Query Operators

Parke Godfrey

EECS-4411 Fall 2017 Query Operators

Query Optimization

--> (Generating and comparing plans

Query
Generate / / \ __ Plans

e 0 o o ® -
Pruning X \
® ® ®
Estimate Cost
- m mh Cost
Select e -)
Pick Min

EECS-4411 Fall 2017 Query Operators

To generate plans consider:

e Transforming relational algebra expression

(e.g. order of joins)

e Use of existing indexes
e Building indexes or sorting on the fly

EECS-4411 Fall 2017 Query Operators 3

e Implementation details:
e.g. - Join algorithm
- Memory management
- Parallel processing

EECS-4411 Fall 2017 Query Operators

Estimating IOs:

e Count # of disk blocks that must be
read (or written) to execute query plan

EECS-4411 Fall 2017 Query Operators

To estimate costs, we may have
additional parameters:

B(R) = # of blocks containing R tuples
f(R) = max # of tuples of R per block
M = # memory blocks available

EECS-4411 Fall 2017 Query Operators

To estimate costs, we may have
additional parameters:

B(R) = # of blocks containing R tuples
f(R) = max # of tuples of R per block
M = # memory blocks available

HT(i) = # levels in index i
LB(i) = # of leaf blocks in index i

EECS-4411 Fall 2017 Query Operators

Clustering index

Index that allows tuples to be read in an
order that corresponds to physical order

A

/ 10

o s

INdex

\

19

35

37

EECS-4411 Fall 2017 Query Operators

Notions of clustering

e Clustered file organization
R1 R2 S1S2 R3 R4 S3 S4

e Clustered relation
R1 R2 R3 R4 R5 R5 R7 RS

e Clustering index

EECS-4411 Fall 2017 Query Operators

Example R1 <1 R2 over common attribute C

T(R1) = 10,000

T(R2) = 5,000

S(R1) = S(R2) = 1/10 block
Memory available = 101 blocks

EECS-4411 Fall 2017 Query Operators 10

Example R1 <1 R2 over common attribute C

T(R1) = 10,000

T(R2) = 5,000

S(R1) = S(R2) = 1/10 block
Memory available = 101 blocks

— Metric: # of IOs
(ignoring writing of result)

EECS-4411 Fall 2017 Query Operators 11

Caution!

This may not be the best way to compare
e ignoring CPU costs

e ignoring timing

e ignoring double buffering requirements

EECS-4411 Fall 2017 Query Operators 12

Options

e Transformations: R1><]R2, R2 ><] R1

e Joint algorithms:
— Iteration (nested loops)
— Merge join
— Join with index
— Hash join

EECS-4411 Fall 2017 Query Operators

13

o Tteration join (conceptually)
for each r € R1 do
for each s € R2 do
if r.C = s.C then output r,s pair

EECS-4411 Fall 2017 Query Operators

14

e Merge join (conceptually)
(1) if R1 and R2 not sorted, sort them

(2)i<1,j< 1,

While (i < T(R1)) » (j = T(R2)) do

if R1{i }.C = R2{]

else if R1{i }.C >

}.C then outputTuples

R2{j }.Cthenj < j+1

else if R1{ i }.C < R2{j }.Ctheni < i+1

EECS-4411 Fall 2017 Query Operators 15

Procedure Output-Tuples
While (R1{i }.C=R2{j }.C) A (i= T(R1)) do
J) <= J;
while (R1{ i }.C = R2{ jj }.C) A (jj = T(R2)) do
[output pair R1{ i }, R2{ jj };
J<3+1]
| <— i+1]

EECS-4411 Fall 2017 Query Operators 16

Example

i R1{i}.C R2{j}.C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5
50 6

/

EECS-4411 Fall 2017

52

Query Operators

17

e Join with index (Conceptually)

For each r € R1 do
[X < index (R2, C, r.C)
for each s € X do
output r,s pair]

Assume R2.C index

Note: X < index(rel, attr, value)

then X = set of rel tuples with attr = value

EECS-4411 Fall 2017 Query Operators

18

e Hash join (conceptual)
— Hash function h, range 0 — k
— Buckets for R1: GO, G1, ... Gk
— Buckets for R2: HO, H1, ... Hk

EECS-4411 Fall 2017 Query Operators

19

e Hash join (conceptual)
— Hash function h, range 0 — k
— Buckets for R1: GO, G1, ... Gk
— Buckets for R2: HO, H1, ... Hk

Algorithm
(1) Hash R1 tuples into G buckets
(2) Hash R2 tuples into H buckets
(3) Fori=0to k do

match tuples in Gi, Hi buckets

EECS-4411 Fall 2017 Query Operators 20

Simple example

1 R2

2

w- N u|o

13
8

O 00 UTW AN

11
14

EECS-4411 Fall 2017

Even

Odd:

hash: even/odd

Buckets
248 412 8 14
R1 R2
359 531311

Query Operators

21

Factors that affect performance

(1) Tuples of relation stored
physically together?

