
EECS-4411 Winter 2017 Concurrency Control 1

Concurrency Control

Parke Godfrey

Thanks to

•  These slides are authored by Hector
Garcia Molina (Stanford), 2002.

•  They follow the class textbook
(“Stanford”).

EECS-4411 Winter 2017 Concurrency Control 2

EECS-4411 Winter 2017 Concurrency Control 3

Chapter 18 [18] Concurrency Control

 T1 T2 … Tn

DB
(consistency
constraints)

EECS-4411 Winter 2017 Concurrency Control 4

Example:

T1: Read(A) T2: Read(A)
 A ← A+100 A ← A×2
 Write(A) Write(A)
 Read(B) Read(B)
 B ← B+100 B ← B×2
 Write(B) Write(B)

Constraint: A=B

EECS-4411 Winter 2017 Concurrency Control 5

Schedule A

T1 T2
Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

EECS-4411 Winter 2017 Concurrency Control 6

Schedule A

T1 T2
Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

A B
25 25

125

 125

250

 250
250 250

EECS-4411 Winter 2017 Concurrency Control 7

Schedule B

T1 T2

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

EECS-4411 Winter 2017 Concurrency Control 8

Schedule B

T1 T2

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

A B
25 25

50

 50

150

 150
150 150

EECS-4411 Winter 2017 Concurrency Control 9

Schedule C

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);

Read(B); B ← B+100;
Write(B);

 Read(B);B ← B×2;
 Write(B);

EECS-4411 Winter 2017 Concurrency Control 10

Schedule C

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);

Read(B); B ← B+100;
Write(B);

 Read(B);B ← B×2;
 Write(B);

A B
25 25

125

250

 125

 250
250 250

EECS-4411 Winter 2017 Concurrency Control 11

Schedule D

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

Read(B); B ← B+100;
Write(B);

EECS-4411 Winter 2017 Concurrency Control 12

Schedule D

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

250

 50

 150
250 150

EECS-4411 Winter 2017 Concurrency Control 13

Schedule E

T1 T2’
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×1;
 Write(A);

 Read(B);B ← B×1;
 Write(B);

Read(B); B ← B+100;
Write(B);

Same as Schedule D
but with new T2’

EECS-4411 Winter 2017 Concurrency Control 14

Schedule E

T1 T2’
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×1;
 Write(A);

 Read(B);B ← B×1;
 Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

125

 25

 125
125 125

Same as Schedule D
but with new T2’

EECS-4411 Winter 2017 Concurrency Control 15

•  Want schedules that are “good”,
 regardless of

–  initial state and
–  transaction semantics

•  Only look at order of read and writes

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

EECS-4411 Winter 2017 Concurrency Control 16

Sc’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

 T1 T2

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

EECS-4411 Winter 2017 Concurrency Control 17

A
B
T1
T2

The Transaction Game

The Transaction Game

EECS-4411 Winter 2017 Concurrency Control 18

A r w r w
B r w r w
T1 r w r w
T2 r w r w

The Transaction Game

EECS-4411 Winter 2017 Concurrency Control 19

A r w r w
B r w r w
T1 r w r w
T2 r w r w

can move column

until column

hits something

EECS-4411 Winter 2017 Concurrency Control 20

A r w r w
B r w r w
T1 r w r w
T2 r w r w

A r w r w
B r w r w
T1 r w r w
T2 r w r w

move move

Schedule D

EECS-4411 Winter 2017 Concurrency Control 21

A r w r w
B r w r w
T1 r w r w
T2 r w r w

EECS-4411 Winter 2017 Concurrency Control 22

However, for Sd:
Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

•  as a matter of fact,
 T2 must precede T1

 in any equivalent schedule,
 i.e., T2 → T1

EECS-4411 Winter 2017 Concurrency Control 23

T1 T2 Sd cannot be rearranged
 into a serial schedule
 Sd is not “equivalent” to
 any serial schedule
 Sd is “bad”

•  T2 → T1

•  Also, T1 → T2

EECS-4411 Winter 2017 Concurrency Control 24

Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1 → T2 T1 → T2

EECS-4411 Winter 2017 Concurrency Control 25

Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1 → T2 T1 → T2

E no cycles ⇒ Sc is “equivalent” to a
 serial schedule
 (in this case T1,T2)

EECS-4411 Winter 2017 Concurrency Control 26

Concepts

Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A) w2(A) w1(A)

 w2(A) r1(A) w2(A)

Schedule: represents chronological order
 in which actions are executed

Serial schedule: no interleaving of actions
 or transactions

EECS-4411 Winter 2017 Concurrency Control 27

Is it OK to model reads & writes as
occurring at a single point
in time in a schedule?

