
EECS-4411 Fall 2017 Query Operators 1

Query Operators

Parke Godfrey

EECS-4411 Fall 2017 Query Operators 2

--> Generating and comparing plans
 Query

Generate Plans

Pruning x x

Estimate Cost
 Cost

Select

Query Optimization

Pick Min

EECS-4411 Fall 2017 Query Operators 3

To generate plans consider:

•  Transforming relational algebra expression
 (e.g. order of joins)

•  Use of existing indexes
•  Building indexes or sorting on the fly

EECS-4411 Fall 2017 Query Operators 4

•  Implementation details:
 e.g. - Join algorithm
 - Memory management
 - Parallel processing

EECS-4411 Fall 2017 Query Operators 5

Estimating IOs:

•  Count # of disk blocks that must be
read (or written) to execute query plan

EECS-4411 Fall 2017 Query Operators 6

To estimate costs, we may have
additional parameters:

B(R) = # of blocks containing R tuples
f(R) = max # of tuples of R per block
M = # memory blocks available

EECS-4411 Fall 2017 Query Operators 7

To estimate costs, we may have
additional parameters:

B(R) = # of blocks containing R tuples
f(R) = max # of tuples of R per block
M = # memory blocks available

HT(i) = # levels in index i
LB(i) = # of leaf blocks in index i

EECS-4411 Fall 2017 Query Operators 8

Clustering index

Index that allows tuples to be read in an
order that corresponds to physical order
 A

A

index

10
15
17

19
35
37

EECS-4411 Fall 2017 Query Operators 9

Notions of clustering

•  Clustered file organization
 …..

•  Clustered relation
 …..

•  Clustering index

R1 R2 S1 S2 R3 R4 S3 S4

R1 R2 R3 R4 R5 R5 R7 R8

EECS-4411 Fall 2017 Query Operators 10

Example R1 R2 over common attribute C

T(R1) = 10,000
T(R2) = 5,000
S(R1) = S(R2) = 1/10 block
Memory available = 101 blocks

EECS-4411 Fall 2017 Query Operators 11

Example R1 R2 over common attribute C

T(R1) = 10,000
T(R2) = 5,000
S(R1) = S(R2) = 1/10 block
Memory available = 101 blocks

→ Metric: # of IOs
 (ignoring writing of result)

EECS-4411 Fall 2017 Query Operators 12

Caution!

This may not be the best way to compare
•  ignoring CPU costs
•  ignoring timing
•  ignoring double buffering requirements

EECS-4411 Fall 2017 Query Operators 13

Options

•  Transformations: R1 R2, R2 R1
•  Joint algorithms:

–  Iteration (nested loops)
– Merge join
– Join with index
– Hash join

EECS-4411 Fall 2017 Query Operators 14

•  Iteration join (conceptually)
 for each r ∈ R1 do
 for each s ∈ R2 do
 if r.C = s.C then output r,s pair

EECS-4411 Fall 2017 Query Operators 15

•  Merge join (conceptually)
(1) if R1 and R2 not sorted, sort them
(2) i ← 1; j ← 1;
 While (i ≤ T(R1)) ∧ (j ≤ T(R2)) do
 if R1{ i }.C = R2{ j }.C then outputTuples
 else if R1{ i }.C > R2{ j }.C then j ← j+1
 else if R1{ i }.C < R2{ j }.C then i ← i+1

EECS-4411 Fall 2017 Query Operators 16

Procedure Output-Tuples
 While (R1{ i }.C = R2{ j }.C) ∧ (i ≤ T(R1)) do

 [jj ← j;

 while (R1{ i }.C = R2{ jj }.C) ∧ (jj ≤ T(R2)) do
 [output pair R1{ i }, R2{ jj };

 jj ← jj+1]

 i ← i+1]

EECS-4411 Fall 2017 Query Operators 17

Example

i R1{i}.C R2{j}.C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5

 50 6
 52 7

EECS-4411 Fall 2017 Query Operators 18

•  Join with index (Conceptually)

For each r ∈ R1 do

 [X ← index (R2, C, r.C)

 for each s ∈ X do
 output r,s pair]

Assume R2.C index

Note: X ← index(rel, attr, value)

 then X = set of rel tuples with attr = value

EECS-4411 Fall 2017 Query Operators 19

•  Hash join (conceptual)
– Hash function h, range 0 → k
– Buckets for R1: G0, G1, ... Gk
– Buckets for R2: H0, H1, ... Hk

EECS-4411 Fall 2017 Query Operators 20

•  Hash join (conceptual)
– Hash function h, range 0 → k
– Buckets for R1: G0, G1, ... Gk
– Buckets for R2: H0, H1, ... Hk

Algorithm
(1) Hash R1 tuples into G buckets
(2) Hash R2 tuples into H buckets
(3) For i = 0 to k do
 match tuples in Gi, Hi buckets

EECS-4411 Fall 2017 Query Operators 21

Simple example hash: even/odd

R1 R2 Buckets
2 5 Even
4 4 R1 R2
3 12 Odd:
5 3
8 13
9 8
 11
 14

2 4 8 4 12 8 14

3 5 9 5 3 13 11

EECS-4411 Fall 2017 Query Operators 22

Factors that affect performance

(1) Tuples of relation stored
 physically together?

