EECS-1019c: Assignment \#10

Out of N points.
Section 8.1 [6pt]
11. [6pt]
a. [2pt] Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time.

$$
a_{n}=a_{n-1}+a_{n-2} \text { for } n \geq 2 \text {. }
$$

b. [2pt] What are the initial conditions?

$$
a_{0}=1, a_{1}=1 .
$$

c. $[2 \mathrm{pt}]$ In how many ways can this person climb a flight of eight stairs?

$$
a_{8}=f_{9}=34
$$

Section $8.2[24 \mathrm{pt}]$

4. [10pt] Solve these recurrence relations together with the initial conditions given.
a. $[2 \mathrm{pt}] a_{n}=a_{n-1}+6 a_{n-2}$ for $n \geq 2, a_{0}=3, a_{1}=6$.

Characteristic equation: $r^{2}-r-6$, so roots are -5 and 1. $\alpha_{1}+\alpha_{2}=a_{0}=3$, $-5 \alpha_{1}+\alpha_{2}=a_{1}=6$. Solving, $\alpha_{1}=-\frac{1}{2}, \alpha_{2}=3 \frac{1}{2}$.
$\therefore a_{n}=-\frac{1}{2}(-5)^{n}+3 \frac{1}{2}$.
b. $[2 \mathrm{pt}] a_{n}=7 a_{n-1}-10 a_{n-2}$ for $n \geq 2, a_{0}=2, a_{1}=1$.

Characteristic equation: $r^{2}-7 r+10$, so roots are -5 and -2 .
$\alpha_{1}+\alpha_{2}=a_{0}=2,-5 \alpha_{1}-2 \alpha_{2}=a_{1}=1$. Solving, $\alpha_{1}=-\frac{5}{3}, \alpha_{2}=\frac{11}{3}$.
$\therefore a_{n}=-\frac{5}{3}(-5)^{n}+\frac{11}{3}(-2)^{n}$.
c. $[2 \mathrm{pt}] a_{n}=6 a_{n-1}-8 a_{n-2}$ for $n \geq 2, a_{0}=4, a_{1}=10$.

Characteristic equation: $r^{2}-6 r+8$, so roots are -4 and -2 .
$\alpha_{1}+\alpha_{2}=a_{0}=4,-4 \alpha_{1}-2 \alpha_{2}=a_{1}=10$. Solving, $\alpha_{1}=-9, \alpha_{2}=13$.
$\therefore a_{n}=-9(-4)^{n}+13(-2)^{n}$.
d. $[2 \mathrm{pt}] a_{n}=2 a_{n-1}-a_{n-2}$ for $n \geq 2, a_{0}=4, a_{1}=1$.

Characteristic equation: $r^{2}-2 r+1$, so just a single root of -1 with a multiple of 2 . $\alpha_{1}+0 \alpha_{2}=a_{0}=4,-\alpha_{1}-1 \alpha_{2}=a_{1}=1$. Solving, $\alpha_{1}=4, \alpha_{2}=5$. $\therefore a_{n}=4(-1)^{n}-5 n(-1)^{n}$.
e. $[2 \mathrm{pt}] a_{n}=a_{n-2}$ for $n \geq 2, a_{0}=5, a_{1}=-1$.

Characteristic equation: $r^{2}-1$, so roots are -1 and 1.
$\alpha_{1}+\alpha_{2}=a_{0}=5,-\alpha_{1}+\alpha_{2}=a_{1}=-1$. Solving, $\alpha_{1}=3, \alpha_{2}=2$.
$\therefore a_{n}=3(-1)^{n}+2$.
8. [4pt] A model for the number of lobsters caught per year is based on the assumption that the number of lobsters caught in a year is the average of the number caught in the two previous years.
a. [2pt] Find a recurrence relation for $\left\{L_{n}\right\}$, where L_{n} is the number of lobsters caught in year n, under the assumption for this model.
$L_{n}=\frac{1}{2} L_{n-1}+\frac{1}{2} L_{n-2}$, for $n>2$.
b. [2pt] Find L_{n} if 100,000 lobsters were caught in year 1 and 300,000 were caught in year 2.

Characteristic equation is $r^{2}-\frac{1}{2} r-\frac{1}{2}=0$, or $2 r^{2}-r-1=0$. The roots are $1,-\frac{1}{2}$. Thus, we know $\alpha_{1}-\frac{1}{2} \alpha_{2}=100000$ and $\alpha_{1}+\frac{1}{4} \alpha_{2}=300000$ Solving, we get $\alpha_{1}=700000 / 3$ and $\alpha_{2}=800000 / 3$. $\therefore L_{n}=233333.33+266666.67\left(-{\text { frac } 12)^{n}}^{n}\right.$
12. [4pt] Find the solution to $a_{n}=2 a_{n-1}+a_{n-2} 2 a_{n-3}$. for $n=3,4,5, \ldots$, with $a_{0}=3, a_{1}=6$, and $a_{2}=0$.

The characteristic equation is $r^{3}-2 r^{2}-r+2=0$. The roots are $-1,1$, and 2 . Thus, $\alpha_{1}+\alpha_{2}+\alpha_{3}=a_{0}=3,-\alpha_{1}+\alpha_{2}+2 \alpha_{3}=a_{1}=6$, and $\alpha_{1}+\alpha_{2}+4 \alpha_{3}=a_{2}=0$. Solving, $\alpha_{1}=-2, \alpha_{2}=6$, and $\alpha_{3}=-1$.
$\therefore a_{n}=-2(-1)^{n}+6-(2)^{n}$.
24. [6pt] Consider the nonhomogeneous linear recurrence relation $a_{n}=2 a_{n 1}+2^{n}$.
a. [2pt] Show that $a_{n}=2^{n+1}$ is a solution of this recurrence relation.

Solving the corresponding homogeneous, the characteristic equation is $r-2=0$, with a root of 2. Thus, $a_{n}^{(h)}=\alpha 2^{n}$.
Because $f(n)=2^{n}$, since 2^{n} appears in our homogeneous solution with a multiplicity of 1 , a reasonable trial solution is $a_{n}^{(p)}=c n 2^{n}$. Thus, cn $2^{n}=2 c(n-1) 2^{n-1}+2^{n}=$ $c(n-1) 2^{n}+2^{n}=c n 2^{n}-c 2^{n}+2^{n}$, so $c=1$. Hence, a particular equation is $a_{n}^{(p)}=n 2^{n}$.
So, the full solution is $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=\alpha 2^{n}+n 2^{n}=(\alpha+n) 2^{n}$.
(Cannot show what the question wants; it is not correct.)
b. [2pt] Use Theorem 5 to find all solutions of this recurrence relation.

All solutions by Theorem 5 are of the form $a_{n}=(\alpha+n) 2^{n}$, as established above.
c. [2pt] Find the solution with $a_{0}=2$.

$$
(\alpha+0) 2^{0}=\alpha=2 . \text { Thus, } \alpha=2 \text { and } a_{n}=(2+n) 2^{n} .
$$

