EECS-1019c: Assignment \#8

Out of 30 points.
Section 5.1 [15pt]
20. [5pt] Prove that

$$
\sum_{j=0}^{n}\left(-\frac{1}{2}\right)^{j}=\frac{2^{n+1}+(-1)^{n}}{3 \cdot 2^{n}}
$$

Let $S(n)$ be equal to the summation above (the lefthand side) and let $f(n)$ equal the formula above (the righthand side).
basis case.
For $n=0: S(0)=1$ and $f(0)=1$.
inductive hypothesis.
Assume for some $k \geq 0$ that $S(k)=f(k)$.
inductive step.

$$
\begin{aligned}
S(k+1) & =S(k)+\left(-\frac{1}{2}\right)^{k+1} \quad \text { by inductive hypothesis } \\
& =\frac{2^{k+1}+(-1)^{k}}{3 \cdot 2^{k}}+\left(-\frac{1}{2}\right)^{k+1} \\
& =\frac{2}{3}+\frac{(-1)^{k}}{3 \cdot 2^{k}}+\left(-\frac{1}{2}\right)^{k+1} \\
& =\frac{2}{3}-(-1)^{k+1} \frac{2}{3 \cdot 2^{k+1}}+(-1)^{k+1} \frac{3}{3 \cdot 2^{k+1}} \\
& =\frac{2}{3}+(-1)^{k+1} \frac{1}{3 \cdot 2^{k+1}} \\
& =\frac{2^{k+2}+(-1)^{k+1}}{3 \cdot 2^{k+1}} \\
& =f(k+1)
\end{aligned}
$$

22. [5pt] For which nonnegative integers n is $n^{2} \leq n!$? Prove your answer.

$$
\begin{aligned}
& 1^{2}=1 \leq 1!=1 \\
& 2^{2}=4>2!=2 \\
& 3^{2}=9>3!=6 \\
& 4^{2}=16<4!=24 \\
& \text { basis case. }
\end{aligned}
$$

$$
n=4: 4^{2}=16<4!=24
$$

inductive hypothesis.

Assume for some k for $k \geq 4$ that $k^{2}<k$!.
inductive step.

$$
\begin{aligned}
(k+1)^{2} & =k^{2}+2 k+1 \\
& <k^{2}+3 k \quad \text { since } k>1 \\
& <2 k^{2} \quad \text { since } k>3 \\
& <2(k!) \quad \text { by inductive hypothesis } \\
& <(k+1) k!\quad \text { since } k+1>2 \\
& =(k+1)!
\end{aligned}
$$

32. [5pt] Prove that 3 divides $n^{3}+2 n$ whenever n is a positive integer.

basis case.

$n=0: 3$ divides evenly into 0.
inductive hypothesis.
Assume for some k for $k \geq 1$ that 3 evenly divides into $k^{3}+2 k$.
inductive step.

$$
\begin{aligned}
(k+1)^{3}+2(k+1) & =\left(k^{3}+3 k^{2}+3 k+1\right)+(2 k+2) \\
& =k^{3}+3 k^{2}+5 k+3 \\
& =\left(k^{3}+2 k\right)+3\left(k^{2}+k+1\right)
\end{aligned}
$$

$\left(k^{3}+2 k\right)$ is evenly divisible by 3 by the inductive hypothsis. $3\left(k^{2}+k+1\right)$ is clearly evenly divisible by 3.

Section $5.2[5 \mathrm{pt}]$

12. [5pt] Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers $2^{0}=1,2^{1}=2,2^{2}=4$, and so on.
[Hint: For the inductive step, separately consider the case where $k+1$ is even and where it is odd. When it is even, note that $(k+1) / 2$ is an integer.]

basis case.

$n=1: 1$ is the sum of $\left\{2^{0}\right\}$.

inductive hypothesis.

Assume for some k for $k \geq 1$, for $1 \leq i \leq k, i$ is the sum of distinct powers of two. inductive step.

Case that $k+1$ is odd.
k is the sum of distinct powers of two, by the induction hypothesis. But 2^{0} is not one of the powers of two in this sum as k is even. Add 2^{0} to k 's set of powers of two (that sum to it): this new set of powers of two sums to $k+1$.