(2) Relations sorted by join attribute?

(3) Indexes exist?

EECS-4411 Fall 2017 Query Operators

22

Example 1(a) Iteration Join R1><]R2

e Relations not contiguous

e Recall (T(R1) = 10,000 T(R2) = 5,000
S(R1) = S(R2) =1/10 block

- MEM=101 blocks

AL

EECS-4411 Fall 2017 Query Operators 23

Example 1(a) Iteration Join R1><]R2

e Relations not contiguous

e Recall (T(R1) = 10,000 T(R2) = 5,000
S(R1) = S(R2) =1/10 block

- MEM=101 blocks

AL

Cost: for each R1 tuple:

A <

Total =10,000 [1+5000]=50,010,000 IOs

EECS-4411 Fall 2017 Query Operators 24

e Can we do better?

EECS-4411 Fall 2017 Query Operators

25

e Can we do better?

Use our memory
(1) Read 100 blocks of R1

(2) Read all of R2 (using 1 block) + join
(3) Repeat until done

EECS-4411 Fall 2017 Query Operators

26

Cost: for each R1 chunk:
Read chunk: 1000 IOs
Read R2: 5000 IOs
6000

EECS-4411 Fall 2017 Query Operators

27

Cost: for each R1 chunk:
Read chunk: 1000 IOs
Read R2: 5000 IOs
6000

Total = 10,000 x 6000 = 60,000 IOs
1,000

EECS-4411 Fall 2017 Query Operators

28

e Can we do better?

EECS-4411 Fall 2017 Query Operators

29

e Can we do better?

@+ Reverse join order: R2 ><]R1

Total = 5000 x (1000 + 10,000) =
1000

5x 11,000 = 55,000 IOs

EECS-4411 Fall 2017 Query Operators

30

Example 1(b) Iteration Join R2><I R1

e Relations contiguous

EECS-4411 Fall 2017 Query Operators 31

Example 1(b) Iteration Join R2><I R1

e Relations contiguous

Cost
For each R2 chunk:
Read chunk: 100 IOs
Read R1: 1000 IOs
1,100
Total= 5 chunks x 1,100 = 5,500 IOs

EECS-4411 Fall 2017 Query Operators 32

Example 1(c) Merge Join

e Both R1, R2 ordered by C; relations contiguous

Memory

R1
R2

_
i

EECS-4411 Fall 2017

Query Operators

R2

R1

33

Example 1(c) Merge Join

Both R1, R2 ordered by C; relations contiguous

Memory

R1 7% R1
R2 7

..... R2

Total cost: Read R1 cost + read R2 cost
= 1000 + 500 = 1,500 IOs

EECS-4411 Fall 2017 Query Operators 34

Example 1(d) Merge Join

e R1, R2 not ordered, but contiguous

--> Need to sort R1, R2 first.... HOW?

EECS-4411 Fall 2017 Query Operators

35

One way to sort: Merge Sort

(i) For each 100 blk chunk of R:

- Read chunk
- Sort in memory
- Write to dis

|| EE | corted

» chunks

................
I R
/

R2 OB | O\

EECS-4411 Fall 2017 Query Operators 36

(ii) Read all chunks + merge + write out

Sorted file Memory

555555
Ty +—

k)

|}

-

LT
Foanl \
LRl

hna

......

EECS-4411 Fall 2017 Query Operators

\

Sorted
Chunks

37

Cost: Sort
Each tuple is read,written,
read, written

SO...
Sort cost R1: 4 x 1,000 = 4,000
Sort cost R2: 4 x 500 2,000

EECS-4411 Fall 2017 Query Operators

38

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost = sort cost + join cost
= 6,000 + 1,500 = 7,500 IOs

EECS-4411 Fall 2017 Query Operators 39

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost = sort cost + join cost
= 6,000 + 1,500 = 7,500 IOs

But: Iteration cost = 5,500
so merge joint does not pay off!

EECS-4411 Fall 2017 Query Operators 40

Butsay R1 = 10,000 blocks contiguous
R2 = 5,000 blocks not ordered

Iterate: 5000 x (100+10,000) = 50 x 10,100
100
= 505,000 IOs

Merge join: 5(10,000+5,000) = 75,000 IOs

Merge Join (with sort) WINS!