•  S=… r1(x) … w2(b) …

EECS-4411 Winter 2017 Concurrency Control 28

What about conflicting, concurrent actions
on same object?
 start r1(A) end r1(A)

start w2(A) end w2(A)

time

EECS-4411 Winter 2017 Concurrency Control 29

•  Assume equivalent to either r1(A) w2(A)
 or w2(A) r1(A)

• ⇒ low level synchronization mechanism
•  Assumption called “atomic actions”

What about conflicting, concurrent actions
on same object?
 start r1(A) end r1(A)

start w2(A) end w2(A)

time

EECS-4411 Winter 2017 Concurrency Control 30

Definition

S1, S2 are conflict equivalent schedules
 if S1 can be transformed into S2 by a
series of swaps on non-conflicting
actions.

EECS-4411 Winter 2017 Concurrency Control 31

Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial
schedule.

EECS-4411 Winter 2017 Concurrency Control 32

Nodes: transactions in S
Arcs: Ti → Tj whenever
 - pi(A), qj(A) are actions in S
 - pi(A) <S qj(A)
 - at least one of pi, qj is a write

Precedence graph P(S) (S is schedule)

EECS-4411 Winter 2017 Concurrency Control 33

Exercise:

•  What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

•  Is S serializable?

EECS-4411 Winter 2017 Concurrency Control 34

Another Exercise:

•  What is P(S) for
S = w1(A) r2(A) r3(A) w4(A) ?

EECS-4411 Winter 2017 Concurrency Control 35

Lemma

S1, S2 conflict equivalent ⇒ P(S1)=P(S2)

EECS-4411 Winter 2017 Concurrency Control 36

Lemma

S1, S2 conflict equivalent ⇒ P(S1)=P(S2)

Proof:
Assume P(S1) ≠ P(S2)
⇒ ∃ Ti: Ti → Tj in S1 and not in S2

⇒ S1 = …pi(A)... qj(A)… pi, qj
 S2 = …qj(A)…pi(A)... conflict

⇒ S1, S2 not conflict equivalent

EECS-4411 Winter 2017 Concurrency Control 37

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent

EECS-4411 Winter 2017 Concurrency Control 38

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent

Counter example:

S1=w1(A) r2(A) w2(B) r1(B)

S2=r2(A) w1(A) r1(B) w2(B)

EECS-4411 Winter 2017 Concurrency Control 39

Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable

EECS-4411 Winter 2017 Concurrency Control 40

Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable

(⇐) Assume S1 is conflict serializable
⇒ ∃ Ss: Ss, S1 conflict equivalent
⇒ P(Ss) = P(S1)

⇒ P(S1) acyclic since P(Ss) is acyclic

EECS-4411 Winter 2017 Concurrency Control 41

T1

T2 T3

 T4

Theorem
P(S1) acyclic ⇐⇒ S1 conflict serializable

EECS-4411 Winter 2017 Concurrency Control 42

(⇒) Assume P(S1) is acyclic
Transform S1 as follows:
(1) Take T1 to be transaction with no incident arcs
(2) Move all T1 actions to the front

 S1 = ……. qj(A)…….p1(A)…..

(3) we now have S1 = < T1 actions ><... rest ...>
(4) repeat above steps to serialize rest!

T1

T2 T3

 T4

Theorem
P(S1) acyclic ⇐⇒ S1 conflict serializable

EECS-4411 Winter 2017 Concurrency Control 43

How to enforce serializable schedules?

Option 1: run system, recording P(S);
 at end of day, check for P(S)
 cycles and declare if execution
 was good

EECS-4411 Winter 2017 Concurrency Control 44

Option 2: prevent P(S) cycles from
 occurring

 T1 T2 ….. Tn

Scheduler

DB

How to enforce serializable schedules?

