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CSE 3401: Intro to AI & LP 
 Informed Search 

● Required Readings: Chapter 3, Sections 5 and 
6, and Chapter 4, Section 1. 
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Heuristic Search. 

● In uninformed search, we don’t try to 
evaluate which of the nodes on the frontier 
are most promising. We never “look-ahead” 
to the goal. 
■ E.g., in uniform cost search we always expand the 

cheapest path. We don’t consider the cost of 
getting to the goal. 

● Often we have some other knowledge about 
the merit of nodes, e.g., going the wrong 
direction in Romania.  
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Heuristic Search. 
● Merit of a frontier node: different 

notions of merit. 
■ If we are concerned about the cost of the 

solution, we might want a notion of merit 
of how costly it is to get to the goal from 
that search node. 

■ If we are concerned about minimizing 
computation in search we might want a 
notion of ease in finding the goal from 
that search node.  

■ We will focus on the “cost of solution” 
notion of merit. 
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Heuristic Search. 

● The idea is to develop a domain specific 
heuristic function h(n). 

● h(n) guesses the cost of getting to the goal 
from node n.  

● There are different ways of guessing this cost 
in different domains. I.e., heuristics are domain 
specific.  
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Heuristic Search. 

● Convention: If h(n1) < h(n2) this means that we 
guess that it is cheaper to get to the goal from 
n1 than from n2. 

● We require that 
■ h(n) = 0 for every node n that satisfies the goal. 
● Zero cost of getting to a goal node from a goal 

node. 
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Using only h(n)  
Greedy best-first search. 

●  We use h(n) to rank the nodes on open. 
■  Always expand node with lowest h-value. 

●  We are greedily trying to achieve a low cost solution. 
 
●  However, this method ignores the cost of getting to n, so it 

can be lead astray exploring nodes that cost a lot to get to 
but seem to be close to the goal: 

S 

n1 

n2 

n3 

Goal 

→ cost = 10 

→ cost = 100 
h(n3) = 50 h(n1) = 200 
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A* search 
● Take into account the cost of getting to the node as 

well as our estimate of the cost of getting to the 
goal from n. 

● Define 
■  f(n) = g(n) + h(n) 
●  g(n) is the cost of the path to node n 
●   h(n) is the heuristic estimate of the cost of getting to a 

goal node from n.  

● Now we always expand the node with lowest f-
value on the frontier. 

● The f-value is an estimate of the cost of getting to 
the goal via this node (path). 
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Conditions on h(n) 
● We want to analyze the behavior of the 

resultant search. 
● Completeness, time and space, optimality?  
● To obtain such results we must put some 

further conditions on the heuristic function 
h(n) and the search space. 
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Conditions on h(n): Admissible 
● c(n1→ n2) ≥ ε > 0. The cost of any 

transition is greater than zero and can’t be 
arbitrarily small. 

● Let h*(n) be the cost of an optimal path 
from n to a goal node (∞ if there is no path). 
Then an admissible heuristic satisfies the 
condition 
■ h(n) ≤  h*(n) 
● i.e. h always underestimates of the true cost. 

● Hence 
■ h(g) = 0 
■ For any goal node “g” 
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Consistency/monotonicity. 
●  Is a stronger condition than h(n) ≤  h*(n).  
●  A monotone/consistent heuristic satisfies the 

triangle inequality (for all nodes n1,n2):  
   h(n1) ≤ c(n1 → n2) + h(n2) 

● Note that there might be more than one 
transition (action) between n1 and n2, the 
inequality must hold for all of them. 

● As we will see, monotonicity implies 
admissibility. 
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Intuition behind admissibility 
● h(n) ≤  h*(n) means that the search 

won’t miss any promising paths. 
■ If it really is cheap to get to a goal via n 

(i.e., both g(n) and h*(n) are low), then f(n) 
= g(n) + h(n) will also be low, and the 
search won’t ignore n in favor of more 
expensive options.  