Case that $k+1$ is even.
$(k+1) / 2$ is an integer. By the induction hypothesis, there is a set T of powers of two that, summed, equals $(k+1) / 2$: Note that $\sum_{t \in T} 2 t=k+1$. Thus, the set
$\{2 t \mid t \in T\}$ represents distinct powers of two that sum to $k+1$.

Section 5.3 [10pt]

12. $[5 \mathrm{pt}] f_{n}$ is the $n t h$ Fibonacci number.

Prove that $f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}=f_{n} f_{n+1}$ when n is a positive integer.

Note that $f_{0}=0, f_{1}=1$, and $f_{2}=1$. Let $S(n)=f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}$ and $g(n)=f_{n} f_{n+1}$. basis case.

$$
n=1: S(1)=f_{1}^{2}=1^{2}=1 . g(1)=f_{1} f_{2}=1 \cdot 1=1
$$

inductive hypothesis.
Assume for some k for $k \geq 1$ that $S(k)=g(k)$.
inductive step.

$$
\begin{array}{rlr}
S(k+1) & =S(k)+f_{k+1}^{2} & \\
& =f_{k} f_{k+1}+f_{k+1}^{2} & \\
& \text { by induction hypothesis } \\
g(k+1) & =f_{k+1} f_{k+2} & \\
& =f_{k+1}\left(f_{k+1}+f_{k}\right) \quad \text { by definition of Fibonnacci } \\
& =f_{k} f_{k+1}+f_{k+1}^{2} &
\end{array}
$$

14. [5pt] f_{n} is the $n t h$ Fibonacci number.

Show that $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ when n is a positive integer.

Note that $f_{0}=0, f_{1}=1, f_{2}=1$, and $f_{3}=2$. Let $g(n)=f_{n+1} f_{n-1}-f_{n}^{2}$ and $h(n)=$ $(-1)^{n}$.
Proof by strong induction.
basis cases.

$$
\begin{aligned}
& n=1: g(1)=f_{2} f_{0}-f_{1}^{2}=1 \cdot 0-1^{2}=-1 . h(1)=(-1)^{1}=-1 \\
& n=2: g(2)=f_{3} f_{1}-f_{2}^{2}=2 \cdot 1-1^{2}=1 . h(2)=(-1)^{2}=1
\end{aligned}
$$

inductive hypothesis.
Assume for some k for $k \geq 1$, for $1 \leq i \leq k, g(i)=h(i)$.
inductive step.

$$
\begin{array}{rlr}
g(k+1) & =f_{k+2} f_{k}-f_{k+1}^{2} & \\
& =\left(f_{k+1}+f_{k}\right)\left(f_{k-1}+f_{k-2}\right)-\left(f_{k}+f_{k-1}\right)^{2} & \text { by definition of Fibonnacci } \\
& =\left(f_{k+1} f_{k-1}+f_{k+1} f_{k-2}+f_{k} f_{k-1}+f_{k} f_{k-2}\right)-\left(f_{k}^{2}+2 f_{k} f_{k-1}+f_{k-1}^{2}\right) \\
& =\left(f_{k+1} f_{k-1}-f_{k}^{2}\right)+\left(f_{k} f_{k-2}-f_{k-1}^{2}\right)+f_{k+1} f_{k-2}-f_{k} f_{k-1} \\
& =(-1)^{k}+(-1)^{k-1}+f_{k+1} f_{k-2}-f_{k} f_{k-1} & \text { by induction hypothesis } \\
& =f_{k+1} f_{k-2}-f_{k} f_{k-1} & \\
& =\left(f_{k}+f_{k-1}\right) f_{k-2}-\left(f_{k-1} f_{k-2}\right) f_{k-1} & \\
& =f_{k} f_{k-2}+f_{k-1} f_{k-2}-f_{k-1}^{2}-f_{k-1} f_{k-2} & \\
& =f_{k} f_{k-2}-f_{k-1}^{2} & \\
& =(-1)^{k-1} & \\
& =(-1)^{k+1} & \\
& =h(k+1) &
\end{array}
$$

