Query Operators

Parke Godfrey

Query Optimization

--> Generating and comparing plans

To generate plans consider:

- Transforming relational algebra expression (e.g. order of joins)
- Use of existing indexes
- Building indexes or sorting on the fly
- Implementation details: e.g. - Join algorithm
- Memory management
- Parallel processing

Estimating IOs:

- Count \# of disk blocks that must be read (or written) to execute query plan

To estimate costs, we may have additional parameters:

$B(R)=\#$ of blocks containing R tuples $f(R)=$ max \# of tuples of R per block
M = \# memory blocks available

To estimate costs, we may have additional parameters:

$B(R)=\#$ of blocks containing R tuples $f(R)=$ max \# of tuples of R per block
M = \# memory blocks available
HT(i) = \# levels in index i
LB(i) = \# of leaf blocks in index i

Clustering index

Index that allows tuples to be read in an order that corresponds to physical order

Notions of clustering

- Clustered file organization
R1 R2 S1 S2 R3 R4 S3 S4
- Clustered relation
R1 R2 R3 R4 R5 R5 R7 R8
- Clustering index

Example $\quad \mathrm{R} 1 \bowtie \mathrm{R} 2$ over common attribute C

$T(R 1)=10,000$
$T(R 2)=5,000$
$S(R 1)=S(R 2)=1 / 10$ block
Memory available = 101 blocks

Example $\quad \mathrm{R} 1 \bowtie \mathrm{R} 2$ over common attribute C

$T(R 1)=10,000$
$T(R 2)=5,000$
$S(R 1)=S(R 2)=1 / 10$ block
Memory available $=101$ blocks
\rightarrow Metric: \# of IOs
(ignoring writing of result)

Caution!

This may not be the best way to compare

- ignoring CPU costs
- ignoring timing
- ignoring double buffering requirements

Options

- Transformations: R1 \bowtie R2, R2 \bowtie R1
- Joint algorithms:
- Iteration (nested loops)
- Merge join
- Join with index
- Hash join
- Iteration join (conceptually) for each $r \in R 1$ do for each $s \in R 2$ do if r.C = s.C then output r,s pair
- Merge join (conceptually)
(1) if R1 and R2 not sorted, sort them
(2) $\mathrm{i} \leftarrow 1$; $\mathrm{j} \leftarrow 1$;

While ($\mathrm{i} \leq \mathrm{T}(\mathrm{R} 1)$) ^($\mathrm{j} \leq \mathrm{T}(\mathrm{R} 2)$) do
if $\operatorname{R1}\{\mathrm{i}\} . C=R 2\{\mathrm{j}\} . \mathrm{C}$ then outputTuples else if $\operatorname{R1}\{\mathrm{i}\} . \mathrm{C}>\mathrm{R} 2\{\mathrm{j}\} . \mathrm{C}$ then $\mathrm{j} \leftarrow \mathrm{j}+1$ else if $\operatorname{R1}\{\mathrm{i}\} . \mathrm{C}<\mathrm{R} 2\{\mathrm{j}\} . \mathrm{C}$ then $\mathrm{i} \leftarrow \mathrm{i}+1$

Procedure Output-Tuples

While ($\mathrm{R} 1\{\mathrm{i}\} . \mathrm{C}=\mathrm{R} 2\{\mathrm{j}\} . \mathrm{C}) \wedge(\mathrm{i} \leq \mathrm{T}(\mathrm{R} 1)) \mathrm{do}$

$[\mathrm{jj} \leftarrow \mathrm{j} ;$

while ($R 1\{\mathrm{i}\} . C=R 2\{\mathrm{jj}\} . C) \wedge(\mathrm{jj} \leq \mathrm{T}(\mathrm{R} 2))$ do [output pair R1\{ i \}, R2\{ jj \};

$$
\mathrm{jj} \leftarrow \mathrm{jj}+1 \quad]
$$

$$
\mathrm{i} \leftarrow \mathrm{i}+1]
$$

Example

i	R1 $\{\mathrm{i}\} . C$	R2\{j\}.C	j
1	10	5	1
2	20	20	2
3	20	20	3
4	30	30	4
5	40	30	5
		50	6
		52	7