■ This can be formalized to show that 
admissibility implies optimality. 
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Intuition behind monotonicity 
● h(n1) ≤ c(n1→n2) + h(n2) 
■ This says something similar, but in 

addition one won’t be “locally” mislead. 
See next example.  
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Example: admissible but nonmonotonic 
●  The following h is not consistent since h(n2)>c(n2→n4)+h(n4). But it is admissible. 

S 

n1 

n3 

n2 

Goal 

→ cost = 200 
→ cost = 100 

{S} →  {n1 [200+50=250], n2 [200+100=300]}  
      → {n2 [100+200=300], n3 [400+50=450]}  
      → {n4 [200+50=250], n3 [400+50=450]}  
      → {goal [300+0=300], n3 [400+50=450]}  

We do find the optimal path as the heuristic is still 
admissible. But we are mislead into ignoring n2 until 
after we expand n1.  

n4 

h(n2) = 200 

h(n4) = 50 

h(n1) =50 

h(n3) =50 
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Monotonicity implies admissibility 
Proof: by induction on number of steps to a goal node M. 

§  Base case: If n is a goal node, then h(n) = 0 = h*(n), so h(n) 
≤ h*(n). 

§  Induction step: Assume that h(nk) ≤ h*(nk) if number of 
steps to goal at nk is at most K. Show that the proposition 
must hold for nodes nk+1where number of steps to goal is K
+1.  

§  Let nk be the next node along a shortest path from nk+1 
to goal 

§  h(nk+1) ≤ c(nk à nk+1) + h(nk), since h is monotone 
§  h(nk) ≤ h*(nk), by induction hypothesis 
§  So  h(nk+1) ≤ c(nk à nk+1) + h*(nk) 
§  Thus h(nk+1) ≤ h*(nk+1) 

§  If goal is unreachable from a node n, then h*(n) = ∞ and 
result trivially holds. 
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Consequences of monotonicity 

1.  The f-values of nodes along a path must be 
non-decreasing. 

■  Let <Start→ n1→ n2…→ nk> be a path. We claim 
that 
                   f(ni) ≤ f(ni+1) 

■  Proof: 
      f(ni) = c(Start→ …→ ni) + h(ni)  

        ≤ c(Start→ …→ ni)  + c(ni→ ni+1) + h(ni+1)  
        = c(Start→ …→ ni→ ni+1) + h(ni+1)  
        = g(ni+1) + h(ni+1)  
        = f(ni+1). 
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Consequences of monotonicity 

2.  If n2 is expanded after n1, then f(n1) ≤  f(n2) 
 
Proof: 
■  If n2 was on the frontier when n1 was expanded,  
●  f(n1) ≤ f(n2) 

      otherwise we would have expanded n2. 

■  If n2 was added to the frontier after n1’s expansion, then let 
n be an ancestor of n2 that was present when n1 was being 
expanded (this could be n1 itself). We have f(n1) ≤ f(n) since 
A* chose n1 while n was present in the frontier. Also,  since n 
is along the path to n2, by property  (1) we have f(n)≤f(n2). 
So, we have 

●  f(n1) ≤ f(n2). 
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Consequences of monotonicity 

3.  When n is expanded every path with lower f-value 
has already been expanded. 

§  Assume by contradiction that there exists a path           
<Start, n0, n1, ni-1, ni, ni+1, …, nk> with f(nk) < f(n) and ni is its 
last expanded node. 

§  Then ni+1 must be on the frontier while n is expanded: 
    a) by (1) f(ni+1)  ≤ f(nk) since they lie along the same path. 
    b) since f(nk) < f(n) so we have f(ni+1) < f(n) 
    c) by (2) f(n)  ≤ f(ni+1) since n is expanded before ni+1.  
    * Contradiction from b&c! 
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Consequences of monotonicity 

4.  With a monotone heuristic, the first time A* 
expands a state, it has found the minimum cost 
path to that state.  

§  Proof: 
     * Let PATH1 = <Start, n0, n1, …, nk, n> be the first path 

to n found. We have f(path1) = c(PATH1) + h(n). 
     * Let PATH2 = <Start, m0,m1, …, mj, n> be another path 

to n found later. we have f(path2) = c(PATH2) + h(n). 
 