EECS-4411 Winter 2017 Concurrency Control 45

A locking protocol

Two new actions:
 lock (exclusive): li (A)

 unlock: ui (A)

scheduler

T1 T2
lock
table

EECS-4411 Winter 2017 Concurrency Control 46

Rule #1: Well-formed transactions

Ti: … li(A) … pi(A) … ui(A) ...

EECS-4411 Winter 2017 Concurrency Control 47

Rule #2 Legal scheduler

S = …….. li(A) ………... ui(A) ……...

 no lj(A)

EECS-4411 Winter 2017 Concurrency Control 48

•  What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

EECS-4411 Winter 2017 Concurrency Control 49

•  What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B) u2(B)?

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

EECS-4411 Winter 2017 Concurrency Control 50

Schedule F

T1 T2
l1(A);Read(A)
A A+100;Write(A);u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);u2(A)
 l2(B);Read(B)
 B Bx2;Write(B);u2(B)

l1(B);Read(B)
B B+100;Write(B);u1(B)

EECS-4411 Winter 2017 Concurrency Control 51

Schedule F

T1 T2 25 25
l1(A);Read(A)
A A+100;Write(A);u1(A) 125

 l2(A);Read(A)
 A Ax2;Write(A);u2(A) 250
 l2(B);Read(B)
 B Bx2;Write(B);u2(B) 50

l1(B);Read(B)
B B+100;Write(B);u1(B) 150

 250 150

A B

EECS-4411 Winter 2017 Concurrency Control 52

Rule #3 Two phase locking (2PL)
 for transactions

Ti = ……. li(A) ………... ui(A) ……...

no unlocks no locks

EECS-4411 Winter 2017 Concurrency Control 53

locks
held by
Ti

 Time
 Growing Shrinking
 Phase Phase

EECS-4411 Winter 2017 Concurrency Control 54

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);l2(B)

delayed

EECS-4411 Winter 2017 Concurrency Control 55

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);l2(B)

Read(B);B B+100
Write(B); u1(B)

delayed

EECS-4411 Winter 2017 Concurrency Control 56

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);l2(B)

Read(B);B B+100
Write(B); u1(B)

 l2(B); u2(A);Read(B)
 B Bx2;Write(B);u2(B);

delayed

EECS-4411 Winter 2017 Concurrency Control 57

Schedule H (T2 reversed)

T1 T2
l1(A); Read(A) l2(B);Read(B)
A A+100;Write(A) B Bx2;Write(B)
l1(B) l2(A)
 delayed delayed

EECS-4411 Winter 2017 Concurrency Control 58

•  Assume deadlocked transactions are
rolled back
– They have no effect
– They do not appear in schedule

E.g., Schedule H =
 This space intentionally
 left blank!

EECS-4411 Winter 2017 Concurrency Control 59

Next step:

Show that rules #1,2,3 ⇒ conflict-
 serializable
 schedules

EECS-4411 Winter 2017 Concurrency Control 60

Conflict rules for li(A), ui(A):

•  li(A), lj(A) conflict
•  li(A), uj(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...

EECS-4411 Winter 2017 Concurrency Control 61

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

EECS-4411 Winter 2017 Concurrency Control 62

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

To help in proof:
Definition Shrink(Ti) = SH(Ti) =

 first unlock
action of Ti

EECS-4411 Winter 2017 Concurrency Control 63

Lemma
Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

EECS-4411 Winter 2017 Concurrency Control 64

Lemma
Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

Proof of lemma:
Ti → Tj means that
 S = … pi(A) … qj(A) …; p,q conflict

By rules 1,2:
 S = … pi(A) … ui(A) … lj(A) ... qj(A) …

EECS-4411 Winter 2017 Concurrency Control 65

Lemma
Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

Proof of lemma:
Ti → Tj means that
 S = … pi(A) … qj(A) …; p,q conflict

By rules 1,2:
 S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)
So, SH(Ti) <S SH(Tj)

EECS-4411 Winter 2017 Concurrency Control 66

Proof:
(1) Assume P(S) has cycle
 T1 → T2 →…. Tn → T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic
(4) ⇒ S is conflict serializable