- Join with index (Conceptually)

For each $r \in R 1$ do
[$\mathrm{X} \leftarrow$ index (R2, C, r.C) for each $s \in X$ do output r,s pair]

Note: $X \leftarrow$ index(rel, attr, value)
then $\mathrm{X}=$ set of rel tuples with attr $=$ value

- Hash join (conceptual)
- Hash function h , range $0 \rightarrow \mathrm{k}$
- Buckets for R1: G0, G1, ... Gk
- Buckets for R2: H0, H1, ... Hk
- Hash join (conceptual)
- Hash function h, range $0 \rightarrow k$
- Buckets for R1: G0, G1, ... Gk
- Buckets for R2: H0, H1, ... Hk

Algorithm
(1) Hash R1 tuples into G buckets
(2) Hash R2 tuples into H buckets
(3) For $\mathrm{i}=0$ to k do
match tuples in Gi , Hi buckets

Simple example hash: even/odd

R1	R2
2	5
4	4
3	12
5	12
8	13
9	13
	8
	11
	14

Buckets

Odd:

```
359
```

531311

Factors that affect performance

(1) Tuples of relation stored physically together?
(2) Relations sorted by join attribute?
(3) Indexes exist?

Example 1(a) Iteration Join R1 \bowtie R2

- Relations not contiguous
- Recall $\left\{\begin{array}{l}T(R 1)=10,000 \quad T(R 2)=5,000 \\ S(R 1)=S(R 2)=1 / 10 \text { block } \\ M\end{array}\right.$

MEM=101 blocks

Example 1(a) Iteration Join R1 \bowtie R2

- Relations not contiguous
- Recall $\left\{\begin{array}{l}T(R 1)=10,000 \quad T(R 2)=5,000 \\ S(R 1)=S(R 2)=1 / 10 \text { block } \\ M E M=101 \text { blocks }\end{array}\right.$

Cost: for each R1 tuple:
[Read tuple + Read R2]
Total $=10,000[1+5000]=50,010,000 \mathrm{IOs}$

- Can we do better?

- Can we do better?

Use our memory
(1) Read 100 blocks of R1
(2) Read all of R2 (using 1 block) + join
(3) Repeat until done

Cost: for each R1 chunk: Read chunk: 1000 IOs
Read R2: $\quad \frac{5000 \text { IOs }}{6000}$

Cost: for each R1 chunk: Read chunk: 1000 IOs
Read R2: $\quad \frac{5000}{6000}$

Total $=\frac{10,000}{1,000} \times 6000=60,000$ IOs

- Can we do better?

- Can we do better?

- Reverse join order: R2 \bowtie R1

$$
\text { Total }=\frac{5000}{1000} \times(1000+10,000)=
$$

$$
5 \times 11,000=55,000 \text { IOs }
$$

Example 1(b) Iteration Join $\mathrm{R} 2 \bowtie \mathrm{R} 1$

- Relations contiguous

Example 1(b) Iteration Join R2 \bowtie R1

- Relations contiguous

Cost
For each R2 chunk:
Read chunk: 100 IOs
Read R1: $\frac{1000}{1,100}$ IOs
Total $=5$ chunks $\times 1,100=5,500 \mathrm{IOs}$

Example 1(c) Merge Join

- Both R1, R2 ordered by C; relations contiguous

Memory

Example 1(c) Merge Join

- Both R1, R2 ordered by C; relations contiguous

Memory

Total cost: Read R1 cost + read R2 cost

$$
=1000+500=1,500 \mathrm{IOs}
$$

Example 1(d) Merge Join

- R1, R2 not ordered, but contiguous
--> Need to sort R1, R2 first.... HOW?

