
1 CSE 3401 F 2012

recursion, divide & conquer,
text processing

Yves Lespérance
Adapted from Peter Roosen-Runge

2 CSE 3401 F 2012

finite state automata

  a finite state automaton (Σ, S, s0, δ, F)
is a representation of a machine as a
-  finite set of states S
-  a state transition relation/table δ
- mapping current state & input symbol

from alphabet Σ to the next state
-  an initial state s0

-  a set of final states F

3 CSE 3401 F 2012

accepting an input

  a fsa accepts an input sequence from
an alphabet Σ if, starting in the
designated starting state, scanning the
input sequence leaves the automaton in
a final state

  sometimes called recognition
  e.g. automaton that accepts strings of

x’s and y’s with an even number of x’s
and an odd number of y’s

4 CSE 3401 F 2012

example

  automaton that accepts strings of x’s
and y’s with an even number of x’s and
an odd number of y’s

  idea: keep track of whether we have
seen even number of x’s and y’s

  S = {ee, eo, oe, oo}
  s0 = ee
  δ = {(ee, x, oe), (ee, y, eo),…}
  F = {eo}

5 CSE 3401 F 2012

implementation

  fsa(Input) succeeds if and only if the fsa
accepts or recognizes the sequence (list)
Input.

  initial state represented by a predicate
-  initial_state(State)

  final states represented by a predicate
-  final_states(List)

  state transition table represented by a
predicate
-  next_state(State, InputSymbol, NextState)

  note: next_state need not be a function

6 CSE 3401 F 2012

implementing fsa/1

  fsa(Input) :- initial_state(S), scan(Input, S).
% scan is a Boolean predicate

  scan([], State) :- final_states(F),
 member(State, F).

  scan([Symbol | Seq], State) :- next_state
(State, Symbol, Next), scan(Seq, Next).

7 CSE 3401 F 2012

result propagation
  scan uses pumping/result propagation
  carries around current state and remainder of

input sequence
  if FSA is deterministic, when end of input is

reached, can make an accept/reject decision
immediately; tail recursion optimization can be
applied

  if FSA is nondeterministic, may have to
backtrack; must keep track of remaining
alternatives on execution stack

8 CSE 3401 F 2012

non-determinism

  a non-deterministic fsa accepts an input
sequence if there exists at least one sequence
which leaves the automaton in one of its final
states

  ?- fsa(Input).
  scan searches through all possible choices for

Symbol at each state;
  fails only if no sequence leads to a final state

9 CSE 3401 F 2012

representing tables

  can use binary connector, e. g., A-B-C
instead of next_state(A,B,C)
-  reduces typing;
-  can make it easier to check for errors

  ee-x-oe. ee-y-eo.
  oe-x-ee. oe-y-oo.
  etc.

10 CSE 3401 F 2012

revised version

 scan([], State) :- final_states(F),
 member(State, F).
 scan([Symbol | Seq], State) :-
 State-Symbol-Next,

 scan(Seq, Next).

11 CSE 3401 F 2012

divide and conquer

  algorithm design technique
  key idea: reduce problem to two sub-

problems of about equal size
  e.g. mergesort
  tournament example

minimize number of matches required to
fairly determine
- winner
- runner-up

12 CSE 3401 F 2012

tournament definitions

  runner-up is the winner of a sub-
tournament among losers to winner
by definition, winner has not lost any

tournament match
losers to winner are all themselves winners

except for the loser of the winner's 1st
game

so we don't need a sub-tournament among all
other players, just those who lost to winner

13 CSE 3401 F 2012

minimum matches

  minimum matches required to
determine winner = n - 1

  why?
-  every one except the winner is eliminated

by a loss to someone
-  every loss requires a match
-  n-1 losers implies n-1 matches

  minimum # of matches for the runner-
up?