EECS-4411 Fall 2017 Query Operators 41

How much memory do we need for
merge sort?

E.g: Say I have 10 memory blocks

N

e 100 chunks => to merge, need
R1 — 100 blocks!

EECS-4411 Fall 2017 Query Operators 42

In general:

Say k blocks in memory
X blocks for relation sort
chunks = (x/k) size of chunk = k

EECS-4411 Fall 2017 Query Operators

43

In general:

Say k blocks in memory
X blocks for relation sort
chunks = (x/k) size of chunk = k

chunks < buffers available for merge

EECS-4411 Fall 2017 Query Operators

44

In general:

Say k blocks in memory
X blocks for relation sort
chunks = (x/k) size of chunk = k

chunks < buffers available for merge

so... (X/k) = k B
or k2=x or k= Vx

EECS-4411 Fall 2017 Query Operators

45

In our example

R1 is 1000 blocks, k = 31.62
R2 is 500 blocks, k= 22.36

Need at least 32 buffers

EECS-4411 Fall 2017 Query Operators

46

Can we improve on merge join?

Hint: do we really need the fully sorted
files?

R1

R2

EECS-4411 Fall 2017

sorted runs

Query Operators

e

Join?

—

47

Cost of improved merge join:

C = Read R1 + write R1 into runs
+ read R2 + write R2 into runs
+ join
= 2000 + 1000 + 1500 = 4500

--> Memory requirement?

EECS-4411 Fall 2017 Query Operators

48

Example 1(e) Index Join

e Assume R1.C index exists; 2 levels
e Assume R2 contiguous, unordered

e Assume R1.C index fits in memory

EECS-4411 Fall 2017 Query Operators

49

Cost: Reads: 500 IOs
for each R2 tuple:
- probe index - free
- if match, read R1 tuple: 1 IO

EECS-4411 Fall 2017 Query Operators

50

What is expected # of matching
tuples?

(@) say R1.C is key, R2.C is foreign key
then expect = 1

(b) say V(R1,C) = 5000, T(R1) = 10,000
with uniform assumption
expect = 10,000/5,000 =2

EECS-4411 Fall 2017 Query Operators 51

What is expected # of matching
tuples?

(c) Say DOM(R1, C)=1,000,000
T(R1) = 10,000
with alternate assumption
Expect = 10,000 =1

1,000,000 100

EECS-4411 Fall 2017 Query Operators 52

Total cost with index join

(@) Total cost = 500+5000(1)1 = 5,500
(b) Total cost = 500+5000(2)1 = 10,500

(c) Total cost = 500+5000(1/100)1=550

EECS-4411 Fall 2017 Query Operators 53

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

e Keep root + 99 |leaf nodes in memory
e Expected cost of each probe is

E=(0)23 +(1)101 ~0.5
200 200

EECS-4411 Fall 2017 Query Operators 54

Total cost (including probes)

= 50045000 [Probe + get records]
= 500+5000 :05+2] uniform assumption
= 500+12,500 = 13,000 (case b)

EECS-4411 Fall 2017 Query Operators

55

Total cost (including probes)

= 50045000 [Probe + get records]
= 500+5000 :05+2] uniform assumption
= 500+12,500 = 13,000 (case b)

For case (C):
= 500+5000[0.5 x 1 + (1/100) x 1]
= 500+2500+50 = 3050 IOs

EECS-4411 Fall 2017 Query Operators 56

So far

o [Iterate R2[><IR1 55,000 (best)
o S Merge Join
2.2 < Sort+ Merge Join
S | RL.CIndex
. R2.C Index
. [Iterate R2 ><]R1 5500
3 Merge join 1500
& 1 Sort+Merge Join 7500 — 4500
IS R1.C Index 5500 — 3050 — 550
© . R2.C Index

EECS-4411 Fall 2017 Query Operators 57

Example 1(f) Hash Join

e R1, R2 contiguous (un-ordered)
— Use 100 buckets
— Read R1, hash, + write buckets

S T
10 blocks

«— —»

EECS-4411 Fall 2017 Query Operators 58

-> Same for R2
-> Read one R1 bucket; build memory hash table
-> Read corresponding R2 bucket + hash probe

—

7.
R1

memory

= Then repeat for all buckets

EECS-4411 Fall 2017 Query Operators 59

Cost:

“Bucketize:”

Join:

Read R1 + write

Read

Reac

R2 + write
R1, R2

Total cost = 3 x [1000+500] = 4500

EECS-4411 Fall 2017

Query Operators

60

Cost:

“Bucketize:” Read R1 + write

Join:

