View Disassembly: Evaluating Queries Piecemeal

Parke Godfrey

Information Science & Technology U.S. Army Research Laboratory Adelphi, Maryland, U.S.A.

godfrey@arl.mil

& University of Maryland

October 1998

Work done in conjunction with

Jarek Gryz Department of Computer Science York University Toronto, Ontario, Canada

jarek@cs.yorku.ca

Work based on the paper

P. Godfrey & J. Gryz View Disassembly

to be presented at ICDT'99 in January 1999 in Jerusalem.

I. Motivation Query Folding

- Academic_units (did, address)
- Employees (eid, did)
- **Benefits** (eid, premium, provider)

 $query\left(A\right) \leftarrow$

 $academic_units(D, A),$ employees(E, D), $benefits(E, _, ætna).$

$$cache_one(E, A) \leftarrow$$

$$academic_units(D, A),$$

$$employees(E, D).$$

$$cache_two(E, P) \leftarrow$$

$$employees(E, D)$$

$$benefits(E, _, P).$$

 $query(A) \Leftarrow cache_one(E, A), \ cache_two(E, \ atna).$

Query Unfolding

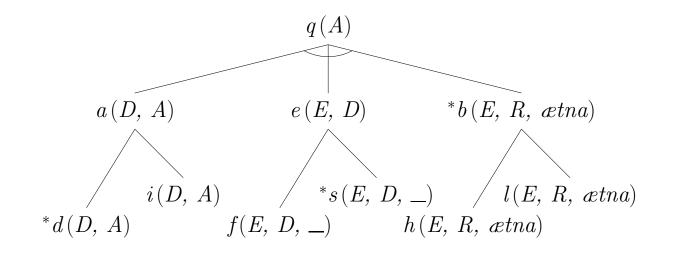
- **Departments** (did, address)
- Institutes (did, address)
- Faculty (eid, did, rank)
- **Staff** (eid, did, position)
- Health_Ins (eid, premium, provider)
- Life_ins (eid, premium, provider)

 $\begin{aligned} academic_units\,(X, \ Y) &\leftarrow departments\,(X, \ Y). \\ academic_units\,(X, \ Y) &\leftarrow institutes\,(X, \ Y). \\ employees\,(X, \ Y) &\leftarrow faculty\,(X, \ Y, \ Z). \\ employees\,(X, \ Y) &\leftarrow staff(X, \ Y, \ Z). \\ benefits\,(X, \ Y, \ Z) &\leftarrow health_ins\,(X, \ Y, \ Z). \\ benefits\,(X, \ Y, \ Z) &\leftarrow life_ins\,(X, \ Y, \ Z). \end{aligned}$

 $query(A) \leftarrow academic_units(D, A),$ employees(E, D), $benefits(E, _, \ actna).$

 $\begin{aligned} \textit{cache}\left(A,\ P\right) \leftarrow \textit{institutes}\left(D,\ A\right), \\ \textit{staff}(E,\ D,\ _), \\ \textit{benefits}\left(E,\ _,\ P\right). \end{aligned}$

AND/OR Trees



$$\begin{array}{l} query\left(A\right) \leftarrow \ academic_units\left(D,\ A\right),\\ employees\left(E,\ D\right),\\ benefits\left(E,\ _\,,\ xetna\right). \end{array}$$

 $\begin{aligned} cache\left(A,\ P\right) \leftarrow institutes\left(D,\ A\right), \\ staff(E,\ D,\ _), \\ benefits\left(E,\ _,\ P\right). \end{aligned}$

II. Discounted Queries

Let \mathcal{Q} be a query.

Let $\mathcal{U}_1, \ldots, \mathcal{U}_k$ be unfoldings of \mathcal{Q} .

 $\mathcal{Q} \setminus \{\mathcal{U}_1, \ldots, \mathcal{U}_k\}$ denotes the *discounted query* of \mathcal{Q} with *unfoldings-to-discount* $\mathcal{U}_1, \ldots, \mathcal{U}_k$.

