CSE 3402: Intro to Artificial Intelligence Reasoning about action

- Readings: Chapter 10 Sec 10.4.2 (In $2^{\text {nd }}$ edition Chapter 10 Sec. 3)

Why Planning

- Intelligent agents must operate in the world. They are not simply passive reasoners (Knowledge Representation, reasoning under uncertainty) or problem solvers (Search), they must also act on the world.
- We want intelligent agents to act in "intelligent ways". Taking purposeful actions, predicting the expected effect of such actions, composing actions together to achieve complex goals.

Why Planning

- E.g. if we have a robot we want robot to decide what to do; how to act to achieve our goals

A Planning Problem

- How to change the world to suit our needs
- Critical issue: we need to reason about what the world will be like after doing a few actions, not just what it is like now

GOAL: Craig has coffee CURRENTLY: robot in mailroom, has no coffee, coffee not made, Craig in office, etc.
TO DO: goto lounge, make coffee,...

Planning

- Reasoning about what the world will be like after doing a few actions is similar to what we have already examined.
- However, now we want to reason about dynamic environments.
■ in(robby,Room1), lightOn(Room1) are true: will they be true after robby performs the action turnOffLights?
■ in(robby,Room1) is true: what does robby need to do to make in(robby,Room3) true?
- Reasoning about the effects of actions, and computing what actions can achieve certain effects is at the heart of decision making.

Planning under Uncertainty

- Our knowledge of the world probabilistic.
- Sensing is subject to noise (especially in robots).
- Actions and effectors are also subject to error (uncertainty in their effects).

Planning

- But for now we will confine our attention to the deterministic case.
-We will examine:
- Determining the effects of actions.
- finding sequences of actions that can achieve a desired set of effects.
-This will in some ways be a lot like search, but we will see that representation also plays an important role.

Situation Calculus

- First we look at how to model dynamic worlds within first-order logic.
- The situation calculus is an important formalism developed for this purpose.
- Situation Calculus is a first-order language.
- Include in the domain of individuals a special set of objects called situations. Of these s_{0} is a special distinguished constant which denotes the "initial" situation.

Situation Calculus

- Situations are used to index "states" of the world. When dealing with dynamic environments, the world has different properties at different points in time.
- e.g., in(robby,room 1, s_{0}), \neg in(robby, room $3, s_{0}$) \neg in $\left(\right.$ robby, room $\left.3, s_{1}\right)$, in(robby, room $\left.1, s_{1}\right)$.
- Different things are true in situation s_{1} than in the initial situation s_{0}.
-Contrast this with the previous kinds of knowledge we examined.

Fluents

- The basic idea is that properties that change from situation to situation (called fluents) take an extra situation argument.

- clear(b) \rightarrow clear(b,s)

- "clear(b)" is no longer statically true, it is true contingent on what situation we are talking about

Actions in the Situation Calculus

- Actions are also part of language

■A set of "primitive" action objects in the (semantic) domain of individuals.
■ In the syntax they are represented as functions mapping objects to primitive action objects.

■ pickup (X) function mapping blocks to actions
-pickup(c) = "the primitive action object corresponding to 'picking up block c'
■stack(X,Y)

- stack(a,b) = "the primitive action object corresponding to 'stacking a on top of b'

Actions modify situations.

- There is a "generic" action application function do(A,S). do maps a primitive action and a situation to a new situation.
-The new situation is the situation that results from applying A to S.
- do(pickup(c), s_{0}) = the new situation that is the result of applying action "pickup(c)" to the initial situation s_{0}.

What do Actions do?

- Actions affect the situation by changing what is true.
■on(c, a, so $)$; clear(a,do(pickup(c), s_{0}))
- We want to represent the effects of actions, this is done in the situation calculus with two components.

Specifying the effects of actions

- Action preconditions. Certain things must hold for actions to have a predictable effect.
- pickup(c) this action is only applicable to situations S where "clear(c,S) ^ handempty(S)" are true.
- Action effects. Actions make certain things true and certain things false.
-holding(c, do(pickup(c), S))
■ \forall X. \neg handempty(do(pickup(X),S))

Specifying the effects of actions

- Action effects are conditional on their precondition being true.
$\forall S, X$.
ontable(X,S) ^ clear(X,S) ^ handempty(S)
\rightarrow holding(X, do(pickup(X),S))
$\wedge ~ \neg$ handempty(do(pickup(X),S))
$\wedge ~ \neg$ ontable(X,do(pickup(X,S))
$\wedge \neg \operatorname{clear}(\mathrm{X}$, do(pickup(X,S)).

Reasoning with the Situation Calculus.

1. clear $\left(c, s_{0}\right)$
2. on(c,a, s_{0})
3. clear $\left(b, s_{0}\right)$
4. ontable $\left(a, s_{0}\right)$
5. ontable(b, s_{0})
6. handempty $\left(\mathrm{s}_{0}\right)$

Query:
ヨZ.holding(b,Z)
7. (\neg holding (b, Z), ans(Z))
does there exists a situation in
 which we are holding b? And if so what is the name of that situation.

