EECS-1019c: Assignment \#5

Out of 30 points.
Section 2.4 [18pt]
10. [10pt] Find the first six terms of the sequence defined by each of these recurrence relations and initial conditions.
a. $[2 \mathrm{pt}] a_{n}=-2 a_{n-1}, a_{0}=-1$

$$
a_{1}, \ldots, a_{6}=2,-4,8,-16,32,-64
$$

b. [2pt] $a_{n}=a_{n-1}-a_{n-2}, a_{0}=2, a_{1}=-1$

$$
a_{2}, \ldots, a_{7}=-3,-2,1,3,2,-1,-3
$$

c. $[2 \mathrm{pt}] a_{n}=3 a_{n-1}^{2}, a_{0}=1$

d. $[2 \mathrm{pt}] a_{n}=n a_{n-1}+a_{n-2}^{2}, a_{0}=-1, a_{1}=0$
$a_{2}, \ldots, a_{7}=1,3,13,74,613,9767$
e. $[2 \mathrm{pt}] a_{n}=a_{n-1}-a_{n-2}+a_{n-3}, a_{0}=1, a_{1}=1, a_{2}=2$

$$
a_{3}, \ldots, a_{8}=2,1,1,2,2,1
$$

30. [8pt] What are the values of these sums, where $S=\{1,3,5,7\}$?
a. $[2 \mathrm{pt}] \sum_{j \in S} j$

16
b. $[2 \mathrm{pt}] \sum_{j \in S} j^{2}$

84
c. $[2 \mathrm{pt}] \sum_{j \in S} 1 / j$

176/105
d. $[2 \mathrm{pt}] \sum_{j \in S} 1$

4

Section 2.5 [12pt]

2. [12pt] Determine whether each of these sets is finite, countably infinite, or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
a. [2pt] the integers greater than 10
$\{x \mid x \in \mathbb{Z} \wedge x>10$ Countably infinite: $x \leftrightarrow x-10$
b. [2pt] the odd negative integers
$\{x \mid \exists y \in \mathbb{N}(x=-(2 y+1)\}$ is countably infinite: $x \leftrightarrow-(x+1) / 2+1$
c. [2pt] the integers with absolute value less than $1,000,000$
finite: there are 1,999,999 of them
d. [2pt] the real numbers between 0 and 2
uncountably infinite
e. $[2 \mathrm{pt}]$ the set $A \times \mathbb{Z}^{+}$where $A=\{2,3\}$
$\left\{(x, y) \mid x \in\{2,3\} \wedge y \in \mathbb{Z}^{+}\right\}$is countably infinite: $(2, y) \leftrightarrow 2 y-1$ and $(3, y) \leftrightarrow 2 y$
f. [2pt] the integers that are multiples of 10
$10 x \mid x \in \mathbb{Z}$ is countably infinite: $x \leftrightarrow 10 x$
