
• 12-11-14

• 1

1 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

CSE 3401: Intro to AI & LP 
 Informed Search

● Required Readings: Chapter 3, Sections 5 and
6, and Chapter 4, Section 1.

2 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Heuristic Search.

● In uninformed search, we don’t try to
evaluate which of the nodes on the frontier
are most promising. We never “look-ahead”
to the goal.
■ E.g., in uniform cost search we always expand the

cheapest path. We don’t consider the cost of
getting to the goal.

● Often we have some other knowledge about
the merit of nodes, e.g., going the wrong
direction in Romania.

• 12-11-14

• 2

3 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Heuristic Search.
● Merit of a frontier node: different

notions of merit.
■ If we are concerned about the cost of the

solution, we might want a notion of merit
of how costly it is to get to the goal from
that search node.

■ If we are concerned about minimizing
computation in search we might want a
notion of ease in finding the goal from
that search node.

■ We will focus on the “cost of solution”
notion of merit.

4 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Heuristic Search.

● The idea is to develop a domain specific
heuristic function h(n).

● h(n) guesses the cost of getting to the goal
from node n.

● There are different ways of guessing this cost
in different domains. I.e., heuristics are domain
specific.

• 12-11-14

• 3

5 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Heuristic Search.

● Convention: If h(n1) < h(n2) this means that we
guess that it is cheaper to get to the goal from
n1 than from n2.

● We require that
■ h(n) = 0 for every node n that satisfies the goal.
● Zero cost of getting to a goal node from a goal

node.

6 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Using only h(n)  
Greedy best-first search.

●  We use h(n) to rank the nodes on open.
■  Always expand node with lowest h-value.

●  We are greedily trying to achieve a low cost solution.

●  However, this method ignores the cost of getting to n, so it

can be lead astray exploring nodes that cost a lot to get to
but seem to be close to the goal:

S

n1

n2

n3

Goal

→ cost = 10

→ cost = 100
h(n3) = 50 h(n1) = 200

• 12-11-14

• 4

7 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

A* search
● Take into account the cost of getting to the node as

well as our estimate of the cost of getting to the
goal from n.

● Define
■  f(n) = g(n) + h(n)
●  g(n) is the cost of the path to node n
●  h(n) is the heuristic estimate of the cost of getting to a

goal node from n.

● Now we always expand the node with lowest f-
value on the frontier.

● The f-value is an estimate of the cost of getting to
the goal via this node (path).

8 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Conditions on h(n)
● We want to analyze the behavior of the

resultant search.
● Completeness, time and space, optimality?
● To obtain such results we must put some

further conditions on the heuristic function
h(n) and the search space.

• 12-11-14

• 5

9 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Conditions on h(n): Admissible
● c(n1→ n2) ≥ ε > 0. The cost of any

transition is greater than zero and can’t be
arbitrarily small.

● Let h*(n) be the cost of an optimal path
from n to a goal node (∞ if there is no path).
Then an admissible heuristic satisfies the
condition
■ h(n) ≤ h*(n)
● i.e. h always underestimates of the true cost.

● Hence
■ h(g) = 0
■ For any goal node “g”

10 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consistency/monotonicity.
●  Is a stronger condition than h(n) ≤ h*(n).
●  A monotone/consistent heuristic satisfies the

triangle inequality (for all nodes n1,n2):
 h(n1) ≤ c(n1 → n2) + h(n2)

● Note that there might be more than one
transition (action) between n1 and n2, the
inequality must hold for all of them.

● As we will see, monotonicity implies
admissibility.

• 12-11-14

• 6

11 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Intuition behind admissibility
● h(n) ≤ h*(n) means that the search

won’t miss any promising paths.
■ If it really is cheap to get to a goal via n

(i.e., both g(n) and h*(n) are low), then f(n)
= g(n) + h(n) will also be low, and the
search won’t ignore n in favor of more
expensive options.

■ This can be formalized to show that
admissibility implies optimality.

12 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Intuition behind monotonicity
● h(n1) ≤ c(n1→n2) + h(n2)
■ This says something similar, but in

addition one won’t be “locally” mislead.
See next example.

• 12-11-14

• 7

13 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Example: admissible but nonmonotonic
●  The following h is not consistent since h(n2)>c(n2→n4)+h(n4). But it is admissible.

S

n1

n3

n2

Goal

→ cost = 200
→ cost = 100

{S} → {n1 [200+50=250], n2 [200+100=300]}
 → {n2 [100+200=300], n3 [400+50=450]}
 → {n4 [200+50=250], n3 [400+50=450]}
 → {goal [300+0=300], n3 [400+50=450]}

We do find the optimal path as the heuristic is still
admissible. But we are mislead into ignoring n2 until
after we expand n1.

n4

h(n2) = 200

h(n4) = 50

h(n1) =50

h(n3) =50

14 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Monotonicity implies admissibility
Proof: by induction on number of steps to a goal node M.

§  Base case: If n is a goal node, then h(n) = 0 = h*(n), so h(n)
≤ h*(n).