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

EECS-4411 Winter 2017 Concurrency Control 67

2PL subset of Serializable

2PL
Serializable

EECS-4411 Winter 2017 Concurrency Control 68

S1: w1(x) w3(x) w2(y) w1(y)

2PL

Serializable

S1

EECS-4411 Winter 2017 Concurrency Control 69

S1: w1(x) w3(x) w2(y) w1(y)

•  S1 cannot be achieved via 2PL:
The lock by T1 for y must occur after w2(y),
so the unlock by T1 for x must occur after
this point (and before w1(x)). Thus, w3(x)
cannot occur under 2PL where shown in S1
because T1 holds the x lock at that point.

•  However, S1 is serializable
(equivalent to T2, T1, T3).

EECS-4411 Winter 2017 Concurrency Control 70

SC: w1(A) w2(A) w1(B) w2(B)

If you need a bit more practice:

Are our schedules SC and SD 2PL schedules?

SD: w1(A) w2(A) w2(B) w1(B)

EECS-4411 Winter 2017 Concurrency Control 71

•  Beyond this simple 2PL protocol, it is all
a matter of improving performance and
allowing more concurrency….
– Shared locks
– Multiple granularity
–  Inserts, deletes and phantoms
– Other types of C.C. mechanisms

EECS-4411 Winter 2017 Concurrency Control 72

Shared locks

So far:
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

 Do not conflict

EECS-4411 Winter 2017 Concurrency Control 73

Shared locks

So far:
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

 Do not conflict

Instead:
S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

EECS-4411 Winter 2017 Concurrency Control 74

Lock actions
l-ti(A): lock A in t mode (t is S or X)
u-ti(A): unlock t mode (t is S or X)

Shorthand:
ui(A): unlock whatever modes
 Ti has locked A

EECS-4411 Winter 2017 Concurrency Control 75

Rule #1 Well formed transactions

Ti =... l-S1(A) … r1(A) … u1 (A) …

Ti =... l-X1(A) … w1(A) … u1 (A) …

EECS-4411 Winter 2017 Concurrency Control 76

•  What about transactions that read and
write same object?

Option 1: Request exclusive lock
Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

EECS-4411 Winter 2017 Concurrency Control 77

Option 2: Upgrade
(E.g., need to read, but don’t know if will write…)

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

•  What about transactions that read and
 write same object?

EECS-4411 Winter 2017 Concurrency Control 78

Rule #2 Legal scheduler

S =l-Si(A) … … ui(A) …

 no l-Xj(A)

S = ... l-Xi(A) … … ui(A) …

 no l-Xj(A)
 no l-Sj(A)

EECS-4411 Winter 2017 Concurrency Control 79

A way to summarize Rule #2

Compatibility matrix

Comp S X
 S true false
 X false false

EECS-4411 Winter 2017 Concurrency Control 80

Rule # 3 2PL transactions

No change except for upgrades:
(I) If upgrade gets more locks
 (e.g., S → {S, X}) then no change!

(II) If upgrade releases read (shared)
 lock (e.g., S → X)

 - can be allowed in growing phase

EECS-4411 Winter 2017 Concurrency Control 81

Proof: similar to X locks case

Detail:
l-ti(A), l-rj(A) do not conflict if comp(t,r)
l-ti(A), u-rj(A) do not conflict if comp(t,r)

Theorem Rules 1,2,3 ⇒ Conf.serializable
 for S/X locks schedules

EECS-4411 Winter 2017 Concurrency Control 82

Lock types beyond S/X

Examples:
 (1) increment lock
 (2) update lock

EECS-4411 Winter 2017 Concurrency Control 83

Example (1): increment lock

•  Atomic increment action: INi(A)
 {Read(A); A ← A+k; Write(A)}

•  INi(A), INj(A) do not conflict!
 A=7

A=5 A=17
 A=15

INi(A)
+2

INj(A)
+10

+10

INj(A)
+2

INi(A)