     * By property (3), f(path1) ≤ f(path2)  

 
     * hence: c(PATH1) ≤ c(PATH2) 
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Consequences of monotonicity 
●  Complete. 

§  Yes, consider a least cost path to a goal node 
●  SolutionPath = <Start→ n1→ …→ G> with cost 
●  c(SolutionPath)  
●  Since each action has a cost ≥ ε > 0, there are only a finite 

number of nodes (paths) that have cost ≤ c(SolutionPath). 
●  All of these paths must be explored before any path of 

cost > c(SolutionPath). 
●  So eventually SolutionPath, or some equal cost path to a 

goal must be expanded. 
●  Time and Space complexity. 

§  When h(n) = 0, for all n 
●  h is monotone. 

§  A* becomes uniform-cost search! 
§  It can be shown that when h(n) > 0 for some n, the number of 

nodes expanded can be no larger than uniform-cost. 
§  Hence the same bounds as uniform-cost apply. (These are 

worst case bounds). 
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Consequences of monotonicity 

●  Optimality 
§  Yes, by (4) the first path to a goal node must 

be optimal.  
●  Cycle Checking 

§  If we do cycle checking (e.g. using GraphSearch 
instead of TreeSearch) it is still optimal. 
Because by property (4) we need keep only the 
first path to a node, rejecting all subsequent 
paths. 
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Search generated by monotonicity 
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Admissibility without monotonicity 

●  When “h” is admissible but not monotonic. 
■  Time and Space complexity remain the same.  Completeness holds. 
■  Optimality still holds (without cycle checking), but need a different 

argument: don’t know that paths are explored in order of cost. 
 

●  Proof of optimality (without cycle checking):  
■  Assume the goal path <S,…,G> found by A* has cost bigger than the 

optimal cost: i.e. C* < f(G).  
■  There must exists a node n in the optimal path that is still in the frontier.  
■  We have: f(n)=g(n)+h(n) ≤ g(n)+h*(n)=C*  < f(G) 
■  Therefore, f(n) must have been selected before G by A*. contradiction! 
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Admissibility without monotonicity 
●  No longer guaranteed we have found an optimal path to a 

node the first time we visit it.   
●  So, cycle checking might not preserve optimality. 
■  To fix this: for previously visited nodes, must remember cost of 

previous path. If new path is cheaper must explore again. 
●  contours of monotonic heuristics don’t hold. 
 

 Space problem with A* (like breath-first search): 
 
IDA* is similar to Iterative Lengthening Search: It puts the newly 
expanded nodes in the front of frontier! Two new parameters: 

● curBound  (any node with a bigger f value is discarded) 
● smallestNotExplored (the smallest f value for discarded nodes 
in a round)   when frontier becomes empty, the search starts a new 
round with this bound. 
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Building Heuristics: Relaxed Problem 

●  One useful technique is to consider an easier 
problem, and let h(n) be the cost of reaching the 
goal in the easier problem.  

●  8-Puzzle moves. 
■  Can move a tile from square A to B if 

●  A is adjacent (left, right, above, below) to B 
●  and B is blank 

●  Can relax some of these conditions 
1.  can move from A to B if A is adjacent to B (ignore 

whether or not position is blank) 
2.  can move from A to B if B is blank (ignore adjacency) 
3.  can move from A to B (ignore both conditions).  
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Building Heuristics: Relaxed Problem 
● #3 leads to the misplaced tiles heuristic. 

■ To solve the puzzle, we need to move each tile into its 
final position. 

