
View Disassembly:
Evaluating Queries Piecemeal

Parke Godfrey

Information Science & Technology
U.S. Army Research Laboratory

Adelphi, Maryland, U.S.A.

godfrey@arl.mil

& University of Maryland

October 1998

Work done in conjunction with

Jarek Gryz

Department of Computer Science

York University
Toronto, Ontario, Canada

jarek@cs.yorku.ca

Work based on the paper

P. Godfrey & J. Gryz
View Disassembly

to be presented at

ICDT’99 in January 1999 in Jerusalem.



View Disassembly—Godfrey & Gryz—October 1998 1

I. Motivation

Query Folding

• Academic units (did, address)

• Employees (eid, did)

• Benefits (eid, premium, provider)

query (A) ←

academic units (D, A),

employees (E, D),

benefits (E, , ætna).

cache one (E, A) ←

academic units (D, A),

employees (E, D).

cache two (E, P) ←

employees (E, D)

benefits (E, , P).

query (A) ⇐ cache one (E, A), cache two (E, ætna).



View Disassembly—Godfrey & Gryz—October 1998 2

Query Unfolding

• Departments (did, address)

• Institutes (did, address)

• Faculty (eid, did, rank)

• Staff (eid, did, position)

• Health Ins (eid, premium, provider)

• Life ins (eid, premium, provider)

academic units (X, Y) ← departments (X, Y).

academic units (X, Y) ← institutes (X, Y).

employees (X, Y) ← faculty (X, Y, Z).

employees (X, Y) ← staff (X, Y, Z).

benefits (X, Y, Z) ← health ins (X, Y, Z).

benefits (X, Y, Z) ← life ins (X, Y, Z).

query (A) ← academic units (D, A),

employees (E, D),

benefits (E, , ætna).

cache (A, P) ← institutes (D, A),

staff (E, D, ),

benefits (E, , P).



View Disassembly—Godfrey & Gryz—October 1998 3

AND/OR Trees

q (A)

e (E, D)a (D, A)

i (D, A) l (E, R, ætna)

∗b (E, R, ætna)

∗s (E, D, )
∗d (D, A) f (E, D, ) h (E, R, ætna)

query (A) ← academic units (D, A),

employees (E, D),

benefits (E, , ætna).

cache (A, P) ← institutes (D, A),

staff (E, D, ),

benefits (E, , P).



View Disassembly—Godfrey & Gryz—October 1998 4

II. Discounted Queries

Let Q be a query.

Let U1, . . .,Uk be unfoldings of Q.

Q\{U1, . . . ,Uk} denotes the discounted query of Q with

unfoldings-to-discount U1, . . .,Uk.

Define unfolds(Q) to be the set of extensional unfoldings of Q.

We define Q\{U1, . . . ,Uk} to mean

unfolds (Q)− (
k⋃

i=1

unfolds (Ui))

A discounted query is a type of remainder query.

When Q is covered by U1, . . .,Uk, then Q\{U1, . . . ,Uk} evaluates

empty.

• Q\{Q}

• Q\unfolds (Q)



View Disassembly—Godfrey & Gryz—October 1998 5

Applications

Some unfoldings of the view may

• (Cache use) be effectively cached from previous queries, or may

be materialized views,

• (Void sub-queries) be known to evaluate empty (by reasoning

over the integrity constraints),

• (Security) match protected queries, which cannot be evaluated

for all users, and

• (Old answers) be subsumed by previously asked queries, so are

not of interest to the user.

Complex queries and views that employ interleaved unions and

joins arise

• in mediation over heterogeneous databases,

• in data warehousing, and

• even in current database systems.

The general goal is optimization in all these tasks.



View Disassembly—Godfrey & Gryz—October 1998 6

III. View Disassembly

• How can one find a query is equivalent answer set-wise to a

discounted query?

• We treat queries involving views as AND/OR trees.

• We rewrite the the AND/OR tree of the original query to an

AND/OR tree that is equivalent to the discounted query.

We call this rewrite procedure view disassembly.

Outline

1. Removing Simple Unfoldings

2. Deciding Coverage

3. Algebraically Optimal Rewrites

4. Approximation Rewrites

a. Naive View Disassembly

b. The Unfold/Refold Algorithm



View Disassembly—Godfrey & Gryz—October 1998 7

Removing Simple Unfoldings

Intuition: unfolding removal is always simple. The AND/OR tree

can always be pruned somehow to “remove” the unfolding.

This intuition is wrong. However, for an important class of

unfoldings we call simple unfoldings, this is true.

q ← a, e, b.

c1 ← d, e, b.

i s h

a

f l

q′

d

e b∗ ∗

∗

c2 ← d, f, l.

Note that c2, however, is not simple.



View Disassembly—Godfrey & Gryz—October 1998 8

Deciding Coverage

Example

Q: q ← a, e, b.

U1: u1 ← a, f, b.
U2: u2 ← d, e, b.
U3: u3 ← i, s, b.

a e b

id f s l h

q

(1) (2) (1, 2, 3)

(3)(1)(3)(2)

Q\{U1,U2,U3} = ∅



View Disassembly—Godfrey & Gryz—October 1998 9

Deciding Coverage

Complexity

Query Q is covered by U1, . . ., Uk iff

unfolds (Q)− (
k⋃

i=1

unfolds (Ui)) = ∅

A discounted view instance V is a pair:

• AND/OR tree (the query); and

• a list of AND/OR trees (the unfoldings-to-discount).

Define COV as the set of all discounted view instances that are

covered.