(2) Relations sorted by join attribute?

(3) Indexes exist?

EECS-4411 Fall 2017 Query Operators 23

Example 1(a) Iteration Join R1 R2

•  Relations not contiguous
•  Recall T(R1) = 10,000 T(R2) = 5,000
 S(R1) = S(R2) =1/10 block

 MEM=101 blocks

EECS-4411 Fall 2017 Query Operators 24

Example 1(a) Iteration Join R1 R2

•  Relations not contiguous
•  Recall T(R1) = 10,000 T(R2) = 5,000
 S(R1) = S(R2) =1/10 block

 MEM=101 blocks

Cost: for each R1 tuple:
 [Read tuple + Read R2]
Total =10,000 [1+5000]=50,010,000 IOs

EECS-4411 Fall 2017 Query Operators 25

•  Can we do better?

EECS-4411 Fall 2017 Query Operators 26

•  Can we do better?
Use our memory

(1) Read 100 blocks of R1
(2) Read all of R2 (using 1 block) + join
(3) Repeat until done

EECS-4411 Fall 2017 Query Operators 27

Cost: for each R1 chunk:
 Read chunk: 1000 IOs
 Read R2: 5000 IOs
 6000

EECS-4411 Fall 2017 Query Operators 28

Cost: for each R1 chunk:
 Read chunk: 1000 IOs
 Read R2: 5000 IOs
 6000

Total = 10,000 x 6000 = 60,000 IOs
 1,000

EECS-4411 Fall 2017 Query Operators 29

•  Can we do better?

EECS-4411 Fall 2017 Query Operators 30

•  Can we do better?

E Reverse join order: R2 R1

Total = 5000 x (1000 + 10,000) =
 1000

 5 x 11,000 = 55,000 IOs

EECS-4411 Fall 2017 Query Operators 31

•  Relations contiguous

Example 1(b) Iteration Join R2 R1

EECS-4411 Fall 2017 Query Operators 32

•  Relations contiguous

Example 1(b) Iteration Join R2 R1

Cost
For each R2 chunk:

 Read chunk: 100 IOs
 Read R1: 1000 IOs
 1,100

Total= 5 chunks x 1,100 = 5,500 IOs

EECS-4411 Fall 2017 Query Operators 33

Example 1(c) Merge Join

•  Both R1, R2 ordered by C; relations contiguous
Memory

R1

R2

…..

…..

R1

R2

EECS-4411 Fall 2017 Query Operators 34

Example 1(c) Merge Join

•  Both R1, R2 ordered by C; relations contiguous
Memory

R1

R2

…..

…..

R1

R2

Total cost: Read R1 cost + read R2 cost
 = 1000 + 500 = 1,500 IOs

EECS-4411 Fall 2017 Query Operators 35

Example 1(d) Merge Join

•  R1, R2 not ordered, but contiguous

--> Need to sort R1, R2 first…. HOW?

EECS-4411 Fall 2017 Query Operators 36

One way to sort: Merge Sort

(i) For each 100 blk chunk of R:
 - Read chunk
 - Sort in memory
 - Write to disk
 sorted
 chunks

 Memory

R1

R2 ...

EECS-4411 Fall 2017 Query Operators 37

(ii) Read all chunks + merge + write out

Sorted file Memory Sorted

 Chunks

...
 ...

EECS-4411 Fall 2017 Query Operators 38

Cost: Sort
 Each tuple is read,written,
 read, written

so...
Sort cost R1: 4 x 1,000 = 4,000
Sort cost R2: 4 x 500 = 2,000

EECS-4411 Fall 2017 Query Operators 39

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost = sort cost + join cost
 = 6,000 + 1,500 = 7,500 IOs

EECS-4411 Fall 2017 Query Operators 40

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost = sort cost + join cost
 = 6,000 + 1,500 = 7,500 IOs

But: Iteration cost = 5,500
 so merge joint does not pay off!

EECS-4411 Fall 2017 Query Operators 41

But say R1 = 10,000 blocks contiguous
 R2 = 5,000 blocks not ordered

Iterate: 5000 x (100+10,000) = 50 x 10,100
 100

 = 505,000 IOs

Merge join: 5(10,000+5,000) = 75,000 IOs

 Merge Join (with sort) WINS!