EECS-4411 Winter 2017 Concurrency Control 84

Comp S X I
 S
 X
 I

EECS-4411 Winter 2017 Concurrency Control 85

Comp S X I
 S T F F
 X F F F
 I F F T

EECS-4411 Winter 2017 Concurrency Control 86

Update locks

A common deadlock problem with upgrades:
T1 T2
l-S1(A)
 l-S2(A)

l-X1(A)
 l-X2(A)
 --- Deadlock ---

EECS-4411 Winter 2017 Concurrency Control 87

Solution

If Ti wants to read A and knows it
may later want to write A, it requests
update lock (not shared)

EECS-4411 Winter 2017 Concurrency Control 88

Comp S X U
 S
 X
 U

 New request

Lock
already
held in

EECS-4411 Winter 2017 Concurrency Control 89

Comp S X U
 S T F T
 X F F F
 U TorF F F

 -> symmetric table?

 New request

Lock
already
held in

EECS-4411 Winter 2017 Concurrency Control 90

Note: object A may be locked in different
 modes at the same time...

S1=...l-S1(A)…l-S2(A)…l-U3(A)… l-S4(A)…?
 l-U4(A)…?

EECS-4411 Winter 2017 Concurrency Control 91

Note: object A may be locked in different
 modes at the same time...

S1=...l-S1(A)…l-S2(A)…l-U3(A)… l-S4(A)…?
 l-U4(A)…?

•  To grant a lock in mode t, mode t must
be compatible with all currently held
locks on object

EECS-4411 Winter 2017 Concurrency Control 92

How does locking work in practice?

•  Every system is different
 (E.g., may not even provide
 CONFLICT-SERIALIZABLE schedules)

•  But here is one (simplified) way ...

EECS-4411 Winter 2017 Concurrency Control 93

(1) Don’t trust transactions to
 request/release locks

(2) Hold all locks until transaction
 commits

locks

time

Sample Locking System:

EECS-4411 Winter 2017 Concurrency Control 94

 Ti
 Begini , Readi(A), Writei(B), ...

 li(A),Readi(A),li(B),Writei(B), ...

 Readi(A),Writei(B), ...

Scheduler, part I

Scheduler, part II

DB

lock
table

EECS-4411 Winter 2017 Concurrency Control 95

 Ti
 Begini , Readi(A), Writei(B), Cmti

 li(A),Readi(A),li(B),Writei(B),Cmti, ui(A),ui(B)

 Readi(A),Writei(B),Cmti

Scheduler, part I

Scheduler, part II

DB

lock
table

EECS-4411 Winter 2017 Concurrency Control 96

Lock table Conceptually

 A Λ

B
C

Λ

...

Lock info for B

Lock info for C

If null, object is unlocked

Ev
er

y
po

ss
ib

le
 o

bj
ec

t

EECS-4411 Winter 2017 Concurrency Control 97

But use hash table:

A

If object not found in hash table, it is
unlocked

Lock info for A A

...
...

H

EECS-4411 Winter 2017 Concurrency Control 98

Lock info for A - example

 tran mode wait? Nxt T_link
Object:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no

T3 X yes Λ

To other T3
records

EECS-4411 Winter 2017 Concurrency Control 99

What are the objects we lock?

 ?

Relation A

Relation B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

EECS-4411 Winter 2017 Concurrency Control 100

•  Locking works in any case, but should
we choose small or large objects?

EECS-4411 Winter 2017 Concurrency Control 101

•  Locking works in any case, but should
we choose small or large objects?

•  If we lock large objects (e.g., Relations)
– Need few locks
– Low concurrency

•  If we lock small objects (e.g., tuples,fields)
– Need more locks
– More concurrency

EECS-4411 Winter 2017 Concurrency Control 102

We can have it both ways!!

Ask any janitor to give you the solution...

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

EECS-4411 Winter 2017 Concurrency Control 103

Example

 R1

t1
t2 t3 t4

EECS-4411 Winter 2017 Concurrency Control 104

Example

 R1

t1
t2 t3 t4

T1(IS)

T1(S)

EECS-4411 Winter 2017 Concurrency Control 105

Example

 R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(S)

EECS-4411 Winter 2017 Concurrency Control 106

Example (b)

 R1

t1
t2 t3 t4

T1(IS)

T1(S)

EECS-4411 Winter 2017 Concurrency Control 107

Example

 R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(IX)

T2(IX)