One way to sort: Merge Sort

(i) For each 100 blk chunk of R:

- Read chunk
- Sort in memory
- Write to disk

(ii) Read all chunks + merge + write out

Cost: Sort

Each tuple is read,written,

read, written

SO...
Sort cost R1: $4 \times 1,000=4,000$
Sort cost R2: $4 \times 500=2,000$

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost $=$ sort cost + join cost

$$
=6,000+1,500=7,500 \mathrm{IOs}
$$

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost $=$ sort cost + join cost

$$
=6,000+1,500=7,500 \mathrm{IOs}
$$

But: Iteration cost $=5,500$ so merge joint does not pay off!

But say R1 $=10,000$ blocks contiguous R2 $=5,000$ blocks not ordered

Iterate: $\frac{5000}{100} \times(100+10,000)=50 \times 10,100$
 $$
=505,000 \mathrm{IOs}
$$

Merge join: $5(10,000+5,000)=75,000$ IOs
Merge Join (with sort) WINS!

How much memory do we need for merge sort?

E.g: Say I have 10 memory blocks

100 chunks \Rightarrow to merge, need 100 blocks!

In general:

Say k blocks in memory

 x blocks for relation sort\# chunks $=(x / k) \quad$ size of chunk $=k$

In general:

Say k blocks in memory x blocks for relation sort
\# chunks $=(x / k) \quad$ size of chunk $=k$
\# chunks \leq buffers available for merge

In general:

Say k blocks in memory x blocks for relation sort
\# chunks $=(x / k) \quad$ size of chunk $=k$
\# chunks \leq buffers available for merge
so... (x / k) $\leq k$
or $k^{2} \geq x$ or $k \geq \sqrt{x}$

In our example

R 1 is 1000 blocks, $\mathrm{k} \geq 31.62$
R2 is 500 blocks, $k \geq 22.36$

Need at least 32 buffers

Can we improve on merge join?

 Hint: do we really need the fully sorted files?

Cost of improved merge join:

$\mathrm{C}=$ Read R1 + write R1 into runs + read R2 + write R2 into runs + join
$=2000+1000+1500=4500$
--> Memory requirement?

Example 1(e) Index Join

- Assume R1.C index exists; 2 levels
- Assume R2 contiguous, unordered
- Assume R1.C index fits in memory

Cost: Reads: 500 IOs for each R2 tuple:

- probe index - free
- if match, read R1 tuple: 1 IO

What is expected \# of matching
tuples?
(a) say R1.C is key, R2.C is foreign key then expect $=1$
(b) say $V(R 1, C)=5000, T(R 1)=10,000$ with uniform assumption expect $=10,000 / 5,000=2$

What is expected \# of matching
tuples?
(c) Say $\operatorname{DOM}(R 1, C)=1,000,000$

$$
T(R 1)=10,000
$$

with alternate assumption

$$
\text { Expect }=\frac{10,000}{1,000,000}=\frac{1}{100}
$$

Total cost with index join

(a) Total cost $=500+5000(1) 1=5,500$
(b) Total cost $=500+5000(2) 1=10,500$
(c) Total cost $=500+5000(1 / 100) 1=550$

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

- Keep root + 99 leaf nodes in memory
- Expected cost of each probe is

$$
E=(0) \frac{99}{200}+(1) \frac{101}{200} \approx 0.5
$$

Total cost (including probes)

$=500+5000$ [Probe + get records]
 $=500+5000[0.5+2] \quad$ uniform assumption
 $=500+12,500=13,000 \quad$ (case b)

Total cost (including probes)

$=500+5000[$ Probe + get records $]$
$=500+5000[0.5+2] \quad$ uniform assumption
$=500+12,500=13,000 \quad$ (case b)

For case (c):
$=500+5000[0.5 \times 1+(1 / 100) \times 1]$
$=500+2500+50=3050$ IOs

So far

Example 1(f) Hash Join

- R1, R2 contiguous (un-ordered)
\rightarrow Use 100 buckets
\rightarrow Read R1, hash, + write buckets