14 CSE 3401 F 2012

winner's matches

  we only need matches between those
who lost to winner

  how many?
  winner need play no more than
 ceiling(log2 n) matches

proof based on idea that number of matches
= length of path from root to leaf of a
binary tree containing n nodes

shortest path is in a balanced tree

15 CSE 3401 F 2012

total # of matches

  total matches =
matches to determine winner = n - 1
+ matches to determine runner-up =
 n - 1 + log2 n - 1
 n + log2 n - 2

16 CSE 3401 F 2012

implementing a round

round([X],X).
round([C1, C2], Winner) :-
 match(C1, C2, Winner).
round(Field, Winner) :-
 split(Field, Group1, Group2),
 round(Group1, Winner1),
 round(Group2, Winner2),
 match(Winner1, Winner2, Winner).

  are rules ordered as expected?

yes -- from specific to general

17 CSE 3401 F 2012

fixing the match

  can use binary connector
Competitor-LoserList

match(C1-L1, C2-_, C1-[C2-[] | L1]) :-
 order(C1, C2).
match(C1-_, C2-L2, C2-[C1-[] | L2]) :-
 not order(C1, C2).

18 CSE 3401 F 2012

defining a tournament

tournament(Field, Winner, RunnerUp) :-
 round(Field, Winner-Runners),
 round(Runners, RunnerUp-_).

19 CSE 3401 F 2012

parsing text and definite clause
grammars

20 CSE 3401 F 2012

Prolog representation for
parsing text

  want to parse natural language text
  one way to represent grammar rules:

 sentence --> noun_phrase, verb_phrase.
 stands for
 sentence(X):- append(Y,Z,X),

 noun_phrase(Y), verb_phrase(Z).
 determiner --> [the].
 stands for
 determiner([the]).

  must guess how to split the sequence,
inefficient; let constituent parsers decide

21 CSE 3401 F 2012

a better representation

  sentence(S0,S):-
 noun_phrase(S0,S1), verb_phrase(S1,S).

  determiner([the | S],S).
  1st argument is sequence to parse and 2nd

argument is what is left after removing it
  Rule means “there is a sentence between S0

and S if …”
  ?-sentence([the, boy, drinks, the, juice], []).

succeeds
  ?-noun_phrase([the, boy, drinks, the, juice],

R). succeeds with R = [drinks, the, juice]

22 CSE 3401 F 2012

definite clause grammar
(DCG) notation

 sentence --> noun_phrase,verb_phrase.
 stands for
 sentence(S0,S):- noun_phrase(S0,S1),

 verb_phrase(S1,S).
 determiner --> [the].
 stands for
 determiner([the|S],S).

23 CSE 3401 F 2012

enforcing constraints
between constituents

  suppose we want to enforce number
agreement

  can add extra argument to pass this info
between constituents

  noun_phrase(N) --> determiner(N), noun(N).
  noun(singular) --> [boy].
  noun(plural) --> [boys].
  determiner(singular) --> [a].
  ?- noun_phrase(N,[a, boys],[]). fails
  ?- noun_phrase(N,[a, boy],[]). succeeds with

N = singular

24 CSE 3401 F 2012

returning a parse tree or
interpretation

  Extra arguments can also be used to return a
parse tree or interpretation

  noun_phrase(np(D,N)) --> determiner(D),
noun(N).

  determiner(determiner(a)) --> [a].
  noun(noun(boy)) --> [boy].
  ?- noun_phrase(PT,[a, boy],[]). succeeds with

PT = np(determiner(a),noun(boy))

25 CSE 3401 F 2012

adding extra tests

  can invoke predicates for tests or
interpretation by putting between {}

  don’t match input tokens
  e.g. accessing a lexicon
  noun(N,noun(W)) --> [W],

 {is_noun
(W,N)}.

  is_noun(boy,singular).

26 CSE 3401 F 2012

grammar writing tips

  good grammars:
§  are very modular
§  achieve broad coverage with small number

of rules
u collecting a corpus of examples can help

design and test grammar
u  identify patterns built out of certain

types of constituents

27 CSE 3401 F 2012

Prolog & text processing

  Prolog good for analyzing and generating text
  parsing involves pattern-matching
  text & parse-trees are recursive data

structures
  text patterns involve many alternatives,

backtracking is helpful
  steadfast predicates can analyze and generate

28 CSE 3401 F 2012

modeling and analyzing
concurrent processes

29 CSE 3401 F 2012

process algebra

  concurrent programs are hard to
implement correctly

  many subtle non-local interactions
  deadlock occurs when some processes

are blocked forever waiting for each
other

  process algebra are used to model and
analyze concurrent processes

30 CSE 3401 F 2012

 deadlocking system example

defproc(deadlockingSystem, user1 |
user2 $ lock1s0 | lock2s0 |
iterDoSomething).  
"

defproc(user1, acquireLock1 >
acquireLock2 > doSomething >
releaseLock2 > releaseLock1).  
"

defproc(user2, acquireLock2 >
acquireLock1 > doSomething >
releaseLock1 > releaseLock2).  
"