Resolution

- Convert "pickup" action axiom into clause form:
$\forall S, Y$.
ontable $(\mathrm{Y}, \mathrm{S}) \wedge \operatorname{clear}(\mathrm{Y}, \mathrm{S}) \wedge$ handempty (S)
\rightarrow holding(Y, do(pickup(Y),S))
$\wedge \neg$ handempty(do(pickup $(\mathrm{Y}), \mathrm{S})$)
\wedge ᄀontable(Y,do(pickup(Y,S))
$\wedge \neg \operatorname{clear}(\mathrm{Y}, \mathrm{do}($ pickup(Y,S)).

8. (\neg ontable $(\mathrm{Y}, \mathrm{S}), \neg \mathrm{clear}(\mathrm{Y}, \mathrm{S})$, \neg handempty (S), holding(Y, $\operatorname{do}($ pickup(Y),S))
9. (\neg ontable($\mathrm{Y}, \mathrm{S}), \neg \mathrm{clear}(\mathrm{Y}, \mathrm{S})$, \neg handempty (S), \neg handempty(do(pickup(X),S)))
10. (\neg ontable $(Y, S), ~ \neg$ clear(Y, S), \neg handempty (S), -ontable(Y,do(pickup(Y,S)))
11. (\neg ontable (Y, S), $\neg \mathrm{clear}(\mathrm{Y}, \mathrm{S})$, \neg handempty (S), \neg clear(Y,do(pickup(Y,S)))

Resolution

12. R[8d, 7]\{Y=b,Z=do(pickup(b),S)\}
(\rightarrow ontable(b,S), \neg clear(b,S), \neg handempty(S), ans(do(pickup(b),S)))
13. $\mathrm{R}[12 \mathrm{a}, 5]\left\{\mathrm{S}=\mathrm{s}_{0}\right\}$
(\neg clear($\left(\mathrm{b}, \mathrm{s}_{0}\right)$, \neg handempty $\left(\mathrm{s}_{0}\right)$, ans(do(pickup(b), $\left.\left.\mathrm{s}_{0}\right)\right)$)
14. R[13a,3] \{\}
(-handempty(s_{0}), ans(do(pickup(b), $\left.\mathrm{s}_{0}\right)$))
15. R[14a,6] \{\}
ans(do(pickup(b), $\left.\mathrm{s}_{0}\right)$)

The answer?

- ans(do(pickup(b), $\left.\mathrm{s}_{0}\right)$)
- This says that a situation in which you are holding b is called "do(pickup(b), s_{0})"
- This name is informative: it tells you what actions to execute to achieve "holding(b)".

Two types of reasoning.

- In general we can answer questions of the form:
on(b,c,do(stack(b,c), do(pickup(b), $\left.\left.\mathrm{s}_{0}\right)\right)$)
$\exists S$. on $(b, c, S) \wedge$ on (c, a, S)
- The first involves predicting the effects of a sequence of actions, the second involves computing a sequence of actions that can achieve a goal condition.

The Frame Problem

- Unfortunately, logical reasoning won't immediately yield the answer to these kinds of questions.
- e.g., query: on(c,a,do(pickup(b), $\left.\mathrm{s}_{0}\right)$)?
\square is c still on a after we pickup b ?
- Intuitively it should be
-Can logical reasoning reach this conclusion?

The Frame Problem

1. clear $\left(c, s_{0}\right)$
2. on $\left(c, a, s_{0}\right)$
3. clear $\left(b, s_{0}\right)$
4. ontable $\left(a, s_{0}\right)$
5. ontable $\left(b, s_{0}\right)$
6. handempty $\left(\mathrm{s}_{0}\right)$
7. (\neg ontable (Y, S), \neg clear (Y, S), \neg handempty (S), holding $(\mathrm{Y}, \mathrm{do}($ pickup(Y),S))
8. (\neg ontable $(Y, S), \neg$ clear $(Y, S), \neg$ handempty (S), ᄀhandempty(do(pickup(X),S)))
9. (\neg ontable (Y, S), \neg clear (Y, S), \neg handempty (S), \neg ontable(Y,do(pickup(Y,S)))
10. (\neg ontable (Y, S), \neg clear (Y, S), \neg handempty (S), \neg clear(Y,do(pickup(Y,S)))
11. $\neg \mathrm{on}\left(\mathrm{c}, \mathrm{a}, \mathrm{do}\left(\right.\right.$ pickup $\left.\left.(\mathrm{b}), \mathrm{s}_{0}\right)\right)$ \{QUERY)

Nothing can resolve with 12 !

Logical Consequence

- Remember that resolution only computes logical consequences.
- We stated the effects of pickup(b), but did not state that it doesn't affect on(c,a).
- Hence there are models in which on(c,a) no longer holds after pickup(b) (as well as models where it does hold).
- The problem is that representing the non-effects of actions very tedious and in general is not possible.
- Think of all of the things that pickup(b) does not affect!

The Frame Problem

- Finding an effective way of specifying the noneffects of actions, without having to explicitly write them all down is the frame problem.
- Very good solutions have been proposed, and the situation calculus has been a very powerful way of dealing with dynamic worlds:
-logic based high level robotic programming languages

Computation Problems

- Although the situation calculus is a very powerful representation. It is not always efficient enough to use to compute sequences of actions.
- The problem of computing a sequence of actions to achieve a goal is "planning"
- Next we will study some less rich representations which support more efficient planning.