■ Number of moves = number of misplaced tiles.  
■ Clearly h(n) = number of misplaced tiles ≤ the h*(n) the 

cost of an optimal sequence of moves from n. 
● #1 leads to the manhattan distance heuristic.  

■ To solve the puzzle we need to slide each tile into its 
final position. 

■ We can move vertically or horizontally.  
■ Number of moves = sum over all of the tiles of the 

number of vertical and horizontal slides we need to move 
that tile into place.  

■ Again h(n) = sum of the manhattan distances ≤ h*(n) 
● in a real solution we need to move each tile at least 

that that far and we can only move one tile at a time. 
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Building Heuristics: Relaxed Problem 

Depth IDS A*(Misplaced)  A*(Manhattan)  
10 47,127 93 39 
14 3,473,941 539 113 
24 --- 39,135 1,641 

Let h1=Misplaced,   h2=Manhattan  
●  Does h2 always expand less nodes than h1? 

■  Yes! Note that h2 dominates h1, i.e. for all n: h1(n)≤h2(n). From this 
you can prove h2 is faster than h1. 

■  Therefore, among several admissible heuristic the one with highest 
value is the fastest. 

●   The optimal cost to nodes in the relaxed problem is an admissible 
heuristic for the original problem! 
Proof: the optimal solution in the original problem is a (not necessarily 

optimal) solution for relaxed problem, therefore it must be at least as 
expensive as the optimal solution in the relaxed problem. 

●  Comparison of IDS and A* (average total nodes expanded ): 
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Building Heuristics: Pattern databases. 

• By searching backwards from these goal states, we can compute the 
distance of any configuration of these tiles to their goal locations. We 
are ignoring the identity of the other tiles.  

• For any state n, the number of moves required to get these tiles into 
place form a lower bound on the cost of getting to the goal from n. 

●  Admissible heuristics can also be derived from solution to 
subproblems: Each state is mapped into a partial specification, 
e.g. in 15-puzzle only position of specific tiles matters. 

●  Here are goals for two sub-
problems (called Corner and 
Fringe) of 15puzzle. 
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Building Heuristics: Pattern databases. 
● These configurations are stored in a database, 

along with the number of moves required to move 
the tiles into place. 

● The maximum number of moves taken over all of 
the databases can be used as a heuristic.  

● On the 15-puzzle 
■ The fringe data base yields about a 345 fold decrease in 

the search tree size. 
■ The corner data base yields about 437 fold decrease. 

● Some times disjoint patterns can be found, then 
the number of moves can be added rather than 
taking the max. 
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Local Search 
● So far, we keep the paths to the goal. 
● For some problems (like 8-queens) we don’t care 

about the path, we only care about the solution. Many 
real problem like Scheduling, IC design, and network 
optimizations are of this form. 

● Local search algorithms operate using a single Current 
state and generally move to neighbors of that state. 

● There is an objective function that tells the value of 
each state. The goal has the highest value (global 
maximum). 

● Algorithms like Hill Climbing try to move to a neighbor 
with the highest value. 

● Danger of being stuck in a local maximum. So some 
randomness can be added to “shake” out of local 
maxima.  
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Local Search 
● Simulated Annealing: Instead of the best move, take a 

random move and if it improves the situation then 
always accept, otherwise accept with a probability <1. 
Progressively decrease the probability of accepting 
such moves. 

● Local Beam Search is like a parallel version of Hill 
Climbing.  Keeps K states and at each iteration chooses 
the K best neighbors (so information is shared between 
the parallel threads).  Also stochastic version. 

● Genetic Algorithms are similar to Stochastic Local Beam 
Search, but mainly use crossover operation to generate 
new nodes.  This swaps feature values between 2 
parent nodes to obtain children.  This gives a 
hierarchical flavor to the search: chunks of solutions 
get combined.  Choice of state representation becomes 
very important.  Has had wide impact, but not clear if/
when better than other approaches. 