EECS-4411 Fall 2017 Query Operators 42

How much memory do we need for
 merge sort?

E.g: Say I have 10 memory blocks
 10

...

100 chunks ⇒ to merge, need
 100 blocks! R1

EECS-4411 Fall 2017 Query Operators 43

In general:

Say k blocks in memory
 x blocks for relation sort

chunks = (x/k) size of chunk = k

EECS-4411 Fall 2017 Query Operators 44

In general:

Say k blocks in memory
 x blocks for relation sort

chunks = (x/k) size of chunk = k

chunks < buffers available for merge

EECS-4411 Fall 2017 Query Operators 45

In general:

Say k blocks in memory
 x blocks for relation sort

chunks = (x/k) size of chunk = k

chunks < buffers available for merge

so... (x/k) ≤ k
or k2 ≥ x or k ≥ √x

EECS-4411 Fall 2017 Query Operators 46

In our example
R1 is 1000 blocks, k ≥ 31.62
R2 is 500 blocks, k ≥ 22.36

 Need at least 32 buffers

EECS-4411 Fall 2017 Query Operators 47

Can we improve on merge join?

Hint: do we really need the fully sorted
files?

R1

R2

Join?

sorted runs

EECS-4411 Fall 2017 Query Operators 48

Cost of improved merge join:

C = Read R1 + write R1 into runs
 + read R2 + write R2 into runs
 + join
 = 2000 + 1000 + 1500 = 4500

--> Memory requirement?

EECS-4411 Fall 2017 Query Operators 49

Example 1(e) Index Join

•  Assume R1.C index exists; 2 levels
•  Assume R2 contiguous, unordered

•  Assume R1.C index fits in memory

EECS-4411 Fall 2017 Query Operators 50

Cost: Reads: 500 IOs
 for each R2 tuple:
 - probe index - free
 - if match, read R1 tuple: 1 IO

EECS-4411 Fall 2017 Query Operators 51

What is expected # of matching
tuples?

(a) say R1.C is key, R2.C is foreign key
 then expect = 1

 (b) say V(R1,C) = 5000, T(R1) = 10,000
 with uniform assumption
 expect = 10,000/5,000 = 2

EECS-4411 Fall 2017 Query Operators 52

(c) Say DOM(R1, C)=1,000,000
 T(R1) = 10,000
 with alternate assumption
 Expect = 10,000 = 1
 1,000,000 100

What is expected # of matching
tuples?

EECS-4411 Fall 2017 Query Operators 53

Total cost with index join

(a) Total cost = 500+5000(1)1 = 5,500

(b) Total cost = 500+5000(2)1 = 10,500

(c) Total cost = 500+5000(1/100)1=550

EECS-4411 Fall 2017 Query Operators 54

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

•  Keep root + 99 leaf nodes in memory
•  Expected cost of each probe is
 E = (0)99 + (1)101 ≈ 0.5
 200 200

EECS-4411 Fall 2017 Query Operators 55

Total cost (including probes)

 = 500+5000 [Probe + get records]
 = 500+5000 [0.5+2] uniform assumption

 = 500+12,500 = 13,000 (case b)

EECS-4411 Fall 2017 Query Operators 56

Total cost (including probes)

 = 500+5000 [Probe + get records]
 = 500+5000 [0.5+2] uniform assumption

 = 500+12,500 = 13,000 (case b)

For case (c):
= 500+5000[0.5 × 1 + (1/100) × 1]
= 500+2500+50 = 3050 IOs

EECS-4411 Fall 2017 Query Operators 57

So far
 Iterate R2 R1 55,000 (best)
 Merge Join _______
 Sort+ Merge Join _______
 R1.C Index _______
 R2.C Index _______

 Iterate R2 R1 5500
 Merge join 1500
 Sort+Merge Join 7500 → 4500
 R1.C Index 5500 → 3050 → 550
 R2.C Index ________ co

nt
ig

uo
us

no

t
co

nt
ig

uo
us

EECS-4411 Fall 2017 Query Operators 58

•  R1, R2 contiguous (un-ordered)
→ Use 100 buckets
→ Read R1, hash, + write buckets

R1 →

Example 1(f) Hash Join

...

...

10 blocks

100

EECS-4411 Fall 2017 Query Operators 59

-> Same for R2
-> Read one R1 bucket; build memory hash table
-> Read corresponding R2 bucket + hash probe

R1

R2

...

R1

memory ...

