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finite state automata 

  a finite state automaton (Σ, S, s0, δ, F) 
is a representation of a machine as a  
-  finite set of states S 
-  a state transition relation/table δ 
- mapping current state & input symbol 

from alphabet Σ to the next state 
-  an initial state s0 

-  a set of final states F 
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accepting an input 

  a fsa accepts an input sequence from 
an alphabet Σ if, starting in the 
designated starting state, scanning the 
input sequence leaves the automaton in 
a final state 

  sometimes called recognition 
  e.g. automaton that accepts strings of 

x’s and y’s with an even number of x’s 
and an odd number of y’s 
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example 

  automaton that accepts strings of x’s 
and y’s with an even number of x’s and 
an odd number of y’s 

  idea: keep track of whether we have 
seen even number of x’s and y’s  

  S = {ee, eo, oe, oo} 
  s0 = ee 
  δ = {(ee, x, oe), (ee, y, eo),…} 
  F = {eo} 
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implementation 

  fsa(Input) succeeds if and only if the fsa 
accepts or recognizes the sequence (list) 
Input.  

  initial state represented by a predicate 
-  initial_state(State) 

  final states represented by a predicate 
-  final_states(List)  

  state transition table represented by a 
predicate 
-  next_state(State, InputSymbol, NextState) 

  note: next_state need not be a function 
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implementing fsa/1 

  fsa(Input) :- initial_state(S), scan(Input, S).  
% scan is a Boolean predicate 

  scan([], State) :- final_states(F),     
        member(State, F). 

  scan([Symbol | Seq], State) :-     next_state
(State, Symbol, Next),    scan(Seq, Next). 
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result propagation 
  scan uses pumping/result propagation 
  carries around current state and remainder of 

input sequence 
  if FSA is deterministic, when end of input is 

reached, can make an accept/reject decision 
immediately; tail recursion optimization can be 
applied 

  if FSA is nondeterministic, may have to 
backtrack; must keep track of remaining 
alternatives on execution stack 
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non-determinism 

  a non-deterministic fsa accepts an input 
sequence if there exists at least one sequence 
which leaves the automaton in one of its final 
states 

  ?- fsa(Input).  
  scan searches through all possible choices for 

Symbol at each state;  
  fails only if no sequence leads to a final state  
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representing tables 

  can use binary connector, e. g., A-B-C 
instead of next_state(A,B,C)  
-  reduces typing;  
-  can make it easier to check for errors  

   ee-x-oe. ee-y-eo. 
   oe-x-ee. oe-y-oo.  
   etc.  
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revised version 

   scan([], State) :- final_states(F),     
        member(State, F). 
   scan([Symbol | Seq], State) :- 
      State-Symbol-Next,       

        scan(Seq, Next). 
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divide and conquer 

  algorithm design technique 
  key idea: reduce problem to two sub-

problems of about equal size 
  e.g. mergesort 
  tournament example 

minimize number of matches required to 
fairly determine 
- winner 
- runner-up 
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tournament definitions 

  runner-up is the winner of a sub-
tournament among losers to winner 
by definition, winner has not lost any 

tournament match 
losers to winner are all themselves winners 

except for the loser of the winner's 1st 
game 

so we don't need a sub-tournament among all 
other players, just those who lost to winner  
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minimum matches 

  minimum matches required to 
determine winner = n - 1 

  why? 
-  every one except the winner is eliminated 

by a loss to someone 
-  every loss requires a match 
-  n-1 losers implies n-1 matches 

  minimum # of matches for the runner-
up? 
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winner's matches 

  we only need matches between those 
who lost to winner 

  how many? 
  winner need play no more than 
      ceiling(log2 n) matches 

proof based on idea that number of matches 
= length of path from root to leaf of a 
binary tree containing n nodes 

shortest path is in a balanced tree   
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total # of matches 

  total matches = 
matches to determine winner = n - 1  
+ matches to determine runner-up =  
      n - 1 + log2 n - 1 
      n + log2 n - 2 
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implementing a round 

round([X],X). 
round([C1, C2], Winner) :-  
            match(C1, C2, Winner). 
round(Field, Winner) :- 
     split(Field, Group1, Group2), 
     round(Group1, Winner1), 
     round(Group2, Winner2), 
     match(Winner1, Winner2, Winner). 
 