§  Induction step: Assume that h(nk) ≤ h*(nk) if number of
steps to goal at nk is at most K. Show that the proposition
must hold for nodes nk+1where number of steps to goal is K
+1.

§  Let nk be the next node along a shortest path from nk+1
to goal

§  h(nk+1) ≤ c(nk à nk+1) + h(nk), since h is monotone
§  h(nk) ≤ h*(nk), by induction hypothesis
§  So h(nk+1) ≤ c(nk à nk+1) + h*(nk)
§  Thus h(nk+1) ≤ h*(nk+1)

§  If goal is unreachable from a node n, then h*(n) = ∞ and
result trivially holds.

• 12-11-14

• 8

15 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

1.  The f-values of nodes along a path must be
non-decreasing.

■  Let <Start→ n1→ n2…→ nk> be a path. We claim
that 
 f(ni) ≤ f(ni+1)

■  Proof:
 f(ni) = c(Start→ …→ ni) + h(ni)  

 ≤ c(Start→ …→ ni) + c(ni→ ni+1) + h(ni+1)  
 = c(Start→ …→ ni→ ni+1) + h(ni+1)  
 = g(ni+1) + h(ni+1)  
 = f(ni+1).

16 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

2.  If n2 is expanded after n1, then f(n1) ≤ f(n2)

Proof:
■  If n2 was on the frontier when n1 was expanded,
●  f(n1) ≤ f(n2)

 otherwise we would have expanded n2.

■  If n2 was added to the frontier after n1’s expansion, then let
n be an ancestor of n2 that was present when n1 was being
expanded (this could be n1 itself). We have f(n1) ≤ f(n) since
A* chose n1 while n was present in the frontier. Also, since n
is along the path to n2, by property (1) we have f(n)≤f(n2).
So, we have

●  f(n1) ≤ f(n2).

• 12-11-14

• 9

17 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

3.  When n is expanded every path with lower f-value
has already been expanded.

§  Assume by contradiction that there exists a path
<Start, n0, n1, ni-1, ni, ni+1, …, nk> with f(nk) < f(n) and ni is its
last expanded node.

§  Then ni+1 must be on the frontier while n is expanded:
 a) by (1) f(ni+1) ≤ f(nk) since they lie along the same path.
 b) since f(nk) < f(n) so we have f(ni+1) < f(n)
 c) by (2) f(n) ≤ f(ni+1) since n is expanded before ni+1.
 * Contradiction from b&c!

18 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

4.  With a monotone heuristic, the first time A*
expands a state, it has found the minimum cost
path to that state.

§  Proof:
 * Let PATH1 = <Start, n0, n1, …, nk, n> be the first path

to n found. We have f(path1) = c(PATH1) + h(n).
 * Let PATH2 = <Start, m0,m1, …, mj, n> be another path

to n found later. we have f(path2) = c(PATH2) + h(n).

 * By property (3), f(path1) ≤ f(path2)  

 * hence: c(PATH1) ≤ c(PATH2)

• 12-11-14

• 10

19 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity
●  Complete.

§  Yes, consider a least cost path to a goal node
●  SolutionPath = <Start→ n1→ …→ G> with cost
●  c(SolutionPath)
●  Since each action has a cost ≥ ε > 0, there are only a finite

number of nodes (paths) that have cost ≤ c(SolutionPath).
●  All of these paths must be explored before any path of

cost > c(SolutionPath).
●  So eventually SolutionPath, or some equal cost path to a

goal must be expanded.
●  Time and Space complexity.

§  When h(n) = 0, for all n
●  h is monotone.

§  A* becomes uniform-cost search!
§  It can be shown that when h(n) > 0 for some n, the number of

nodes expanded can be no larger than uniform-cost.
§  Hence the same bounds as uniform-cost apply. (These are

worst case bounds).

20 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Consequences of monotonicity

●  Optimality
§  Yes, by (4) the first path to a goal node must

be optimal.
●  Cycle Checking

§  If we do cycle checking (e.g. using GraphSearch
instead of TreeSearch) it is still optimal.
Because by property (4) we need keep only the
first path to a node, rejecting all subsequent
paths.

• 12-11-14

• 11

21 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Search generated by monotonicity

22 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Admissibility without monotonicity

●  When “h” is admissible but not monotonic.
■  Time and Space complexity remain the same. Completeness holds.
■  Optimality still holds (without cycle checking), but need a different

argument: don’t know that paths are explored in order of cost.

●  Proof of optimality (without cycle checking):
■  Assume the goal path <S,…,G> found by A* has cost bigger than the

optimal cost: i.e. C* < f(G).
■  There must exists a node n in the optimal path that is still in the frontier.
■  We have: f(n)=g(n)+h(n) ≤ g(n)+h*(n)=C* < f(G)
■  Therefore, f(n) must have been selected before G by A*. contradiction!