✏ Then repeat for all buckets

EECS-4411 Fall 2017 Query Operators 60

Cost:
“Bucketize:” Read R1 + write

 Read R2 + write

Join: Read R1, R2

Total cost = 3 x [1000+500] = 4500

EECS-4411 Fall 2017 Query Operators 61

Cost:
“Bucketize:” Read R1 + write

 Read R2 + write

Join: Read R1, R2

Total cost = 3 x [1000+500] = 4500

Note: this is an approximation since
buckets will vary in size and
we have to round up to blocks

EECS-4411 Fall 2017 Query Operators 62

Minimum memory requirements:

Size of R1 bucket = (x/k)
 k = number of memory buffers
 x = number of R1 blocks

So... (x/k) < k

k > √x need: k+1 total memory
 buffers

EECS-4411 Fall 2017 Query Operators 63

Trick: keep some buckets in memory
E.g., k’=33 R1 buckets = 31 blocks
 keep 2 in memory

memory

G0

G1

in

...

31

33-2=31

R1

called hybrid hash-join

EECS-4411 Fall 2017 Query Operators 64

Trick: keep some buckets in memory
E.g., k’=33 R1 buckets = 31 blocks
 keep 2 in memory

memory

G0

G1

in

...

31

33-2=31

R1

Memory use:
G0 31 buffers
G1 31 buffers
Output 33-2 buffers
R1 input 1
Total 94 buffers

 6 buffers to spare!!

called hybrid hash-join

EECS-4411 Fall 2017 Query Operators 65

Next: Bucketize R2
– R2 buckets =500/33= 16 blocks
– Two of the R2 buckets joined immediately

with G0,G1
 memory

G0

G1

in

...

16

33-2=31

R2

...

31

33-2=31

R2 buckets R1 buckets

EECS-4411 Fall 2017 Query Operators 66

Finally: Join remaining buckets
–  for each bucket pair:

•  read one of the buckets into memory
•  join with second bucket

memory

Gi
out

...

16

33-2=31

ans

...

31

33-2=31

R2 buckets R1 buckets one full R2
bucket

one R1
buffer

EECS-4411 Fall 2017 Query Operators 67

Cost
•  Bucketize R1 = 1000+31×31=1961
•  To bucketize R2, only write 31 buckets:

 so, cost = 500+31×16=996
•  To compare join (2 buckets already done)

 read 31×31+31×16=1457

Total cost = 1961+996+1457 = 4414

EECS-4411 Fall 2017 Query Operators 68

•  How many buckets in memory?

memory

G0

G1

in R1

memory

G0
in R1

OR...

☛ See textbook for answer...

?

EECS-4411 Fall 2017 Query Operators 69

Another hash join trick:

•  Only write into buckets
 <val,ptr> pairs

•  When we get a match in join phase,
 must fetch tuples

EECS-4411 Fall 2017 Query Operators 70

•  To illustrate cost computation, assume:
– 100 <val,ptr> pairs/block
– expected number of result tuples is 100

EECS-4411 Fall 2017 Query Operators 71

•  To illustrate cost computation, assume:
– 100 <val,ptr> pairs/block
– expected number of result tuples is 100

 •  Build hash table for R2 in memory
 5000 tuples → 5000/100 = 50 blocks

•  Read R1 and match
•  Read ~ 100 R2 tuples

EECS-4411 Fall 2017 Query Operators 72

•  To illustrate cost computation, assume:
– 100 <val,ptr> pairs/block
– expected number of result tuples is 100

 •  Build hash table for R2 in memory
 5000 tuples → 5000/100 = 50 blocks

•  Read R1 and match
•  Read ~ 100 R2 tuples

Total cost = Read R2: 500
 Read R1: 1000
 Get tuples: 100
 1600

EECS-4411 Fall 2017 Query Operators 73

So far:
 Iterate 5500
 Merge join 1500
 Sort+merge joint 7500
 R1.C index 5500 → 550
 R2.C index _____
 Build R.C index _____
 Build S.C index _____
 Hash join 4500+
 with trick,R1 first 4414
 with trick,R2 first _____
 Hash join, pointers 1600

co
nt

ig
uo

us

EECS-4411 Fall 2017 Query Operators 74

Summary

•  Iteration ok for “small” relations
 (relative to memory size)

•  For equi-join, where relations not
 sorted and no indexes exist,
 hash join usually best

EECS-4411 Fall 2017 Query Operators 75

•  Sort + merge join good for
 non-equi-join (e.g., R1.C > R2.C)

•  If relations already sorted, use
 merge join

•  If index exists, it could be useful
 (depends on expected result size)

EECS-4411 Fall 2017 Query Operators 76

Join strategies for parallel processors

 Later on….

EECS-4411 Fall 2017 Query Operators 77

Chapter 16 [16] summary

•  Relational algebra level
•  Detailed query plan level

– Estimate costs
– Generate plans

•  Join algorithms

– Compare costs