  are rules ordered as expected? 

yes -- from specific to general 
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fixing the match 

  can use binary connector 
Competitor-LoserList 
 

match(C1-L1, C2-_,  C1-[C2-[] | L1]) :-      
     order(C1, C2). 
match(C1-_, C2-L2,  C2-[C1-[] | L2]) :-      
     not order(C1, C2). 
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defining a tournament 

tournament(Field, Winner, RunnerUp) :- 
   round(Field, Winner-Runners), 
   round(Runners, RunnerUp-_). 
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parsing text and definite clause 
grammars 

20 CSE 3401 F 2012 

Prolog representation for 
parsing text 

  want to parse natural language text 
  one way to represent grammar rules: 

 sentence --> noun_phrase, verb_phrase. 
  stands for 
 sentence(X):- append(Y,Z,X),       

 noun_phrase(Y), verb_phrase(Z). 
 determiner --> [the]. 
  stands for 
 determiner([the]). 

  must guess how to split the sequence, 
inefficient; let constituent parsers decide 
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a better representation 

  sentence(S0,S):-          
 noun_phrase(S0,S1), verb_phrase(S1,S). 

  determiner([the | S],S). 
  1st argument is sequence to parse and 2nd 

argument is what is left after removing it 
  Rule means “there is a sentence between S0 

and S if …” 
  ?-sentence([the, boy, drinks, the, juice], []). 

succeeds 
  ?-noun_phrase([the, boy, drinks, the, juice], 

R). succeeds with R = [drinks, the, juice] 
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definite clause grammar 
(DCG) notation 

 sentence --> noun_phrase,verb_phrase. 
  stands for 
 sentence(S0,S):- noun_phrase(S0,S1), 

 verb_phrase(S1,S). 
 determiner --> [the]. 
  stands for 
 determiner([the|S],S). 
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enforcing constraints 
between constituents 

  suppose we want to enforce number 
agreement 

  can add extra argument to pass this info 
between constituents 

  noun_phrase(N) --> determiner(N), noun(N). 
  noun(singular) --> [boy]. 
  noun(plural) --> [boys]. 
  determiner(singular) --> [a]. 
  ?- noun_phrase(N,[a, boys],[]). fails 
  ?- noun_phrase(N,[a, boy],[]). succeeds with 

N = singular 
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returning a parse tree or 
interpretation 

  Extra arguments can also be used to return a 
parse tree or interpretation 

  noun_phrase(np(D,N)) --> determiner(D), 
noun(N). 

  determiner(determiner(a)) --> [a]. 
  noun(noun(boy)) --> [boy]. 
  ?- noun_phrase(PT,[a, boy],[]). succeeds with 

PT = np(determiner(a),noun(boy)) 
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adding extra tests 

  can invoke predicates for tests or 
interpretation by putting between {} 

  don’t match input tokens 
  e.g. accessing a lexicon 
  noun(N,noun(W)) --> [W], 

      {is_noun
(W,N)}. 

  is_noun(boy,singular). 
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grammar writing tips 

  good grammars: 
§  are very modular 
§  achieve broad coverage with small number 

of rules 
u collecting a corpus of examples can help 

design and test grammar 
u  identify patterns built out of certain 

types of constituents 
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Prolog & text processing 

  Prolog good for analyzing and generating text 
  parsing involves pattern-matching 
  text & parse-trees are recursive data 

structures 
  text patterns involve many alternatives, 

backtracking is helpful 
  steadfast predicates can analyze and generate 
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modeling and analyzing 
concurrent processes 
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process algebra  

  concurrent programs are hard to 
implement correctly 

  many subtle non-local interactions 
  deadlock occurs when some processes 

are blocked forever waiting for each 
other 

  process algebra are used to model and 
analyze concurrent processes 
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 deadlocking system example 

defproc(deadlockingSystem, user1 | 
user2 $ lock1s0 | lock2s0 | 
iterDoSomething).  
"

