min(O) 

Max(X) 

U = -1 U = +1 
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Tic-tac-toe: Game Tree 

X 

X 

X 
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Game Tree 
● Game tree looks like a search tree 
■ Layers reflect the alternating moves 

● But Max doesn’t decide where to go alone 
■ after Max moves to state a, Min decides whether 

to move to state b, c, or d 
● Thus Max must have a strategy 
■ must know what to do next no matter what move 

Min makes (b, c, or d) 
■ a sequence of moves will not suffice: Max may 

want to do something different in response to b, 
c, or d 

● What is a reasonable strategy? 
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Minimax Strategy: Intuitions 

t1 t2 t3 t4 t5 t6 t7 

s1 s2 s3 

s0 max node 

min node 

terminal 

7 -6 4 3 9 -10 2 

The terminal nodes have utilities. 
But we can compute a “utility” for the non-terminal  
states, by assuming both players always play their 
best move. 
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Minimax Strategy: Intuitions 

t1 t2 t3 t4 t5 t6 t7 

s1 s2 s3 

s0 max node 

min node 

terminal 

7 -6 4 3 9 -10 2 
If Max goes to s1, Min goes to t2"
  * U(s1) = min{U(t1), U(t2), U(t3)} = -6"
If Max goes to s2, Min goes to t4"
  * U(s2) = min{U(t4), U(t5)} = 3"
If Max goes to s3, Min goes to t6"
  * U(s3) = min{U(t6), U(t7)} = -10"

So Max goes to s2: so "
U(s0) "
   = max{U(s1), U(s2), U(s3)} "
     = 3"
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Minimax Strategy 

● Build full game tree (all leaves are terminals) 
■ root is start state, edges are possible moves, etc. 
■  label terminal nodes with utilities 

● Back values up the tree 
■ U(t) is defined for all terminals (part of input) 
■ U(n) = min {U(c) : c a child of n} if n is a min node 
■ U(n) = max {U(c) : c a child of n} if n is a max node 
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Minimax Strategy 

● The values labeling each state are the values 
that Max will achieve in that state if both he 
and Min play their best moves. 
■ Max plays a move to change the state to the highest 

valued min child. 
■ Min plays a move to change the state to the lowest 

valued max child. 
●  If Min plays poorly, Max could do better, but 

never worse.  
■  If Max, however know that Min will play poorly, 

there might be a better strategy of play for Max 
than minimax! 
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Depth-first Implementation of 
MinMax 

● Depth-first evaluation of game tree 
■ terminal(N) holds if the state (node) is a terminal 

node. Similarly for maxMove(N) (Max player’s move) 
and minMove(N) (Min player’s move).  

■ utility of terminals is specified as part of the input 

utility(N,U) :- "terminal(N), utility(N,U)."
utility(N,U) :- "maxMove(N), children(N,CList),"

"utilityList(CList,UList), "
"max(UList,U). "

utility(N,U) :- "minMove(N), children(N,CList),"
"utilityList(CList,UList), "
"min(UList,U)."
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Depth-first Implementation of 
MinMax 

■ utilityList simply computes a list of utilities, one for 
each node on the list. 

■ The way Prolog executes implies that this will 
compute utilities using a depth-first post-order 
traversal of the game tree.  
● post-order (visit children before visiting parents). 

utilityList([],[]). 
utilityList([N|R],[U|UList])"

":- utility(N,U),utilityList(R,UList)."
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Depth-first Implementation of MinMax 

● Notice that the game tree has to have finite 
depth for this to work 

● Advantage of DF implementation: space 
efficient 
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Visualization of DF-MinMax 

t3 t4 t5 

t11 t12 

t25 t26 

s1 s13 s16 

s0 

s2 s6 s17 s24 

s21 s18 

t14 t15 

t22 t23 t19 t20 

s10 s7 

t8 t9 

Once s17 eval’d, no need to store 
tree: s16 only needs its value. 
Once s24 value computed, we can 
    evaluate s16 
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Pruning 

● It is usually not necessary to examine entire 
tree to make correct minimax decision 

● Assume depth-first generation of tree 
■ After generating value for only some of n’s children 

we can prove that we’ll never reach n in a MinMax 
strategy. 

■ So we needn’t generate or evaluate any further 
children of n ! 

