Concurrency Control

Parke Godfrey

EECS-4411 Winter 2017

Thanks to

- These slides are authored by Hector Garcia Molina (Stanford), 2002.
- They follow the class textbook ("Stanford").

Chapter 18 [18] Concurrency Control

Example:

T1: Read(A) $A \leftarrow A + 100$ Write(A) Read(B) $B \leftarrow B+100$ Write(B) Constraint: A=B

T2: Read(A) $A \leftarrow A \times 2$ Write(A) Read(B) $B \leftarrow B \times 2$ Write(B)

Schedule A

T2 T1 Read(A); $A \leftarrow A+100$ Write(A); Read(B); $B \leftarrow B+100$; Write(B); Write(A);

Read(A); $A \leftarrow A \times 2$; Read(B); $B \leftarrow B \times 2$; Write(B);

Schedule A

		A	В
T1	T2	25	25
Read(A); $A \leftarrow A+100$ Write(A); Read(B); $B \leftarrow B+100$;		125	
Write(B);	Read(A);A \leftarrow A×2; Write(A); Read(B);B \leftarrow B×2;	250	125
	Write(B);	250	250 250

Schedule B

T2 T1 Read(A); $A \leftarrow A \times 2$; Write(A); Read(B); $B \leftarrow B \times 2$; Write(B); Read(A); $A \leftarrow A+100$ Write(A); Read(B); $B \leftarrow B+100$; Write(B);

Schedule B			
		А	В
T1	T2	25	25
Read(A); $A \leftarrow A+100$ Write(A);	Read(A);A \leftarrow A×2; Write(A); Read(B);B \leftarrow B×2; Write(B);	50	50
Write(B); $D \leftarrow D+100$,			150
		150	150

Schedule C	
T1	Т2
Read(A); $A \leftarrow A+100$	
Write(A);	
	Read(A);A \leftarrow A×2;
	Write(A);
Read(B); $B \leftarrow B+100$;	
Write(B);	
	Read(B); $B \leftarrow B \times 2$;
	Write(B);

Schedule C			
		Α	В
T1	T2	25	25
Read(A); A ← A+100			
Write(A);		125	
	Read(A);A \leftarrow A×2;		
	Write(A);	250	
Read(B); B ← B+100;			
Write(B);			125
	Read(B); $B \leftarrow B \times 2$;		
	Write(B);		250
		250	250
		l	

Schedule D T2 T1 Read(A); $A \leftarrow A+100$ Write(A); Read(A); $A \leftarrow A \times 2$; Write(A); Read(B); $B \leftarrow B \times 2$; Write(B); Read(B); $B \leftarrow B+100$; Write(B);

Schedule D			
		A	В
T1	T2	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A);A \leftarrow A×2;		
	Write(A);	250	
	Read(B); $B \leftarrow B \times 2$;		
	Write(B);		50
Read(B); B ← B+100;			
Write(B):			150
		250	150

Schedule E	Same as Schedule D but with new T2'
T1	T2′
Read(A); $A \leftarrow A+100$	
Write(A);	
	Read(A);A \leftarrow A×1;
	Write(A);
	Read(B); $B \leftarrow B \times 1$;
	Write(B);
Read(B); B ← B+100	•
Write(B);	

Schedule E	Same as Schedule D but with new T2'		
		A	В
T1	T2′	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A);A ← A×1;		
	Write(A);	125	
	Read(B):B \leftarrow Bx1:		
	Write(B):		25
Read(B): $B \leftarrow B+100$);		
Write(B):			125
		125	125

- Want schedules that are "good", regardless of
 - initial state and
 - transaction semantics
- Only look at order of read and writes

Example: Sc=r₁(A)w₁(A)r₂(A)w₂(A)r₁(B)w₁(B)r₂(B)w₂(B)

The Transaction Game

The Transaction Game

Α	r	W	r	W				
B					r	W	r	W
T1	r	W			r	W		
T2			r	W			r	W

The Transaction Game

can move column

Α	r	W			r	W		
В			r	W			r	W
T1	r	W	r	W				
T2					r	W	r	W

Schedule D

Α	r	W	r	W				
В					r	W	r	W
T1	r	W					r	W
T2			r	W	r	W		

However, for Sd: Sd= $r_1(A)w_1(A)r_2(A)w_2(A)r_2(B)w_2(B)r_1(B)w_1(B)$

 as a matter of fact, T₂ must precede T₁ in any equivalent schedule, i.e., T₂ → T₁