Read R2 + write
Read R1, R2

Total cost = 3 x [1000+500] = 4500

Note: this is an approximation since
buckets will vary in size and
we have to round up to blocks

EECS-4411 Fall 2017 Query Operators

61

Minimum memory reguirements:

Size of R1 bucket = (x/k)

k = number of memory buffers
X = number of R1 blocks

So... (X/k) < k

k > vx need: k+1 total memory
buffers

EECS-4411 Fall 2017 Query Operators 62

Trick: keep some buckets in memory

E.g., kK =33 R1 buckets = 31 blocks
keep 2 in memory

memory

rR1 | I Go

| 7 31
G1 « T
/ //V
% | 33-2=31
7/ : |

called hybrid hash-join

EECS-4411 Fall 2017 Query Operators

Trick: keep some buckets in memory

E.g., kK =33 R1 buckets = 31 blocks

keep 2 in memory
memory Memory use:
GO 31 buffers
IN G1 31 buffers
E 7 Go 31 Output 33-2 buffers
G1 . , R1 input 1
T Total 94 buffers
2 6 buffers to spare!!
, P 33-2=31
7

called hybrid hash-join

EECS-4411 Fall 2017

Query Operators 64

Next: Bucketize R2
— R2 buckets =500/33= 16 blocks

— Two of the R2 buckets joined immediately
with GO,G1

memory

oy | N c R2 b)ldeetS R1 buckets
0

7 [\ Vi

_ | 7 16 31
G]_ «—>
—— T T
Z L1 33-2-31 — 1 332=31
7/ -] . l .
'/

EECS-4411 Fall 2017 Query Operators

65

Finally: Join remaining buckets

dans

— for each bucket pair:

e read one of the buckets into memory

e join with second bucket

memory
one full R2
out bucket
% Gi
%
one R1

buffer

EECS-4411 Fall 2017

R2 buckets
A

[

16

Query Operators

R1 buckets

Cost
e Bucketize R1 = 1000+31x31=1961

e To bucketize R2, only write 31 buckets:
so, cost = 500+31x16=996

e To compare join (2 buckets already done)
read 31x31+31x16=1457

Total cost = 1961+996+1457 = 4414

EECS-4411 Fall 2017 Query Operators 67

e How many buckets in memory?

memory memory
rR1 | N | Go Ry | 1IN
— | % — | 1 Go
G1
7 OR... 2
7 %

& See textbook for answer...

EECS-4411 Fall 2017 Query Operators

Another hash join trick:

e Only write into buckets
<val,ptr> pairs

e When we get a match in join phase,
must fetch tuples

EECS-4411 Fall 2017 Query Operators

69

e To illustrate cost computation, assume:
— 100 <val,ptr> pairs/block
— expected number of result tuples is 100

EECS-4411 Fall 2017 Query Operators

70

e To illustrate cost computation, assume:
— 100 <val,ptr> pairs/block
— expected number of result tuples is 100
e Build hash table for R2 in memory
5000 tuples — 5000/100 = 50 blocks
e Read R1 and match
e Read ~ 100 R2 tuples

EECS-4411 Fall 2017 Query Operators

/1

e To illustrate cost computation, assume:
— 100 <val,ptr> pairs/block
— expected number of result tuples is 100

e Build hash table for R2 in memory
5000 tuples — 5000/100 = 50 blocks

e Read R1 and match
e Read ~ 100 R2 tuples

Total cost = Read R2: 500
Read R1: 1000
Get tuples: 100

1600

EECS-4411 Fall 2017 Query Operators

So far:

| ITterate
Merge join

R1.C index
R2.C index

contiguous

Hash join

EECS-4411 Fall 2017

Sort+merge joint

Build R.C index
Build S.C index

with trick,R1 first
with trick,R2 first
. Hash join, pointers

Query Operators

5500
1500
/7500
5500 — 550

4500+
4414

1600

73

Summary

e Tteration ok for “small” relations
(relative to memory size)

e For equi-join, where relations not
sorted and no indexes exist,
hash join usually best

EECS-4411 Fall 2017 Query Operators

74

e Sort + merge join good for
non-equi-join (e.g., R1.C > R2.C)

o If relations already sorted, use
merge join

o If index exists, it could be useful
(depends on expected result size)

EECS-4411 Fall 2017 Query Operators

75

Join strateqies for parallel processors

Later on....

EECS-4411 Fall 2017 Query Operators

76

Chapter 16 [16] summary

e Relational algebra level

e Detailed query plan level
— Estimate costs

— Generate plans
e Join algorithms

— Compare costs

EECS-4411 Fall 2017 Query Operators

77