● Two types of pruning (cuts): 
■ pruning of max nodes (α-cuts) 
■ pruning of min nodes (β-cuts) 
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Cutting Max Nodes (Alpha Cuts) 
●  At a Max node n: 
■  Let β be the lowest value of n’s siblings examined so far (siblings 

to the left of n that have already been searched) 
■  Let α be the highest value of n’s children examined so far 

(changes as children examined) 

max node 
min node 
terminal 

s1 s13 s16 

s0 

s2 s6 

T3 
8 

T4 
10 

T5 
5 

α =8  α=10  α=10 5 
β =5 only one sibling value known  

sequence of values for α as s6’s 
children are explored 
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Cutting Max Nodes (Alpha Cuts) 
● If α becomes ≥ β we can stop expanding 

the children of n 
■ Min will never choose to move from n’s parent to 

n since it would choose one of n’s lower valued 
siblings first. 

n 

P 

s1 s2 s3 

14 12 8 

 β = 8 

2 4 9 

 α = 2 4 9 

min node 
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Cutting Min Nodes (Beta Cuts) 
●  At a Min node n: 
■  Let β be the lowest value of n’s children examined so far 

(changes as children examined) 
■  Let α be the highest value of n’s sibling’s examined so far 

(fixed when evaluating n) 

max node 
min node 
terminal 

s1 s13 s16 

s0 

s2 s6 α =10 

β =5 β =3 
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Cutting Min Nodes (Beta Cuts) 
● If β becomes ≤ α we can stop expanding 

the children of n. 
■ Max will never choose to move from n’s parent to 

n since it would choose one of n’s higher value 
siblings first. 

n 

P 

s1 s2 s3 

6 2 7 

 alpha = 7 

9 8 3 

beta = 9 8 3 
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Alpha-Beta Algorithm 

Evaluate(startNode): 
  /* assume Max moves first */ 
  MaxEval(start, -infnty, +infnty) 
 

MaxEval(node, alpha, beta): 
  If terminal(node), return  U(n) 
  For each c in childlist(n) 
      val ← MinEval(c, alpha, beta) 
      alpha ← max(alpha, val) 
      If alpha ≥ beta, return alpha 
  Return alpha 
 
MinEval(node, alpha, beta): 
  If terminal(node), return  U(n) 
  For each c in childlist(n) 
      val ← MaxEval(c, alpha, beta) 
      beta ← min(beta, val) 
      If alpha ≥ beta, return beta 
  Return beta 
 

Pseudo-code that associates 
a value with each node. 
Strategy extracted by 
moving to Max node (if you 
are player Max) at each 
step.  
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Rational Opponents 
● This all assumes that your opponent is 

rational 
■ e.g., will choose moves that minimize your score 

● What if your opponent doesn’t play 
rationally? 
■ will it affect quality of outcome? 
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Rational Opponents 
● Storing your strategy is a potential issue: 
■ you must store “decisions” for each node you can 

reach by playing optimally 
■  if your opponent has unique rational choices, this 

is a single branch through game tree 
■  if there are “ties”, opponent could choose any 

one of the “tied” moves: must store strategy for 
each subtree 

● What if your opponent doesn’t play 
rationally? Will your stored strategy still 
work?  
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Practical Matters 
● All “real” games are too large to enumerate 

tree 
■ e.g., chess branching factor is roughly 35 
■ Depth 10 tree: 2,700,000,000,000,000 nodes 
■ Even alpha-beta pruning won’t help here! 
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Practical Matters 
● We must limit depth of search tree 

■ can’t expand all the way to terminal nodes 
■ we must make heuristic estimates about the 

values of the (nonterminal) states at the leaves 
of the tree 

■ evaluation function is an often used term 
■ evaluation functions are often learned 

● Depth-first expansion almost always used 
for game trees because of sheer size of trees 
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Heuristics 

● Think of a few games and suggest some 
heuristics for estimating the “goodness” of a 
position 
■ chess? 
■ checkers? 
■ your favorite video game? 
■ “find the last parking spot”? 
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Some Interesting Games 

● Tesauro’s TD-Gammon 
■ champion backgammon player which learned 

evaluation function; stochastic component (dice) 
● Checkers: Chinook 1990s by Schaeffer; solved 

game in 2005-07 
● Chess (which you all know about) 
● Bridge, Poker, etc. 
● Check out Jonathan Schaeffer’s Web page: 
■ www.cs.ualberta.ca/~games 
■ they’ve studied lots of games (you can play too) 

● General Game Playing Competition 
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An Aside on Large Search Problems 

● Issue: inability to expand tree to terminal nodes is 
relevant even in standard search 
■  often we can’t expect A* to reach a goal by expanding full 

frontier 
■  so we often limit our lookahead, and make moves before we 

actually know the true path to the goal 
■  sometimes called online or realtime search 

● In this case, we use the heuristic function not just to 
guide our search, but also to commits to moves we 
actually make 
■  in general, guarantees of optimality are lost, but we reduce 

computational/memory expense dramatically 
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Realtime Search Graphically 
1.  We run A* (or our favorite search algorithm) 

until we are forced to make a move or run out 
of memory. Note: no leaves are goals yet. 

 
2. We use evaluation function f(n) to decide which 

path looks best (let’s say it is the red one). 
 
3. We take the first step along the best path 

(red), by actually making that move. 
 
4. We restart search at the node we reach by 

making that move. (We may actually cache the 
results of the relevant part of first search 
tree if it’s hanging around, as it would with 
A*). 