- $T_2 \rightarrow T_1$
- Also, $T_1 \rightarrow T_2$

 $\begin{array}{ccc} T_1 & \overrightarrow{T_2} & \overrightarrow{T_2}$

Returning to Sc

Sc=r₁(A)w₁(A)r₂(A)w₂(A)r₁(B)w₁(B)r₂(B)w₂(B) $T_1 \rightarrow T_2$ $T_1 \rightarrow T_2$

Returning to Sc

Sc=r₁(A)w₁(A)r₂(A)w₂(A)r₁(B)w₁(B)r₂(B)w₂(B) $T_1 \rightarrow T_2$ $T_1 \rightarrow T_2$

• no cycles \Rightarrow Sc is "equivalent" to a serial schedule (in this case T₁,T₂)

Concepts

Transaction: sequence of $r_i(x)$, $w_i(x)$ actions *Conflicting actions:* $r_1(A) \xrightarrow{W2(A)} W1(A) \xrightarrow{W1(A)} W2(A)$

- Schedule: represents chronological order in which actions are executed
- *Serial schedule:* no interleaving of actions or transactions

Is it OK to model reads & writes as occurring at a single point in time in a schedule?

What about conflicting, concurrent actions on same object? $start r_1(A) = end r_1(A)$

Т	T	
start w ₂ (A)	end w ₂ (A)	time

What about c on same ob	onflicting, c ject?	concurrent ac	tions
start r1(A)		end r ₁ (A)	
start w ₂ (A)	end w ₂ (A)		time

- Assume equivalent to either r₁(A) w₂(A)
 or w₂(A) r₁(A)
- \Rightarrow low level synchronization mechanism
- Assumption called "atomic actions"

Definition

S₁, S₂ are <u>conflict equivalent</u> schedules if S₁ can be transformed into S₂ by a series of swaps on non-conflicting actions.

Definition

A schedule is <u>conflict serializable</u> if it is conflict equivalent to some serial schedule.

Precedence graph P(S) (S is schedule)

Nodes: transactions in S Arcs: Ti \rightarrow Tj whenever

- p_i(A), q_j(A) are actions in S
- $p_i(A) <_S q_j(A)$
- at least one of pi, qj is a write

Exercise:

What is P(S) for
 S = w₃(A) w₂(C) r₁(A) w₁(B) r₁(C) w₂(A) r₄(A) w₄(D)

• Is S serializable?

Another Exercise:

What is P(S) for
 S = w1(A) r2(A) r3(A) w4(A) ?

Lemma

S₁, S₂ conflict equivalent $\Rightarrow P(S_1)=P(S_2)$

<u>Lemma</u>

S₁, S₂ conflict equivalent \Rightarrow P(S₁)=P(S₂)

$\begin{array}{l} \underline{Proof:}\\ Assume \ P(S_1) \neq P(S_2)\\ \Rightarrow \ \exists \ T_i: \ T_i \rightarrow T_j \ in \ S_1 \ and \ not \ in \ S_2\\ \Rightarrow \ S_1 = \dots p_i(A) \dots \ q_j(A) \dots \ \left[\begin{array}{c} p_i, q_j \\ p_i, q_j \\ conflict \end{array} \right] \end{array}$

\Rightarrow S₁, S₂ not conflict equivalent

EECS-4411 Winter 2017
Note: $P(S_1)=P(S_2) \neq S_1$, S_2 conflict equivalent

Note: $P(S_1)=P(S_2) \neq S_1$, S_2 conflict equivalent

Counter example:

 $S_1 = w_1(A) r_2(A) w_2(B) r_1(B)$

 $S_2 = r_2(A) w_1(A) r_1(B) w_2(B)$

Theorem

$P(S_1)$ acyclic $\iff S_1$ conflict serializable

Theorem

$P(S_1)$ acyclic $\iff S_1$ conflict serializable

(\Leftarrow) Assume S₁ is conflict serializable $\Rightarrow \exists S_s: S_s, S_1 \text{ conflict equivalent}$ $\Rightarrow P(S_s) = P(S_1)$ $\Rightarrow P(S_1) \text{ acyclic since } P(S_s) \text{ is acyclic}$

<u>Theorem</u> P(S₁) acyclic \iff S₁ conflict serializable

EECS-4411 Winter 2017

Theorem

 $P(S_1)$ acyclic $\iff S_1$ conflict serializable

(\Rightarrow) Assume P(S₁) is acyclic T_2 Transform S₁ as follows: (1) Take T₁ to be transaction with no incident arcs (2) Move all T₁ actions to the front

$$S_1 = \dots q_j(A) \dots p_1(A) \dots$$

(3) we now have S1 = < T1 actions ><... rest ...>
(4) repeat above steps to serialize rest!