defproc(user1, acquireLock1 > 
acquireLock2 > doSomething > 
releaseLock2 > releaseLock1).  
"

defproc(user2, acquireLock2 > 
acquireLock1 > doSomething > 
releaseLock1 > releaseLock2).  
"
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deadlocking system example 

defproc(lock1s0, "
"acquireLock1 > lock1s1 ? 0).  
"

defproc(lock1s1, releaseLock1 > lock1s0)."
"
defproc(lock2s0, "
"acquireLock2 > lock2s1 ? 0).  
"

defproc(lock2s1,releaseLock2 > lock2s0).  
"

defproc(iterDoSomething, "
"doSomething > iterDoSomething ? 0).  
"

 
[Show runs of oneUserSystem and 

deadlockingSystem.] 
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transition relation 

  P - A - RP means that P can do a single step by 
doing action A and leaving program RP remaining  

  empty program: 0 - A - P is always false."
  primitive action: A - A - 0 holds, i. e., an action 

that has completed leaves nothing more to be done."
  sequence: (A > P) - A - P"
  nondeterministic choice: (P1 ? P2) - A - P holds 

if either P1 - A - P holds or P2 - A - P holds. 
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transition relation 

  interleaved concurrency: (P1 | P2) - A - P 
holds if either P1 - A - P11 holds and P = (P11 | 
P2), or P2 - A - P21 holds and P = (P1 | P21) 

  synchronized concurrency: (P1 $ P2) - A - P 
holds if both P1 - A - P11 holds and P2 - A - P21 
holds and P = (P11 $ P21)"

  recursive procedures: ProcName - A - P holds if 
ProcName is the name of a procedure that has body 
B and B - A - P holds. 

34 CSE 3401 F 2012 

can check properties by 
searching process graph 

  a process has an infinite execution if there is a 
cycle in its configuration graph 

  e.g. defproc(aloop, a > aloop) 
  has_infinite_run(P):- P - _ - PN, 

has_infinite_run(PN,[P]). 
  has_infinite_run(P,V):- member(P,V), !. 
  has_infinite_run(P,V):- P - _ - PN, 

has_infinite_run(PN,[P|V]). 
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checking properties by 
searching process graph 

  cannot_occur(P,A) holds if no execution 
of P where action A occurs 

  search graph for a transition P1 - A - P2 
  useful built-in predicate: forall(+Cond, 

+Action) holds iff for all bindings of 
Cond, Action succeeds 

  e.g. forall(member(C,[8,3,9]), C >= 3) 
succeeds 
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cannot_occur examples 

  ?- cannot_occur(a > b | a > c, b). 
succeeds or fails? 

  ?- cannot_occur((a > b | a > c)$(a > 
c), b). succeeds or fails? 
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whenever_eventually 

  whenever_eventually(P,A1,A2) holds if 
in all executions of P whenever action 
A1 occurs, action A occurs afterwards 

  ?- whenever_eventually(a > b > a , a, 
b). succeeds or fails? 

  ?- whenever_eventually(a > b | a > c, 
a, b). succeeds or fails? 
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whenever_eventually 
examples 

  ?- whenever_eventually(loop1 , a, b). 
succeeds or fails, where 
 defproc(loop1, a > b > loop1)? 

  ?- whenever_eventually(loop1 , b, a). 
succeeds or fails, where 
 defproc(loop1, a > b > loop1)? 

  ?- whenever_eventually(loop2 , b, a). 
succeeds or fails, where 
 defproc(loop2, a > b > (loop2 ? 0)). 
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deadlock_free 

  deadlock_free(P) holds if process P 
cannot reach a deadlocked 
configuration, i.e. one where the 
remaining process is not final, but no 
transition is possible 

  ?- deadlock_free(a $ a). succeeds or 
fails? 

  ?- deadlock_free(a > a $ a). succeeds 
or fails? 
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deadlock_free examples 

 ?- deadlock_free(loop3 $ a). where 
defproc(loop3, (a > loop3) ? 0)) 

succeeds or fails? 


