EECS-1019c: Assignment \#6

Out of 25 points.
Section 3.1 [10pt]
4. [5pt] Describe an algorithm that takes as input a list of n integers and produces as output the largest difference obtained by subtracting an integer in the list from the one following it.

```
largestDiff( (a1, ..., a}\mp@subsup{a}{n}{}
    diff := a 
    for i := 2, ..., n-1
        if (ai+1 - a ai> diff)
            diff := ai+1 - a
    return diff
```

12. [5pt] Describe an algorithm that uses only assignment statements that replaces the triple (x, y, z) with (y, z, x). What is the minimum number of assignment statements needed?
```
t := z
x := y
y:=z
z := t
```

where t is a temporary variable.

Section 3.2 [15pt]

18. [5pt] Let k be a positive integer. Show that $1^{k}+2^{k}+\ldots+n^{k}$ is $\mathcal{O}\left(n^{k+1}\right)$.

$$
1^{k}+2^{k}+\ldots+(n-1)^{k}+n^{k}<n^{k}+n^{k}+\ldots+n^{k}+n^{k}=n^{k+1}
$$

30. [10pt] Show that each of these pairs of functions are of the same order.
a. $[2 \mathrm{pt}] 3 x+7, x$
$x \leq 3 x+7 \leq 4 x$ for all $x>7$.
b. $[2 \mathrm{pt}] 2 x^{2}+x-7, x^{2}$

$$
x^{2}<2 x^{2}+x-7 \text { for } x \leq 7.2 x^{2}+x-7 \leq 3 x^{2} \text { for } x \leq 1
$$

c. $[2 \mathrm{pt}]\lfloor x+1 / 2\rfloor, x$
$\lfloor x+1 / 2\rfloor \leq 2 x$ for $x>2 . x \leq 2\lfloor x+1 / 2\rfloor$ for $x>2$.
d. $[2 \mathrm{pt}] \log \left(x^{2}+1\right), \log _{2}(x)$

Note "log" is the same as " $\log _{2} "$.
$\log _{2}\left(x^{2}+1\right) \leq \log _{2}\left(2 x^{2}\right)=1+2 \log _{2}(x) \leq 3 \log _{2}(x)$ for $x>2$. Since $x<x^{2}+1$ for all $x>1$, it follows that $\log _{2}(x)<\log _{2}\left(x^{2}+1\right)$.
e. $[2 \mathrm{pt}] \log _{10} x, \log _{2} x$

Follows from $\log _{10} x=C \log _{2} x$ where $C=1 / \log _{2} 10$.