Define unfolds(Q) to be the set of *extensional unfoldings* of Q.

We define $\mathcal{Q} \setminus \{\mathcal{U}_1, \ldots, \mathcal{U}_k\}$ to mean

$$\mathbf{unfolds}\left(\mathcal{Q}
ight)-(igcup_{i=1}^k\mathbf{unfolds}\left(\mathcal{U}_i
ight))$$

A discounted query is a type of *remainder query*.

When \mathcal{Q} is *covered* by $\mathcal{U}_1, \ldots, \mathcal{U}_k$, then $\mathcal{Q} \setminus \{\mathcal{U}_1, \ldots, \mathcal{U}_k\}$ evaluates empty.

- $\bullet \mathcal{Q} \backslash \{ \mathcal{Q} \}$
- $\mathcal{Q} \setminus \mathbf{unfolds}\left(\mathcal{Q}\right)$

Applications

Some unfoldings of the view may

- (*Cache use*) be effectively cached from previous queries, or may be materialized views,
- (*Void sub-queries*) be known to evaluate empty (by reasoning over the integrity constraints),
- (*Security*) match protected queries, which cannot be evaluated for all users, and
- (*Old answers*) be subsumed by previously asked queries, so are not of interest to the user.

Complex queries and views that employ interleaved unions and joins arise

- in mediation over heterogeneous databases,
- in data warehousing, and
- even in current database systems.

The general goal is optimization in all these tasks.

III. View Disassembly

- How can one find a query is equivalent answer set-wise to a discounted query?
- We treat queries involving views as AND/OR trees.
- We rewrite the AND/OR tree of the original query to an AND/OR tree that is equivalent to the discounted query.

We call this rewrite procedure view disassembly.

Outline

- 1. Removing Simple Unfoldings
- 2. Deciding Coverage
- 3. Algebraically Optimal Rewrites
- 4. Approximation Rewrites
 - a. Naive View Disassembly
 - **b.** The Unfold/Refold Algorithm

Removing Simple Unfoldings

Intuition: unfolding removal is always simple. The AND/OR tree can always be *pruned* somehow to "remove" the unfolding.

This intuition is wrong. However, for an important class of unfoldings we call *simple unfoldings*, this is true.

$$q \leftarrow a, e, b.$$

 $c_1 \leftarrow d, e, b.$

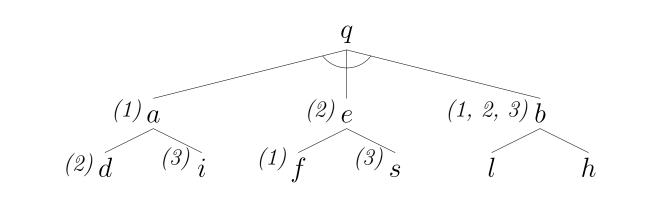


$$c_2 \leftarrow d, f, l.$$

Note that c_2 , however, is not *simple*.

Deciding Coverage Example

 $\mathcal{Q}: \quad q \leftarrow a, e, b.$ $\mathcal{U}_1: \quad u_1 \leftarrow a, f, b.$ $\mathcal{U}_2: \quad u_2 \leftarrow d, e, b.$ $\mathcal{U}_3: \quad u_3 \leftarrow i, s, b.$



 $\mathcal{Q} \setminus \{\mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3\} = \emptyset$

Deciding Coverage Complexity

Query \mathcal{Q} is covered by $\mathcal{U}_1, \ldots, \mathcal{U}_k$ iff

$$extbf{unfolds}\left(\mathcal{Q}
ight)-(igcup_{i=1}^k extbf{unfolds}\left(\mathcal{U}_i
ight)) = \emptyset$$

A discounted view instance \mathcal{V} is a pair:

- AND/OR tree (the query); and
- a list of AND/OR trees (the unfoldings-to-discount).