EECS-4411 Winter 2017

Concurrency Control

4

How to enforce serializable schedules?

Option 1: run system, recording P(S); at end of day, check for P(S) cycles and declare if execution was good

How to enforce serializable schedules?

Option 2: prevent P(S) cycles from occurring T₁ T₂ T_n Scheduler

A locking protocol

<u>Rule #1:</u> Well-formed transactions

Ti: ... Ii(A) ... pi(A) ... ui(A) ...

<u>Rule #2</u> Legal scheduler

$S = \dots$ $Ii(A) \dots Ui(A) \dots$ no Ij(A)

EECS-4411 Winter 2017

Exercise:

 What schedules are legal? What transactions are well-formed?
 S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B) r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

 $S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$ $I_2(B)r_2(B)w_2(B)I_3(B)r_3(B)u_3(B)$

 $S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$ $I_2(B)r_2(B)w_2(B)u_2(B)I_3(B)r_3(B)u_3(B)$

Exercise:

 What schedules are legal? What transactions are well-formed?
 S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B) r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

 $S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$ I_2(B)r_2(B)w_2(B)I_3(B)r_3(B)u_3(B)u_2(B)?

 $S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$ $I_2(B)r_2(B)w_2(B)u_2(B)I_3(B)r_3(B)u_3(B)$

Schedule F

T1	T2
l1(A);Read(A)	
A←A+100;Write(A);u1(A)	
	I ₂ (A);Read(A)
	A←Ax2;Write(A);u2(A)
	I ₂ (B);Read(B)
	B←Bx2;Write(B);u ₂ (B)
I1(B);Read(B)	
B←B+100;Write(B);u ₁ (B)	

Schedule F

		_A	B
T1	Т2	25	25
I1(A);Read(A)			
A←A+100;Write(A);u1(A)		125	
	I ₂ (A);Read(A)		
	A←Ax2;Write(A);u2(A)	250	
	l2(B);Read(B)		
	B←Bx2;Write(B);u2(B)		50
l1(B);Read(B)			
B←B+100;Write(B);u1(B)			150
		250	150

Concurrency Control

<u>Rule #3</u> Two phase locking (2PL) for transactions

Schedule G

Schedule G

Schedule G

<u>Schedule H</u> (T₂ reversed)

- Assume deadlocked transactions are rolled back
 - They have no effect
 - They do not appear in schedule

E.g., Schedule H = This space intentionally left blank!

Next step:

Show that rules $#1,2,3 \Rightarrow$ conflictserializable schedules

<u>Conflict rules for</u> $I_i(A)$, $u_i(A)$:

- I_i(A), I_j(A) conflict
- l_i(A), u_j(A) conflict

Note: no conflict < $u_i(A)$, $u_j(A)$ >, < $l_i(A)$, $r_j(A)$ >,...

To help in proof: <u>Definition</u> Shrink(Ti) = SH(Ti) = first unlock action of Ti

<u>Lemma</u> Ti \rightarrow Tj in S \Rightarrow SH(Ti) <_S SH(Tj)

Lemma $Ti \rightarrow Tj$ in $S \rightarrow SH(Ti) <_{S} SH(Tj)$ Proof of lemma: Ti \rightarrow Tj means that $S = ... p_i(A) ... q_i(A) ...; p,q conflict$ By rules 1,2: $S = ... p_i(A) ... u_i(A) ... l_j(A) ... q_j(A) ...$

Lemma $Ti \rightarrow Tj$ in $S \rightarrow SH(Ti) <_{S} SH(Tj)$ Proof of lemma: Ti \rightarrow Tj means that $S = ... p_i(A) ... q_i(A) ...; p,q conflict$ By rules 1,2: $S = ... p_i(A) ... u_i(A) ... l_j(A) ... q_j(A) ...$ By rule 3: SH(Ti) SH(Tj) So, SH(Ti) $<_{s}$ SH(Tj)

