EECS-1019c: Assignment \#4

Out of 50 points.
Section 2.1 [18pt]
6. [4pt] Suppose that $A=\{2,4,6\}, B=\{2,6\}, C=\{4,6\}$, and $D=\{4,6,8\}$. Determine which of these sets are subsets of which other of these sets.

$$
B \subset A, C \subset A, \text { and } C \subset D
$$

20. [4pt] What is the cardinality of each of these sets?
a. \emptyset
21.

b. $\{\emptyset\}$
1.
c. $\{\emptyset,\{\emptyset\}\}$
2.
d. $\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$
3.
32. [4pt] Let $A=\{a, b, c\}, B=\{x, y\}$, and $C=\{0,1\}$. Find
a. $A \times B \times C$
$\{(a, x, 0),(a, x, 1),(a, y, 0),(a, y, 1),(b, x, 0),(b, x, 1),(b, y, 0),(b, y, 1),(c, x, 0)$, $(c, x, 1),(c, y, 0),(c, y, 1)\}$
b. $C \times A \times B$
$\{(0, a, x),(0, a, y),(0, b, x),(0, b, y),(0, c, x),(0, c, y),(1, a, x),(1, a, y),(1, b, x)$, $(1, b, y),(1, c, x),(1, c, y)\}$
c. $C \times B \times A$
$\{(0, x, a),(0, x, b),(0, x, c),(0, y, a),(0, y, b),(0, y, c),(1, x, a),(1, x, b),(1, x, c)$, $(1, y, a),(1, y, b),(1, y, c)\}$
d. $B \times B \times B$
$\{(x, x, x),(x, x, y),(x, y, x),(x, y, y),(y, x, x),(y, x, y),(y, y, x),(y, y, y)\}$
44. [6pt] Find the truth set of each of these predicates where the domain is the set of integers.
a. [2pt] $P(x): x^{3} \geq 1$

False. Consider $x=0$.
b. $[2 \mathrm{pt}] Q(x): x^{2}=2$

False. Consider $x=1$.
c. $[2 \mathrm{pt}] R(x): x<x^{2}$

False. Consider $x=1$.

Section 2.2 [18pt]

16. [10pt] Let A and B be sets. Show that
a. $[2 \mathrm{pt}] A \cap B \subseteq A$.

For any $x \in A \cap B, x \in A$ and $x \in B$. Therefore, any such x is in $A . A \cap B \subseteq A$.
b. $[2 \mathrm{pt}] A \subseteq(A \cup B)$.

If $x \in A$, then $x \in(A \cup B$ by definition of union.
c. $[2 \mathrm{pt}] A-B \subseteq A$.

For any $x \in A-B, x \in A$ and $x \notin B$. Therefore, any such x is in $A . A-B \subseteq A$.
d. $[2 \mathrm{pt}] A \cap(B-A)=\emptyset$.

If $x \in A$, then $x \notin(B-A)$. Therefore, there is no x in both A and in $(B-A)$. $A \cap(B-A)=\emptyset$.
e. $[2 \mathrm{pt}] A \cup(B-A)=A \cup B$.

Consider any $x \in A$. Then $x \in A \cup(B-A)$, by definition of union, and $x \in A \cup B$, by definition of union.
Consider any $x \in B$ but $x \notin A$. Then $x \in A \cup(B-A)$, since $x \in(B-A)$ by definition of set minus, and then by definition of union. And $x \in A \cup B$, by definition of union.
Consider any $x \notin B$ and $x \notin A$. Then $x \notin A \cup(B-A)$, as $x \notin(B-A)$ as $x \notin B$ (by definition of set minus) and then by definition of union. And $x \notin A \cup B$, by definition of union.
50. [8pt] Find $\bigcup_{i=1}^{\infty} A_{i}$ and $\bigcap_{i=1}^{\infty} A_{i}$ if for every positive integer i
a. [2pt] $A_{i}=\{i, i+1, i+2, \ldots\}$.

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z}^{+} \\
& \bigcap_{i=1}^{\infty} A_{i}=\emptyset
\end{aligned}
$$

b. [2pt] $A_{i}=\{0, i\}$.

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} A_{i}=\mathbb{N} \\
& \bigcap_{i=1}^{\infty} A_{i}=\{0\}
\end{aligned}
$$

c. [2pt] $A_{i}=(0, i)$, that is, the set of real numbers x with $0<x<i$.

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} A_{i}=\mathbb{R}^{+} \\
& \bigcap_{i=1}^{\infty} A_{i}=(0,1)
\end{aligned}
$$

d. $[2 \mathrm{pt}] A_{i}=(i, \infty)$, that is, the set of real numbers x with $x>i$.

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} A_{i}=(1, \infty) \\
& \bigcap_{i=1}^{\infty} A_{i}=\emptyset
\end{aligned}
$$

Section 2.3 [14pt]

12. $[4 \mathrm{pt}]$ Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is one-to-one.
a. $f(n)=n 1$.

One-to-one since if $n_{1}-1=n_{2}-1$ then $n_{1}=n_{2}$.
b. $f(n)=n^{2}+1$.

Not one-to-one. Consider that $f(3)=f(-3)=10$.
c. $f(n)=n^{3}$.

One-to-one since if $n_{1}^{3}=n_{2}^{3}$ then $n_{1}=n_{2}$ (the cube-root of each side).
d. $f(n)=\lceil n / 2\rceil$.

Not one-to-one. Consider that $f(1)=f(2)=1$.
34. [5pt] If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Justify your answer.

It does. Consider if g were not one-to-one. Then there exist x and y such that $x \neq y$, but $g(x)=g(y)$. Clearly then, $f(g(x))=f(g(y))$. Thus, $f \circ g$ is not one-to-one. But this contradicts our assumption.
36. [5pt] Find $f \circ g$ and $g \circ f$, where $f(x)=x^{2}+1$ and $g(x)=x+2$, are functions from \mathbb{R} to \mathbb{R}.

$$
\begin{aligned}
& (f \circ g)(x)=(x+2)^{2}+1=x^{2}+2 x+5 \\
& (g \circ f)(x)=\left(x^{2}+1\right)+2=x^{2}+3
\end{aligned}
$$