Define **COV** as the set of all discounted view instances that are covered.

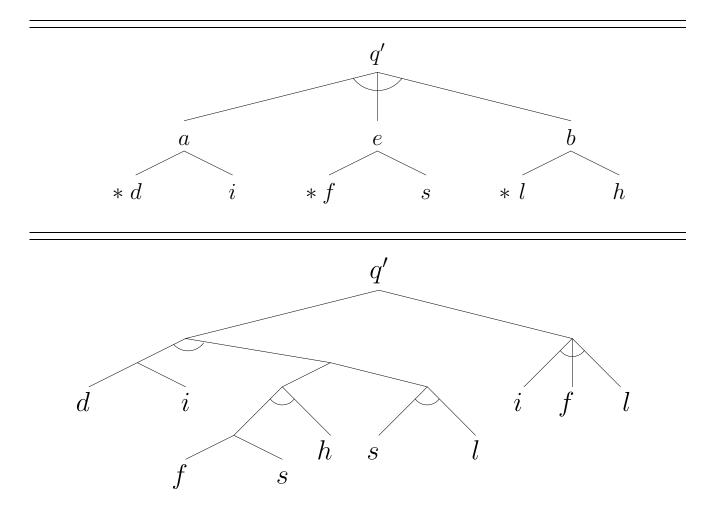
Theorem. COV is coNP-complete.

Proof. By reduction from 3-**SAT**.

The complexity of deciding coverage is dictated by k, the number of unfoldings-to-discount, but *not* by the size or complexity of the AND/OR tree for Q.

Algebraically Optimal Rewrites Example

 $q \leftarrow a, e, b.$ $c_2 \leftarrow d, f, l.$



Algebraically Optimal Rewrites Complexity

Define the class *Minimization of Discounted Query* (MDQ) as follows. An instance is the triplet of

- a query *Q* with a two-level AND/OR tree (a join of unions),
- a collection of unfoldings-to-discount $\mathcal{U}_1, \ldots, \mathcal{U}_n$ marked in \mathcal{Q} 's AND/OR tree, and
- a positive integer K.

An instance belongs to **MDQ** *iff* there is an AND/OR tree of K or fewer nodes that evaluates $Q \setminus \{\mathcal{U}_1, \ldots, \mathcal{U}_n\}$.

Theorem. Minimization of Discounted Query (**MDQ**) is **NP**-complete.

Proof. By reduction from a known **NP**-hard problem, minimum order partition into bipartite cliques.

The general problem is in the class Π_2^p . We conjecture it is Π_2^p -complete.

Approximation Rewrites Naive View Disassembly

Strategy.

- Unfold the query in all possible ways.
- Unfold the unfoldings-to-discount in all possible ways.
- Subtract from the query's unfoldings the unfoldings of the unfoldings-to-discount.
- *Refold* the remaining collection somehow.

$\{d,i\} \times \{f,s\} \times \{h,l\}$

$\{a_1, b_1\} \times \ldots \times \{a_{10}, b_{10}\}$

Problems

- Rewritten query can be exponentially larger than the query.
- Can take exponential time to compute.
- Resulting rewrite contains many redundancies.

Approximation Rewrites Desired Properties

Let \mathcal{Q} be the query, and \mathcal{N} be the set of unfoldings-to-discount.

Find a collection \mathcal{C} of unfoldings of \mathcal{Q} that represents $\mathcal{Q} \setminus \mathcal{N}$.

Collection \mathcal{C} should have the following properties:

- 1. (*Coverage*) $\mathcal{N} \cup \mathcal{C}$ is a *cover* of \mathcal{Q} ;
- 2. (No overlap) no two unfoldings in \mathcal{C} should overlap;
- 3. (*Most general*) no unfolding in C can be refolded (and still preserve the above properties); and
- 4. (*Parsimonious*) for any $U \in \mathcal{C}$, $(\mathcal{N} \cup \mathcal{C}) \{U\}$ is not a cover of the view.