$\begin{array}{ll} \underline{\text{Theorem}} & \text{Rules } \#1,2,3 \implies \text{conflict} \\ & (2\text{PL}) & \text{serializable} \\ & \text{schedule} \end{array}$

Proof:

(1) Assume P(S) has cycle

 $T_1 \rightarrow T_2 \rightarrow \dots T_n \rightarrow T_1$

(2) By lemma: SH(T₁) < SH(T₂) < ... < SH(T₁)
(3) Impossible, so P(S) acyclic
(4) ⇒ S is conflict serializable

2PL subset of Serializable

S1: w1(x) w3(x) w2(y) w1(y)

EECS-4411 Winter 2017

S1: w1(x) w3(x) w2(y) w1(y)

- S1 cannot be achieved via 2PL: The lock by T1 for y must occur after w2(y), so the unlock by T1 for x must occur after this point (and before w1(x)). Thus, w3(x) cannot occur under 2PL where shown in S1 because T1 holds the x lock at that point.
- However, S1 is serializable (equivalent to T2, T1, T3).

If you need a bit more practice: Are our schedules S_c and S_D 2PL schedules?

S_{c} : w1(A) w2(A) w1(B) w2(B)

S_{D} : w1(A) w2(A) w2(B) w1(B)

- Beyond this simple 2PL protocol, it is all a matter of improving performance and allowing more concurrency....
 - Shared locks
 - Multiple granularity
 - Inserts, deletes and phantoms
 - Other types of C.C. mechanisms

Shared locks

Shared locks

Lock actions

I-t_i(A): lock A in t mode (t is S or X) u-t_i(A): unlock t mode (t is S or X)

<u>Shorthand:</u> u_i(A): unlock whatever modes Ti has locked A

<u>Rule #1</u> Well formed transactions

$T_{i} = \dots I - S_{1}(A) \dots r_{1}(A) \dots u_{1}(A) \dots T_{i} = \dots I - X_{1}(A) \dots w_{1}(A) \dots u_{1}(A) \dots u_{1}(A) \dots$

• What about transactions that read and write same object?

<u>Option 1:</u> Request exclusive lock $T_i = \dots I - X_1(A) \dots r_1(A) \dots w_1(A) \dots u(A) \dots$ What about transactions that read and write same object?

Option 2: Upgrade

(E.g., need to read, but don't know if will write...)

$$T_i = \dots I-S_1(A) \dots r_1(A) \dots I-X_1(A) \dots w_1(A) \dots u(A) \dots$$

$$Think of$$

$$- Get 2nd lock on A, or$$

$$- Drop S, get X lock$$

A way to summarize Rule #2

Compatibility matrix

Comp		S	X
	S	true	false
	X	false	false

Rule # 3 2PL transactions

No change except for upgrades:
(I) If upgrade gets more locks

(e.g., S → {S, X}) then no change!

(II) If upgrade releases read (shared)

lock (e.g., S → X)
can be allowed in growing phase

TheoremRules 1,2,3 \Rightarrow Conf.serializablefor S/X locksschedules

Proof: similar to X locks case

Detail:

I-t_i(A), I-r_j(A) do not conflict if comp(t,r) I-t_i(A), u-r_j(A) do not conflict if comp(t,r)

Lock types beyond S/X

Examples: (1) increment lock (2) update lock Example (1): increment lock

- Atomic increment action: IN_i(A) {Read(A); A ← A+k; Write(A)}
- IN_i(A), IN_j(A) do not conflict!

	S	X	Ι
S			
X			
Ι			

EECS-4411 Winter 2017

Comp

	S	Х	Ι
S	Т	F	F
Х	F	F	F
Ι	F	F	Т

EECS-4411 Winter 2017

Update locks

A common deadlock problem with upgrades: T2 T1 $I-S_1(A)$ $I-S_2(A)$ $\left| - \left(\right) \right|$ $\left| - \frac{1}{2} \left(\frac{1}{2} \right) \right|$ --- Deadlock ----

Solution

If T_i wants to read A and knows it may later want to write A, it requests <u>update</u> lock (not shared)

-> symmetric table?

<u>Note:</u> object A may be locked in different modes at the same time...

$$S_1 = ... I - S_1(A) ... I - S_2(A) ... I - U_3(A) ... I - S_4(A) ... ?$$

I - U₄(A) ... ?