EECS-4411 Winter 2017 Concurrency Control 108

Multiple granularity

Comp Requestor
 IS IX S SIX X
 IS

 Holder IX
 S

 SIX

 X

EECS-4411 Winter 2017 Concurrency Control 109

Multiple granularity

Comp Requestor
 IS IX S SIX X
 IS

 Holder IX
 S

 SIX

 X

T T T T F
F
F
F
F F F F F

F F F T
F T F T
F F T T

EECS-4411 Winter 2017 Concurrency Control 110

Parent Child can be
locked in locked in

 IS
 IX
 S
 SIX
 X

P

C

EECS-4411 Winter 2017 Concurrency Control 111

Parent Child can be locked
locked in by same transaction in

 IS
 IX
 S
 SIX
 X

P

C

IS, S
IS, S, IX, X, SIX
none
X, IX, [SIX]
none

not necessary

EECS-4411 Winter 2017 Concurrency Control 112

Rules

(1) Follow multiple granularity comp function
(2) Lock root of tree first, any mode
(3) Node Q can be locked by Ti in S or IS only if
 parent(Q) locked by Ti in IX or IS
(4) Node Q can be locked by Ti in X,SIX,IX only
 if parent(Q) locked by Ti in IX,SIX
(5) Ti is two-phase
(6) Ti can unlock node Q only if none of Q’s
 children are locked by Ti

EECS-4411 Winter 2017 Concurrency Control 113

Exercise:
•  Can T2 access object f2.2 in X mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

EECS-4411 Winter 2017 Concurrency Control 114

Exercise:
•  Can T2 access object f2.2 in X mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)

EECS-4411 Winter 2017 Concurrency Control 115

Exercise:
•  Can T2 access object f3.1 in X mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)

EECS-4411 Winter 2017 Concurrency Control 116

Exercise:
•  Can T2 access object f2.2 in S mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

EECS-4411 Winter 2017 Concurrency Control 117

Exercise:
•  Can T2 access object f2.2 in X mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

EECS-4411 Winter 2017 Concurrency Control 118

Insert + delete operations

 Insert

A

Z
α

...

EECS-4411 Winter 2017 Concurrency Control 119

Modifications to locking rules:

(1) Get exclusive lock on A before
deleting A

(2) At insert A operation by Ti,
 Ti is given exclusive lock on A

EECS-4411 Winter 2017 Concurrency Control 120

Still have a problem: Phantoms

Example: relation R (E#,name,…)
 constraint: E# is key
 use tuple locking

R E# Name ….
 o1 55 Smith
 o2 75 Jones

EECS-4411 Winter 2017 Concurrency Control 121

T1: Insert <12,Obama,…> into R
T2: Insert <12,Romney,…> into R

 T1 T2

S1(o1) S2(o1)

S1(o2) S2(o2)

Check Constraint Check Constraint

Insert o3[12,Obama,..]
 Insert o4[12,Romney,..]

... ...

EECS-4411 Winter 2017 Concurrency Control 122

Solution

•  Use multiple granularity tree
•  Before insert of node Q,
 lock parent(Q) in
 X mode R1

t1
t2 t3

EECS-4411 Winter 2017 Concurrency Control 123

Back to example
T1: Insert<12,Obama> T2: Insert<12,Romney>

 T1 T2

X1(R)

Check constraint
Insert<12,Obama>
U1(R)

 X2(R)
 Check constraint
 Oops! e# = 12 already in R!

X2(R) delayed

EECS-4411 Winter 2017 Concurrency Control 124

Instead of using R, can use index on R:

Example: R

Index
0<E#<100

Index
100<E#<200

E#=2 E#=5 E#=107 E#=109 ...

...

...

EECS-4411 Winter 2017 Concurrency Control 125

•  This approach can be generalized to
multiple indexes...

EECS-4411 Winter 2017 Concurrency Control 126

Next:

•  Tree-based concurrency control
•  Validation concurrency control

EECS-4411 Winter 2017 Concurrency Control 127

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

EECS-4411 Winter 2017 Concurrency Control 128

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

T1 lock

T1 lock T1 lock

EECS-4411 Winter 2017 Concurrency Control 129

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

T1 lock

T1 lock T1 lock

E can we release A lock
 if we no longer need A??