• 12-11-14

• 12

23 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Admissibility without monotonicity
●  No longer guaranteed we have found an optimal path to a

node the first time we visit it.
●  So, cycle checking might not preserve optimality.
■  To fix this: for previously visited nodes, must remember cost of

previous path. If new path is cheaper must explore again.
●  contours of monotonic heuristics don’t hold.

 Space problem with A* (like breath-first search):

IDA* is similar to Iterative Lengthening Search: It puts the newly
expanded nodes in the front of frontier! Two new parameters:

● curBound (any node with a bigger f value is discarded)
● smallestNotExplored (the smallest f value for discarded nodes
in a round) when frontier becomes empty, the search starts a new
round with this bound.

24 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Relaxed Problem

●  One useful technique is to consider an easier
problem, and let h(n) be the cost of reaching the
goal in the easier problem.

●  8-Puzzle moves.
■  Can move a tile from square A to B if

●  A is adjacent (left, right, above, below) to B
●  and B is blank

●  Can relax some of these conditions
1.  can move from A to B if A is adjacent to B (ignore

whether or not position is blank)
2.  can move from A to B if B is blank (ignore adjacency)
3.  can move from A to B (ignore both conditions).

• 12-11-14

• 13

25 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Relaxed Problem
● #3 leads to the misplaced tiles heuristic.

■ To solve the puzzle, we need to move each tile into its
final position.

■ Number of moves = number of misplaced tiles.
■ Clearly h(n) = number of misplaced tiles ≤ the h*(n) the

cost of an optimal sequence of moves from n.
● #1 leads to the manhattan distance heuristic.

■ To solve the puzzle we need to slide each tile into its
final position.

■ We can move vertically or horizontally.
■ Number of moves = sum over all of the tiles of the

number of vertical and horizontal slides we need to move
that tile into place.

■ Again h(n) = sum of the manhattan distances ≤ h*(n)
● in a real solution we need to move each tile at least

that that far and we can only move one tile at a time.

26 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Relaxed Problem

Depth IDS A*(Misplaced) A*(Manhattan)
10 47,127 93 39
14 3,473,941 539 113
24 --- 39,135 1,641

Let h1=Misplaced, h2=Manhattan
●  Does h2 always expand less nodes than h1?

■  Yes! Note that h2 dominates h1, i.e. for all n: h1(n)≤h2(n). From this
you can prove h2 is faster than h1.

■  Therefore, among several admissible heuristic the one with highest
value is the fastest.

●  The optimal cost to nodes in the relaxed problem is an admissible
heuristic for the original problem!
Proof: the optimal solution in the original problem is a (not necessarily

optimal) solution for relaxed problem, therefore it must be at least as
expensive as the optimal solution in the relaxed problem.

●  Comparison of IDS and A* (average total nodes expanded):

• 12-11-14

• 14

27 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Pattern databases.

• By searching backwards from these goal states, we can compute the
distance of any configuration of these tiles to their goal locations. We
are ignoring the identity of the other tiles.

• For any state n, the number of moves required to get these tiles into
place form a lower bound on the cost of getting to the goal from n.

●  Admissible heuristics can also be derived from solution to
subproblems: Each state is mapped into a partial specification,
e.g. in 15-puzzle only position of specific tiles matters.

●  Here are goals for two sub-
problems (called Corner and
Fringe) of 15puzzle.

28 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Building Heuristics: Pattern databases.
● These configurations are stored in a database,

along with the number of moves required to move
the tiles into place.

● The maximum number of moves taken over all of
the databases can be used as a heuristic.

● On the 15-puzzle
■ The fringe data base yields about a 345 fold decrease in

the search tree size.
■ The corner data base yields about 437 fold decrease.

● Some times disjoint patterns can be found, then
the number of moves can be added rather than
taking the max.

• 12-11-14

• 15

29 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Local Search
● So far, we keep the paths to the goal.
● For some problems (like 8-queens) we don’t care

about the path, we only care about the solution. Many
real problem like Scheduling, IC design, and network
optimizations are of this form.

● Local search algorithms operate using a single Current
state and generally move to neighbors of that state.

● There is an objective function that tells the value of
each state. The goal has the highest value (global
maximum).

● Algorithms like Hill Climbing try to move to a neighbor
with the highest value.

● Danger of being stuck in a local maximum. So some
randomness can be added to “shake” out of local
maxima.

30 CSE 3401 Fall 2012 Fahiem Bacchus & Yves Lesperance

Local Search
● Simulated Annealing: Instead of the best move, take a

random move and if it improves the situation then
always accept, otherwise accept with a probability <1.
Progressively decrease the probability of accepting
such moves.

● Local Beam Search is like a parallel version of Hill
Climbing. Keeps K states and at each iteration chooses
the K best neighbors (so information is shared between
the parallel threads). Also stochastic version.

● Genetic Algorithms are similar to Stochastic Local Beam
Search, but mainly use crossover operation to generate
new nodes. This swaps feature values between 2
parent nodes to obtain children. This gives a
hierarchical flavor to the search: chunks of solutions
get combined. Choice of state representation becomes
very important. Has had wide impact, but not clear if/
when better than other approaches.