(

<u>Note:</u> object A may be locked in different modes at the same time...

$$S_1 = ... I - S_1(A) ... I - S_2(A) ... I - U_3(A) ... I - S_4(A) ... ?$$

I - U₄(A) ... ?

1

 To grant a lock in mode t, mode t must be compatible with all currently held locks on object

How does locking work in practice?

• Every system is different

(E.g., may not even provide CONFLICT-SERIALIZABLE schedules)

• But here is one (simplified) way ...

Sample Locking System:

(1) Don't trust transactions to request/release locks

(2) Hold all locks until transaction commits

Lock table Conceptually

But use hash table:

If object not found in hash table, it is unlocked

Lock info for A - example

What are the objects we lock?

EECS-4411 Winter 2017

 Locking works in any case, but should we choose <u>small</u> or <u>large objects?</u>

- Locking works in any case, but should we choose <u>small</u> or <u>large objects?</u>
- If we lock <u>large</u> objects (e.g., Relations)
 - Need few locks
 - Low concurrency
- If we lock small objects (e.g., tuples, fields)
 - Need more locks
 - More concurrency

We <u>can</u> have it both ways!!

Ask any janitor to give you the solution...

EECS-4411 Winter 2017

EECS-4411 Winter 2017

Multiple granularity Comp Requestor IS IX S SIX X IS Holder IX S SIX Х
Multiple granularity

Parent locked in	Child can be locked in	_
IS IX		=
S		
SIX		
Х		

Parent locked in	Child can be lock by same transact	ed ion in
IS IX	IS, S IS, S, IX, X, SIX	P
SIX	None X, IX, [SIX]	
Χ	none	C
		not necessary

<u>Rules</u>

(1) Follow multiple granularity comp function

- (2) Lock root of tree first, any mode
- (3) Node Q can be locked by Ti in S or IS only if parent(Q) locked by Ti in IX or IS
- (4) Node Q can be locked by Ti in X,SIX,IX only if parent(Q) locked by Ti in IX,SIX
- (5) Ti is two-phase
- (6) Ti can unlock node Q only if none of Q's children are locked by Ti

• Can T₂ access object f_{2.2} in X mode? What locks will T₂ get?

• Can T₂ access object f_{2.2} in X mode? What locks will T₂ get?

 Can T₂ access object f_{3.1} in X mode? What locks will T₂ get?

• Can T₂ access object f_{2.2} in S mode? What locks will T₂ get?

• Can T₂ access object f_{2.2} in X mode? What locks will T₂ get?

Insert + delete operations

Modifications to locking rules:

(1) Get exclusive lock on A before deleting A

(2) At insert A operation by Ti, Ti is given exclusive lock on A

Still have a problem: Phantoms

Example: relation R (E#,name,...) constraint: E# is key use tuple locking

T₁: Insert <12,Obama,...> into R T₂: Insert <12,Romney,...> into R

<u>Solution</u>

- Use multiple granularity tree
- Before insert of node Q, lock parent(Q) in X mode

Concurrency Control

 t_1

t₃

R1

t2

Back to example

T1: Insert<12,Obama> T₂: Insert<12,Romney> T_1 **T**2 X1(R) delayed Check constraint Insert<12,Obama> $U_1(R)$ X2(R) Check constraint Oops! e# = 12 already in R!

Instead of using R, can use index on R:

• This approach can be generalized to multiple indexes...

Next:

- Tree-based concurrency control
- Validation concurrency control

Example

all objects accessed through root, following pointers
B
C
D
F

Example

Example

can we release A lock if we no longer need A??

Idea: traverse like "Monkey Bars"

Idea: traverse like "Monkey Bars"

Idea: traverse like "Monkey Bars"

Why does this work?

- Assume all Ti start at root; exclusive lock
- $T_i \rightarrow T_j \Rightarrow T_i$ locks root before T_j

 Actually works if we don't always start at root

<u>Rules: tree protocol</u> (exclusive locks)

(1) First lock by Ti may be on any item

- (2) After that, item Q can be locked by Ti only if parent(Q) locked by Ti
- (3) Items may be unlocked at any time
- (4) After Ti unlocks Q, it cannot relock Q

• Tree-like protocols are used typically for B-tree concurrency control

E.g., during insert, do not release parent lock, until you are certain child does not have to split

Tree Protocol with Shared Locks

• Rules for shared & exclusive locks?