-> Same for R2
-> Read one R1 bucket; build memory hash table
-> Read corresponding R2 bucket + hash probe

\Leftrightarrow Then repeat for all buckets

Cost:

"Bucketize:" Read R1 + write

 Read R2 + write
Join:

 Read R1, R2Total cost $=3 \times[1000+500]=4500$

Cost:

"Bucketize:" Read R1 + write

> Read R2 + write

Join:

Read R1, R2

Total cost $=3 \times[1000+500]=4500$

Note: this is an approximation since buckets will vary in size and we have to round up to blocks

Minimum memory requirements:

Size of R1 bucket $=(\mathrm{x} / \mathrm{k})$
$\mathrm{k}=$ number of memory buffers
$\mathrm{x}=$ number of R1 blocks
So... (x / k) < k
$k>\sqrt{x}$
need: $k+1$ total memory buffers

Trick: keep some buckets in memory

$$
\begin{gathered}
\text { E.g., } k^{\prime}=33 \begin{array}{c}
\text { R1 buckets }=31 \text { blocks } \\
\text { keep } 2 \text { in memory }
\end{array}
\end{gathered}
$$

called hybrid hash-join

Trick: keep some buckets in memory

$$
\begin{gathered}
\text { E.g., } k^{\prime}=33 \begin{array}{l}
\text { R1 buckets }=31 \text { blocks } \\
\text { keep } 2 \text { in memory }
\end{array}
\end{gathered}
$$

[^0]Next: Bucketize R2

- R2 buckets =500/33= 16 blocks
- Two of the R2 buckets joined immediately with $\mathrm{G} 0, \mathrm{G} 1$

Finally: Join remaining buckets

- for each bucket pair:
- read one of the buckets into memory
- join with second bucket
memory

Cost

- Bucketize R1 = 1000+31×31=1961
- To bucketize R2, only write 31 buckets: so, cost $=500+31 \times 16=996$
- To compare join (2 buckets already done) read $31 \times 31+31 \times 16=1457$
$\underline{\text { Total cost }}=1961+996+1457=4414$

- How many buckets in memory?

?

- See textbook for answer...

Another hash join trick:

- Only write into buckets <val,ptr> pairs
- When we get a match in join phase, must fetch tuples
- To illustrate cost computation, assume:
- 100 <val,ptr> pairs/block
- expected number of result tuples is 100
- To illustrate cost computation, assume:
- 100 <val,ptr> pairs/block
- expected number of result tuples is 100
- Build hash table for R2 in memory 5000 tuples $\rightarrow 5000 / 100=50$ blocks
- Read R1 and match
- Read ~ 100 R2 tuples
- To illustrate cost computation, assume:
- 100 <val,ptr> pairs/block
- expected number of result tuples is 100
- Build hash table for R2 in memory 5000 tuples $\rightarrow 5000 / 100=50$ blocks
- Read R1 and match
- Read ~ 100 R2 tuples
Total cost $=$ Read R2:
Read R1:
Get tuples:
500
1000
100
1600

So far:

Iterate	5500
Merge join	1500
Sort+merge joint	7500
R1.C index	$5500 \rightarrow 550$
R2.C index	-
Build R.C index	-
Build S.C index	$\overline{4500+}$
Bash join	
with trick,R1 first	4414
with trick,R2 first	$\overline{1600}$
Hash join, pointers	

Summary

- Iteration ok for "small" relations (relative to memory size)
- For equi-join, where relations not sorted and no indexes exist, hash join usually best
- Sort + merge join good for non-equi-join (e.g., R1.C > R2.C)
- If relations already sorted, use merge join
- If index exists, it could be useful
(depends on expected result size)

Join strategies for parallel processors

Later on....

Chapter 16 [16] summary

- Relational algebra level
- Detailed query plan level
- Estimate costs
- Generate plans
- Join algorithms
- Compare costs

[^0]: called hybrid hash-join

