EECS-1019C: Assignment #10

Out of N points.

Section 8.1 [6pt]

11. [6pt]

a. [2pt] Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time.

 $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.

b. [2pt] What are the initial conditions?

$$a_0 = 1, a_1 = 1.$$

c. [2pt] In how many ways can this person climb a flight of eight stairs?

 $a_8 = f_9 = 34.$

Section 8.2 [24pt]

- 4. [10pt] Solve these recurrence relations together with the initial conditions given.
 - **a.** [2pt] $a_n = a_{n-1} + 6a_{n-2}$ for $n \ge 2$, $a_0 = 3$, $a_1 = 6$.

Characteristic equation: $r^2 - r - 6$, so roots are -5 and 1. $\alpha_1 + \alpha_2 = a_0 = 3$, $-5\alpha_1 + \alpha_2 = a_1 = 6$. Solving, $\alpha_1 = -\frac{1}{2}$, $\alpha_2 = 3\frac{1}{2}$. $\therefore a_n = -\frac{1}{2}(-5)^n + 3\frac{1}{2}$.

b. [2pt] $a_n = 7a_{n-1} - 10a_{n-2}$ for $n \ge 2$, $a_0 = 2$, $a_1 = 1$.

Characteristic equation: $r^2 - 7r + 10$, so roots are -5 and -2. $\alpha_1 + \alpha_2 = a_0 = 2, -5\alpha_1 - 2\alpha_2 = a_1 = 1$. Solving, $\alpha_1 = -\frac{5}{3}, \alpha_2 = \frac{11}{3}$. $\therefore a_n = -\frac{5}{3}(-5)^n + \frac{11}{3}(-2)^n$.

c. [2pt]
$$a_n = 6a_{n-1} - 8a_{n-2}$$
 for $n \ge 2$, $a_0 = 4$, $a_1 = 10$

Characteristic equation: $r^2 - 6r + 8$, so roots are -4 and -2. $\alpha_1 + \alpha_2 = a_0 = 4$, $-4\alpha_1 - 2\alpha_2 = a_1 = 10$. Solving, $\alpha_1 = -9$, $\alpha_2 = 13$. $\therefore a_n = -9(-4)^n + 13(-2)^n$.

d. [2pt] $a_n = 2a_{n-1} - a_{n-2}$ for $n \ge 2$, $a_0 = 4$, $a_1 = 1$.

Characteristic equation: $r^2 - 2r + 1$, so just a single root of -1 with a multiple of 2. $\alpha_1 + 0\alpha_2 = a_0 = 4, -\alpha_1 - 1\alpha_2 = a_1 = 1$. Solving, $\alpha_1 = 4, \alpha_2 = 5$. $\therefore a_n = 4(-1)^n - 5n(-1)^n$.

e. [2pt] $a_n = a_{n-2}$ for $n \ge 2$, $a_0 = 5$, $a_1 = -1$.

Characteristic equation: $r^2 - 1$, so roots are -1 and 1. $\alpha_1 + \alpha_2 = a_0 = 5$, $-\alpha_1 + \alpha_2 = a_1 = -1$. Solving, $\alpha_1 = 3$, $\alpha_2 = 2$. $\therefore a_n = 3(-1)^n + 2$.

- 8. [4pt] A model for the number of lobsters caught per year is based on the assumption that the number of lobsters caught in a year is the average of the number caught in the two previous years.
 - **a.** [2pt] Find a recurrence relation for $\{L_n\}$, where L_n is the number of lobsters caught in year n, under the assumption for this model.

$$L_n = \frac{1}{2}L_{n-1} + \frac{1}{2}L_{n-2}$$
, for $n > 2$.

b. [2pt] Find L_n if 100,000 lobsters were caught in year 1 and 300,000 were caught in year 2.

Characteristic equation is $r^2 - \frac{1}{2}r - \frac{1}{2} = 0$, or $2r^2 - r - 1 = 0$. The roots are $1, -\frac{1}{2}$. Thus, we know $\alpha_1 - \frac{1}{2}\alpha_2 = 100000$ and $\alpha_1 + \frac{1}{4}\alpha_2 = 300000$ Solving, we get $\alpha_1 = 700000/3$ and $\alpha_2 = 800000/3$. $\therefore L_n = 233333.33 + 266666.67(-frac12)^n$

12. [4pt] Find the solution to $a_n = 2a_{n-1} + a_{n-2}2a_{n-3}$. for $n = 3, 4, 5, \ldots$, with $a_0 = 3, a_1 = 6$, and $a_2 = 0$.

The characteristic equation is $r^3 - 2r^2 - r + 2 = 0$. The roots are -1, 1, and 2. Thus, $\alpha_1 + \alpha_2 + \alpha_3 = a_0 = 3$, $-\alpha_1 + \alpha_2 + 2\alpha_3 = a_1 = 6$, and $\alpha_1 + \alpha_2 + 4\alpha_3 = a_2 = 0$. Solving, $\alpha_1 = -2$, $\alpha_2 = 6$, and $\alpha_3 = -1$. $\therefore a_n = -2(-1)^n + 6 - (2)^n$.

- **24.** [6pt] Consider the nonhomogeneous linear recurrence relation $a_n = 2a_{n1} + 2^n$.
 - **a.** [2pt] Show that $a_n = 2^{n+1}$ is a solution of this recurrence relation.

Solving the corresponding homogeneous, the characteristic equation is r-2 = 0, with a root of 2. Thus, $a_n^{(h)} = \alpha 2^n$. Because $f(n) = 2^n$, since 2^n appears in our homogeneous solution with a multiplicity of 1, a reasonable trial solution is $a_n^{(p)} = cn2^n$. Thus, $cn2^n = 2c(n-1)2^{n-1} + 2^n =$ $c(n-1)2^n + 2^n = cn2^n - c2^n + 2^n$, so c = 1. Hence, a particular equation is $a_n^{(p)} = n2^n$. So, the full solution is $a_n = a_n^{(h)} + a_n^{(p)} = \alpha 2^n + n2^n = (\alpha + n)2^n$. (Cannot show what the question wants; it is not correct.)

b. [2pt] Use Theorem 5 to find all solutions of this recurrence relation.

All solutions by Theorem 5 are of the form $a_n = (\alpha + n)2^n$, as established above.

c. [2pt] Find the solution with $a_0 = 2$.

 $(\alpha + 0)2^0 = \alpha = 2$. Thus, $\alpha = 2$ and $a_n = (2 + n)2^n$.