Tree Protocol with Shared Locks

• Rules for shared & exclusive locks?

Tree Protocol with Shared Locks

- Need more restrictive protocol
- Will this work??
 - Once T₁ locks one object in X mode, all further locks down the tree must be in X mode

Validation

Transactions have 3 phases:

(1) <u>Read</u>

- all DB values read
- writes to temporary storage
- no locking
- (2) <u>Validate</u>
 - check if schedule so far is serializable
- (3) <u>Write</u>
 - if validate ok, write to DB

Key idea

- Make validation atomic
- If T₁, T₂, T₃, ... is validation order, then resulting schedule will be conflict equivalent to S_s = T₁ T₂ T₃...

To implement validation, system keeps <u>two sets:</u>

- <u>FIN</u> = transactions that have finished phase 3 (and are all done)
- <u>VAL</u> = transactions that have successfully finished phase 2 (validation)

Example of what validation must prevent:

Another thing validation must prevent:

Another thing validation must prevent:

Validation rules for Tj:

```
(1) When T<sub>j</sub> starts phase 1:
        ignore(T<sub>j</sub>) ← FIN
(2) at T<sub>j</sub> Validation:
                if check (T<sub>j</sub>) then
                        [VAL \leftarrow VAL \cup \{T_j\};
                          do write phase;
                          FIN \leftarrow FIN U {T<sub>i</sub>} ]
```

Check (Tj): For Ti \in VAL - IGNORE (Tj) DO IF [WS(Ti) \cap RS(Tj) $\neq \emptyset$ OR Ti \notin FIN] THEN RETURN false; RETURN true;

Check (Tj): For Ti \in VAL - IGNORE (Tj) DO IF [WS(Ti) \cap RS(Tj) $\neq \emptyset$ OR Ti \notin FIN] THEN RETURN false; RETURN true;

Is this check too restrictive ?

Improving Check(T_j)

For $Ti \in VAL - IGNORE(Tj) DO$ IF [WS(Ti) \cap RS(Tj) $\neq \emptyset$ OR ($Ti \notin$ FIN AND WS(Ti) \cap WS(Tj) $\neq \emptyset$)] THEN RETURN false; RETURN true;

Is Validation = 2PL?

S2: w2(y) w1(x) w2(x)

- Achievable with 2PL?
- Achievable with validation?

S2: w2(y) w1(x) w2(x)

- S2 can be achieved with 2PL: l2(y) w2(y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(y) u2(x)
- S2 cannot be achieved by validation: The validation point of T2, val2 must occur before w2(y) since transactions do not write to the database until after validation. Because of the conflict on x, val1 < val2, so we must have something like

S2: val1 val2 w2(y) w1(x) w2(x) With the validation protocol, the writes of T2 should not start until T1 is all done with its writes, which is not the case.

Validation subset of 2PL?

- Possible proof (Check!):
 - Let S be validation schedule
 - For each T in S insert lock/unlocks, get S':
 - At T start: request read locks for all of RS(T)
 - At T validation: request write locks for WS(T); release read locks for read-only objects
 - At T end: release all write locks
 - Clearly transactions well-formed and 2PL
 - Must show S' is legal (next page)

- Say S' not legal (due to w-r conflict):
 S': ... l1(x) w2(x) r1(x) val1 u1(x) ...
 - At val1: T2 not in Ignore(T1); T2 in VAL
 - − T1 does not validate: WS(T2) \cap RS(T1) ≠ Ø
 - contradiction!
- Say S' not legal (due to w-w conflict):
 S': ... val1 l1(x) w2(x) w1(x) u1(x) ...
 - Say T2 validates first (proof similar if T1 validates first)
 - At val1: T2 not in Ignore(T1); T2 in VAL
 - T1 does not validate: T2 ∉ FIN AND WS(T1) \cap WS(T2) ≠ Ø)
 - contradiction!

Conclusion: Validation subset 2PL

Validation (also called optimistic concurrency control) is useful in some cases:

- Conflicts rare
- System resources plentiful
- Have real time constraints

<u>Summary</u>

Have studied C.C. mechanisms used in practice

- 2 PL
- Multiple granularity
- Tree (index) protocols
- Validation