August 1999 DEXA 99—Godiney & Gryz p. 0 Answering Queries		What is Semantic Query Caching?				
b	oy Semantic Ca	aches	Semantic quer to answer new qu	y caching (SQC): Use the results of eries.	of old queries	
Parke C	Godfrey	Jarek Gryz	A semantic quer	$y \ cache \ (SQC)$ is a		
Department of Computer Science York University Toronto, Ontario, Canada {godfrey, jarek}@cs.yorku.ca			 a local materialization of a query, annotated with a query expression.			
			Other types of ca	ching used in databases:		
August 1999			• tuple-based			
			• page-based			
			It is unclear how	tuple-based or page-based could be ex	ctended for	
			heterogeneous dat	tabase environments.		
			Semantic query ca	aches also offer advantages. They		
			• exploit <i>seman</i>	ntic locality.		
			(Dar, Franklin	n, Jonsson, & Srivastava [VLDB'96])		
			\bullet offer greater fl	lexibility.		
			 Caches can 	be <i>combined</i> to answer queries.		
			– Can deterr	nine when caches completely answer of	query.	
			• are easy to ca	pture and store.		

August 1999	DEXA 99—Godfrey & Gryz	p. 2	August 1999	DEXA 99—Godfrey & Gryz	p. 3			
Applications of Semantic Query Caching			Our Goals					
What can semant	ic query caching buy us especially it	1.8	Seek to define a ${\bf g}$	general framework in <i>logic</i> for sem	antic query			
heterogeneous, mediated environment?			caching, and the use of semantic caches. Framework should be					
			 Relationally 	y Complete				
• Query optin	nization		-All the relation	ational algebra—including $join$ and u	nion—can			
- Improvement in overall query response time			be used across the caches to answer queries.					
(Traditiona	al optimization)		• Flexible					
 Saving more 	- Saving money			– Query may be only <i>partially</i> answerable via cache. In this				
 Optimizati 	 Optimization of queries with few answers 			case, the query should be answered in part via cache and the				
• Data Securi	• Data Security			rest via evaluation.				
• Fault tolerance			• Parameterizable					
• Approximate answering (aggregates)			- SQC usage can be parameterized to be optimized for					
(Hellerstein, Haas, & Wang [SIGMOD'97])			different purposes. For example, query optimization, and					
• Better user	interaction		answer pip	elining.				
 Answer set 	pipelining							
 Indirect an 	swering		Problems at h	and: (Outline)				
– Limiting the size of the answer set			1. Deciding when	n answers are in cache.				
			2. Extracting an	swers from cache.				
			3. Accessing semantic overlap / semantic independence.					
			4. Evaluating ser	mantic remainders.				

- - -

However, one cannot extract the answers to \mathcal{Q} from \mathcal{C}_1 and \mathcal{C}_2 .

p. 9

p. 12

Semantic Overlap Overlap Formula

DEXA'99—Godfrey & Gryz

Second, there must exist a conjunctive query formula \mathcal{F} , called the *overlap formula*, such that

 $\models \forall. \; (\mathcal{F} \to \mathcal{Q}) \land (\mathcal{F} \to \mathcal{E})$

For example,

$$\begin{split} &\models \forall X. \ payroll \ (X) \land position \ (X) \land national \ (X) \rightarrow \\ & payroll \ (X) \land position \ (X) \\ &\models \forall X. \ payroll \ (X) \land position \ (X) \land national \ (X) \rightarrow \\ & payroll \ (X) \land national \ (X) \end{split}$$

Problems:

• False for \mathcal{F} works.

Note that $Q \wedge \mathcal{E}$ always works.

August 1999

DEXA'99—Godfrey & Gryz

p. 13

Semantic Overlap Both overlap witness and formula

If there is a non-tautological overlap witness and $\mathcal{Q} \wedge \mathcal{E}$ is not a contradiction (so there exists a non-contradictory overlap formula), then \mathcal{Q} and \mathcal{E} extensionally overlap.

Interested in *most general* overlap formulas. \mathcal{F} is most general if there exists no \mathcal{G} such that

 $\models \forall. \ (\mathcal{F} \to \mathcal{G}) \ \mathrm{but} \not\models \forall. \ (\mathcal{G} \to \mathcal{F})$

Intensional Overlap

Overlap with respect to IDB: There exist unfoldings $\mathcal{U}_{\mathcal{Q}}$ and $\mathcal{U}_{\mathcal{E}}$ of \mathcal{Q} and \mathcal{E} , respectively, such that $\mathcal{U}_{\mathcal{Q}}$ and $\mathcal{U}_{\mathcal{E}}$ extensionally overlap.

 ${\mathcal Q}$ and ${\mathcal E}$ are $semantically \ independent \ iff$ they do not intensionally overlap in any way.

August 1999	DEXA'99—Godfrey & Gryz	p. 18		
	Future Work			
– formalizati	on			
• Formalize	notion, or notions, of $\mathcal{Q} \setminus \mathcal{E}$.			
– algorithms				
• Reasoning containme	over conjunctive query containment an nt is computationally hard.	d Datalog		
• What are for import	good (possibly incomplete) tractable alg ant sub-classes of containment and over	orithms lap?		
– optimizatio	n			
• What wou	ld cost models for SQC be?			
• What are	good evaluation strategies for discounte	d queries?		
– cache curre	ency			
• Can cache	s be kept "reasonably" current inexpens	ively?		
– cache main	tenance			
◦ What wou	ld be a reasonable cache maintenance s	rategy?		
• When sho	uld caches be combined / split?			