Theorem. COV is coNP-complete.

Proof. By reduction from 3-SAT.

The complexity of deciding coverage is dictated by k, the number of

unfoldings-to-discount, but not by the size or complexity of the

AND/OR tree for Q.



View Disassembly—Godfrey & Gryz—October 1998 10

Algebraically Optimal Rewrites

Example

q ← a, e, b.

c2 ← d, f, l.

i s h

a

f l

q′

d

e b

∗ ∗ ∗

d i

f s
h s l

i f l

q′



View Disassembly—Godfrey & Gryz—October 1998 11

Algebraically Optimal Rewrites

Complexity

Define the class Minimization of Discounted Query (MDQ) as

follows. An instance is the triplet of

• a query Q with a two-level AND/OR tree

(a join of unions),

• a collection of unfoldings-to-discount U1, . . ., Un marked in Q’s

AND/OR tree, and

• a positive integer K.

An instance belongs to MDQ iff there is an AND/OR tree of K or

fewer nodes that evaluates Q\{U1, . . . ,Un}.

Theorem. Minimization of Discounted Query (MDQ) is

NP-complete.

Proof. By reduction from a known NP-hard problem, minimum

order partition into bipartite cliques.

The general problem is in the class Πp
2. We conjecture it is

Πp
2-complete.



View Disassembly—Godfrey & Gryz—October 1998 12

Approximation Rewrites

Naive View Disassembly

Strategy.

• Unfold the query in all possible ways.

• Unfold the unfoldings-to-discount in all possible ways.

• Subtract from the query’s unfoldings the unfoldings of the

unfoldings-to-discount.

◦ Refold the remaining collection somehow.

{d, i} × {f, s} × {h, l}

{a1, b1} × . . .× {a10, b10}

Problems

• Rewritten query can be exponentially larger than the query.

• Can take exponential time to compute.

• Resulting rewrite contains many redundancies.



View Disassembly—Godfrey & Gryz—October 1998 13

Approximation Rewrites

Desired Properties

Let Q be the query, and N be the set of unfoldings-to-discount.

Find a collection C of unfoldings of Q that represents Q\N .

Collection C should have the following properties:

1. (Coverage) N ∪ C is a cover of Q;

2. (No overlap) no two unfoldings in C should overlap;

3. (Most general) no unfolding in C can be refolded (and still

preserve the above properties); and

4. (Parsimonious) for any U ∈ C, (N ∪ C)− {U} is not a cover

of the view.

Of course, we would like to find C efficiently.



View Disassembly—Godfrey & Gryz—October 1998 14

Approximation Rewrites

The Unfold/Refold Algorithm

C := {}

while new unfolding (Q, N ∪ C, U)

V := refolding (U, N , C)

C := C ∪ {V}

return parsimonious (C)

Properties

• The refold step is computationally inexpensive.

• The parsimonious step is also computationally inexpensive.

• The new unfolding step is the computational bottleneck.

– This is the co-problem of the coverage decision.

– The complexity is dictated by N ∪ C each loop, not by the

complexity of Q’s AND/OR tree.



View Disassembly—Godfrey & Gryz—October 1998 15

Approximation Rewrites

Example

i s h

a

f l

q′

d

e b

∗ ∗ ∗

Unfold/Refold Trace.

1. Start with C := {}.

2. New unfolding: V = {i, f, l}.

3. Refold V to {i, e, b}.

C := {{i, e, b}}

4. New unfolding: V = {d, f, h}.

5. Refold V to {d, e, h}.

C := {{i, e, b}, {d, e, h}}

6. New unfolding: V = {d, s, l}.

7. Cannot refold V .

C := {{i, e, b}, {d, e, h}, {d, s, l}}

8. No new unfoldings possible.



View Disassembly—Godfrey & Gryz—October 1998 16

Approximation Rewrites

Example p. 2

i d h d s l

s l h f sf

e eb



View Disassembly—Godfrey & Gryz—October 1998 17

IV. Related Work

• multiple query optimization

– View disassembly has the advantage that all unfoldings are

from the same AND/OR tree.

MQO must handle any collection of queries.

– MQO could be used to optimize within view disassembly.

• query folding

– View disassembly extends query folding possibilities.

– Offers a technique for remainder queries.

• query and algebraic rewrite techniques

– Rewrite techniques focus on preserving the query’s

evaluation.

View disassembly is for evaluating discounted queries.

– Rewrite techniques could be used in conjunction with view

disassembly.

• intensional query optimization

– IQO looks to apply semantic query optimization to queries

with views.

– This is one possible application for view disassembly.



View Disassembly—Godfrey & Gryz—October 1998 18

V. Conclusions and Open Issues

View disassembly offers a new technology to evaluate partially

queries that employ views, by “removing” certain unfoldings.

While devising algebraically optimal rewrites for view disassembly

is intractable, other sub-optimal strategies are generally tractable.

• Use of view disassembly for query optimization.

– How can it be coupled with existing optimization techniques?

– With cost-based estimates?

•When is the use of view disassembly effective?

– Which applications benefit from explicit rewrite technology?

– Could we evaluate discounted queries directly?

•What are better algorithms for view disassembly?

– Can find all simple unfoldings covered by the

unfoldings-to-discount, and only remove those.

– How can the unfold/refold algorithm be coupled with other

rewrite techniques? With MQO?

• A yet better understanding of the computational

complexity of view disassembly tasks.

– What is average case performance of the unfold/refold

algorithm?

– How close to optimal can we achieve, on average?

– How often do bad cases occur?