Of course, we would like to find \mathcal{C} efficiently.

Approximation Rewrites The Unfold/Refold Algorithm

 $C := \{\}$ while $new_unfolding(Q, \mathcal{N} \cup C, U)$ $V := refolding(U, \mathcal{N}, C)$ $C := C \cup \{V\}$ return parsimonious(C)

Properties

- The *refold* step is computationally inexpensive.
- The *parsimonious* step is also computationally inexpensive.
- The *new_unfolding* step is the computational bottleneck.
 - This is the co-problem of the coverage decision.
 - The complexity is dictated by $\mathcal{N} \cup \mathcal{C}$ each loop, *not* by the complexity of \mathcal{Q} 's AND/OR tree.

Approximation Rewrites Example

e

S

*f

Unfold/Refold Trace.

a

i

1. Start with $\mathcal{C} := \{\}$.

* d

- 2. New unfolding: $\mathcal{V} = \{i, f, l\}.$
- 3. Refold \mathcal{V} to $\{i, e, b\}$. $\mathcal{C} := \{\{i, e, b\}\}$
- 4. New unfolding: $\mathcal{V} = \{d, f, h\}.$
- 5. Refold \mathcal{V} to $\{d, e, h\}$.

$$\mathcal{C} := \{\{i, e, b\}, \{d, e, h\}\}$$

- 6. New unfolding: $\mathcal{V} = \{d, s, l\}.$
- 7. Cannot refold \mathcal{V} .

$$\mathcal{C} := \{\{i, e, b\}, \{d, e, h\}, \{d, s, l\}\}$$

8. No new unfoldings possible.

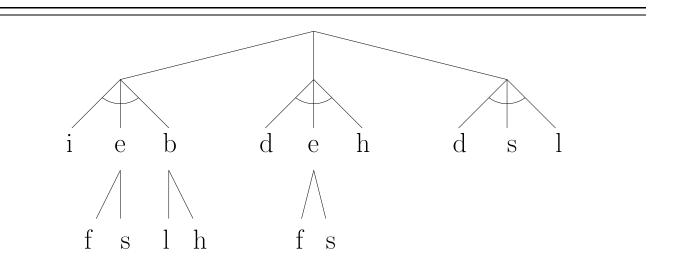
b

*l

h

Approximation Rewrites

Example p. 2



IV. Related Work

• multiple query optimization

- View disassembly has the advantage that all unfoldings are from the *same* AND/OR tree.
 - MQO must handle any collection of queries.
- MQO could be used to optimize within view disassembly.

• query folding

- View disassembly extends query folding possibilities.
- Offers a technique for *remainder queries*.

• query and algebraic rewrite techniques

Rewrite techniques focus on preserving the query's evaluation.

View disassembly is for evaluating discounted queries.

Rewrite techniques could be used in conjunction with view disassembly.

• intensional query optimization

- IQO looks to apply semantic query optimization to queries with views.
- This is one possible application for view disassembly.

V. Conclusions and Open Issues

View disassembly offers a new technology to evaluate partially queries that employ views, by "removing" certain unfoldings.

While devising algebraically optimal rewrites for view disassembly is intractable, other sub-optimal strategies are generally tractable.

- Use of view disassembly for query optimization.
 - How can it be coupled with existing optimization techniques?
 - With cost-based estimates?
- When is the use of view disassembly effective?
 - Which applications benefit from explicit rewrite technology?
 - Could we evaluate discounted queries directly?
- What are better algorithms for view disassembly?
 - Can find all *simple unfoldings* covered by the unfoldings-to-discount, and only remove those.
 - How can the unfold/refold algorithm be coupled with other rewrite techniques? With MQO?
- A yet better understanding of the computational complexity of view disassembly tasks.
 - What is average case performance of the unfold/refold algorithm?
 - How close to optimal can we achieve, on average?
 - How often do bad cases occur?