31 CSE 3401 F 2012

deadlocking system example

defproc(lock1s0, "
"acquireLock1 > lock1s1 ? 0).  
"

defproc(lock1s1, releaseLock1 > lock1s0)."
"
defproc(lock2s0, "
"acquireLock2 > lock2s1 ? 0).  
"

defproc(lock2s1,releaseLock2 > lock2s0).  
"

defproc(iterDoSomething, "
"doSomething > iterDoSomething ? 0).  
"

[Show runs of oneUserSystem and

deadlockingSystem.]

32 CSE 3401 F 2012

transition relation

  P - A - RP means that P can do a single step by
doing action A and leaving program RP remaining

  empty program: 0 - A - P is always false."
  primitive action: A - A - 0 holds, i. e., an action

that has completed leaves nothing more to be done."
  sequence: (A > P) - A - P"
  nondeterministic choice: (P1 ? P2) - A - P holds

if either P1 - A - P holds or P2 - A - P holds.

33 CSE 3401 F 2012

transition relation

  interleaved concurrency: (P1 | P2) - A - P
holds if either P1 - A - P11 holds and P = (P11 |
P2), or P2 - A - P21 holds and P = (P1 | P21)

  synchronized concurrency: (P1 $ P2) - A - P
holds if both P1 - A - P11 holds and P2 - A - P21
holds and P = (P11 $ P21)"

  recursive procedures: ProcName - A - P holds if
ProcName is the name of a procedure that has body
B and B - A - P holds.

34 CSE 3401 F 2012

can check properties by
searching process graph

  a process has an infinite execution if there is a
cycle in its configuration graph

  e.g. defproc(aloop, a > aloop)
  has_infinite_run(P):- P - _ - PN,

has_infinite_run(PN,[P]).
  has_infinite_run(P,V):- member(P,V), !.
  has_infinite_run(P,V):- P - _ - PN,

has_infinite_run(PN,[P|V]).

35 CSE 3401 F 2012

checking properties by
searching process graph

  cannot_occur(P,A) holds if no execution
of P where action A occurs

  search graph for a transition P1 - A - P2
  useful built-in predicate: forall(+Cond,

+Action) holds iff for all bindings of
Cond, Action succeeds

  e.g. forall(member(C,[8,3,9]), C >= 3)
succeeds

36 CSE 3401 F 2012

cannot_occur examples

  ?- cannot_occur(a > b | a > c, b).
succeeds or fails?

  ?- cannot_occur((a > b | a > c)$(a >
c), b). succeeds or fails?

37 CSE 3401 F 2012

whenever_eventually

  whenever_eventually(P,A1,A2) holds if
in all executions of P whenever action
A1 occurs, action A occurs afterwards

  ?- whenever_eventually(a > b > a , a,
b). succeeds or fails?

  ?- whenever_eventually(a > b | a > c,
a, b). succeeds or fails?

38 CSE 3401 F 2012

whenever_eventually
examples

  ?- whenever_eventually(loop1 , a, b).
succeeds or fails, where
 defproc(loop1, a > b > loop1)?

  ?- whenever_eventually(loop1 , b, a).
succeeds or fails, where
 defproc(loop1, a > b > loop1)?

  ?- whenever_eventually(loop2 , b, a).
succeeds or fails, where
 defproc(loop2, a > b > (loop2 ? 0)).

39 CSE 3401 F 2012

deadlock_free

  deadlock_free(P) holds if process P
cannot reach a deadlocked
configuration, i.e. one where the
remaining process is not final, but no
transition is possible

  ?- deadlock_free(a $ a). succeeds or
fails?

  ?- deadlock_free(a > a $ a). succeeds
or fails?

40 CSE 3401 F 2012

deadlock_free examples

 ?- deadlock_free(loop3 $ a). where
defproc(loop3, (a > loop3) ? 0))

succeeds or fails?

