EECS-1019C: Assignment #4

Out of 50 points.

Section 2.1 [18pt]

6. [4pt] Suppose that $A = \{2, 4, 6\}$, $B = \{2, 6\}$, $C = \{4, 6\}$, and $D = \{4, 6, 8\}$. Determine which of these sets are subsets of which other of these sets.

 $B \subset A, C \subset A, and C \subset D.$

20. [4pt] What is the cardinality of each of these sets?

32. [4pt] Let $A = \{a, b, c\}$, $B = \{x, y\}$, and $C = \{0, 1\}$. Find

a. $A \times B \times C$

 $\{ (a,x,0), (a,x,1), (a,y,0), (a,y,1), (b,x,0), (b,x,1), (b,y,0), (b,y,1), (c,x,0), (c,x,1), (c,y,0), (c,y,1) \}$

b. $C \times A \times B$

 $\{ \ (0,a,x), \ (0,a,y), \ (0,b,x), \ (0,b,y), \ (0,c,x), \ (0,c,y), \ (1,a,x), \ (1,a,y), \ (1,b,x), \ (1,b,y), \ (1,c,x), \ (1,c,y) \ \}$

c. $C\times B\times A$

 $\{ \ (0,x,a), \ (0,x,b), \ (0,x,c), \ (0,y,a), \ (0,y,b), \ (0,y,c), \ (1,x,a), \ (1,x,b), \ (1,x,c), \ (1,y,a), \ (1,y,b), \ (1,y,c) \ \}$

d. $B \times B \times B$

 $\{ (x, x, x), (x, x, y), (x, y, x), (x, y, y), (y, x, x), (y, x, y), (y, y, x), (y, y, y) \}$

44. [6pt] Find the truth set of each of these predicates where the domain is the set of integers.

a. [2pt] $P(x) : x^3 \ge 1$

False. Consider x = 0.

b. [2pt] $Q(x) : x^2 = 2$

False. Consider x = 1.

c. [2pt] $R(x) : x < x^2$

False. Consider x = 1.

Section 2.2 [18pt]

- **16.** [10pt] Let A and B be sets. Show that
 - **a.** [2pt] $A \cap B \subseteq A$.

For any $x \in A \cap B$, $x \in A$ and $x \in B$. Therefore, any such x is in A. $A \cap B \subseteq A$.

b. [2pt] $A \subseteq (A \cup B)$.

If $x \in A$, then $x \in (A \cup B \text{ by definition of union}.$

c. [2pt] $A - B \subseteq A$.

For any $x \in A - B$, $x \in A$ and $x \notin B$. Therefore, any such x is in A. $A - B \subseteq A$.

d. [2pt] $A \cap (B - A) = \emptyset$.

If $x \in A$, then $x \notin (B - A)$. Therefore, there is no x in both A and in (B - A). $A \cap (B - A) = \emptyset$.

e. [2pt]
$$A \cup (B - A) = A \cup B$$
.

Consider any $x \in A$. Then $x \in A \cup (B - A)$, by definition of union, and $x \in A \cup B$, by definition of union. Consider any $x \in B$ but $x \notin A$. Then $x \in A \cup (B - A)$, since $x \in (B - A)$ by definition of set minus, and then by definition of union. And $x \in A \cup B$, by definition of union. Consider any $x \notin B$ and $x \notin A$. Then $x \notin A \cup (B - A)$, as $x \notin (B - A)$ as $x \notin B$ (by definition of set minus) and then by definition of union. And $x \notin A \cup B$, by definition of union. **50.** [8pt] Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer i **a.** [2pt] $A_i = \{i, i+1, i+2, \ldots\}$. $\begin{bmatrix} \bigcup_{i=1}^{\infty} A_i = \mathbb{Z}^+ \\ \bigcap_{i=1}^{\infty} A_i = \emptyset \end{bmatrix}$ **b.** [2pt] $A_i = \{0, i\}$. $\begin{bmatrix} \bigcup_{i=1}^{\infty} A_i = \mathbb{N} \\ \bigcap_{i=1}^{\infty} A_i = \{0\} \end{bmatrix}$

c. [2pt] $A_i = (0, i)$, that is, the set of real numbers x with 0 < x < i.

$$\bigcup_{i=1}^{\infty} A_i = \mathbb{R}^+$$
$$\bigcap_{i=1}^{\infty} A_i = (0, 1)$$

d. [2pt] $A_i = (i, \infty)$, that is, the set of real numbers x with x > i.

$$\bigcup_{\substack{i=1\\\infty\\ i=1}}^{\infty} A_i = (1,\infty)$$

Section 2.3 [14pt]

- 12. [4pt] Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is one-to-one.
 - a. f(n) = n1.
 One-to-one since if n₁ 1 = n₂ 1 then n₁ = n₂.
 b. f(n) = n² + 1.

Not one-to-one. Consider that f(3) = f(-3) = 10.

c. $f(n) = n^3$.

One-to-one since if $n_1^3 = n_2^3$ then $n_1 = n_2$ (the cube-root of each side).

d. $f(n) = \lceil n/2 \rceil$.

Not one-to-one. Consider that f(1) = f(2) = 1.

34. [5pt] If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Justify your answer.

It does. Consider if g were not one-to-one. Then there exist x and y such that $x \neq y$, but g(x) = g(y). Clearly then, f(g(x)) = f(g(y)). Thus, $f \circ g$ is not one-to-one. But this contradicts our assumption.

36. [5pt] Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2, are functions from \mathbb{R} to \mathbb{R} .

 $(f \circ g)(x) = (x+2)^2 + 1 = x^2 + 2x + 5.$ $(g \circ f)(x) = (x^2 + 1) + 2 = x^2 + 3.$