EECS-4411 Winter 2017 Concurrency Control 130

Idea: traverse like “Monkey Bars”

A

B C

D

E F

EECS-4411 Winter 2017 Concurrency Control 131

Idea: traverse like “Monkey Bars”

A

B C

D

E F

T1 lock

T1 lock

EECS-4411 Winter 2017 Concurrency Control 132

Idea: traverse like “Monkey Bars”

A

B C

D

E F

T1 lock

T1 lock

EECS-4411 Winter 2017 Concurrency Control 133

Why does this work?

•  Assume all Ti start at root; exclusive lock
•  Ti → Tj ⇒ Ti locks root before Tj

•  Actually works if we don’t always
 start at root

Root

Q Ti → Tj

EECS-4411 Winter 2017 Concurrency Control 134

Rules: tree protocol (exclusive locks)

(1) First lock by Ti may be on any item
(2) After that, item Q can be locked by Ti

 only if parent(Q) locked by Ti

(3) Items may be unlocked at any time
(4) After Ti unlocks Q, it cannot relock Q

EECS-4411 Winter 2017 Concurrency Control 135

•  Tree-like protocols are used typically for
B-tree concurrency control

E.g., during insert, do not release parent lock, until you
are certain child does not have to split

Root

EECS-4411 Winter 2017 Concurrency Control 136

Tree Protocol with Shared Locks

•  Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

EECS-4411 Winter 2017 Concurrency Control 137

Tree Protocol with Shared Locks

•  Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

T2 reads:
•  B modified by T1

•  F not yet modified by T1

EECS-4411 Winter 2017 Concurrency Control 138

•  Need more restrictive protocol
•  Will this work??

– Once T1 locks one object in X mode,
all further locks down the tree must be
in X mode

Tree Protocol with Shared Locks

EECS-4411 Winter 2017 Concurrency Control 139

Validation
Transactions have 3 phases:
(1) Read

– all DB values read
– writes to temporary storage
– no locking

(2) Validate
– check if schedule so far is serializable

(3) Write
–  if validate ok, write to DB

EECS-4411 Winter 2017 Concurrency Control 140

Key idea

•  Make validation atomic
•  If T1, T2, T3, … is validation order, then

resulting schedule will be conflict
equivalent to Ss = T1 T2 T3...

EECS-4411 Winter 2017 Concurrency Control 141

To implement validation, system keeps
two sets:

•  FIN = transactions that have finished
 phase 3 (and are all done)

•  VAL = transactions that have
 successfully finished phase 2
 (validation)

EECS-4411 Winter 2017 Concurrency Control 142

Example of what validation must prevent:

 RS(T2)={B} RS(T3)={A,B}
 WS(T2)={B,D} WS(T3)={C}

time

T2
start

T2
validated

T3
validated

T3
start

∩ = φ

EECS-4411 Winter 2017 Concurrency Control 143

T2
finish

phase 3

Example of what validation must prevent:

 RS(T2)={B} RS(T3)={A,B}
 WS(T2)={B,D} WS(T3)={C}

time

T2
start

T2
validated

T3
validated

T3
start

∩ = φ

allow

T3
start

EECS-4411 Winter 2017 Concurrency Control 144

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}
 WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

EECS-4411 Winter 2017 Concurrency Control 145

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}
 WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

BAD: w3(D) w2(D)

EECS-4411 Winter 2017 Concurrency Control 146

finish
T2

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}
 WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

allow

finish
T2

EECS-4411 Winter 2017 Concurrency Control 147

Validation rules for Tj:

(1) When Tj starts phase 1:
 ignore(Tj) ← FIN

(2) at Tj Validation:
 if check (Tj) then
 [VAL ← VAL U {Tj};
 do write phase;
 FIN ←FIN U {Tj}]

EECS-4411 Winter 2017 Concurrency Control 148

Check (Tj):

 For Ti ∈ VAL - IGNORE (Tj) DO

 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

 Ti ∉ FIN] THEN RETURN false;
 RETURN true;

EECS-4411 Winter 2017 Concurrency Control 149

Check (Tj):

 For Ti ∈ VAL - IGNORE (Tj) DO

 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

 Ti ∉ FIN] THEN RETURN false;
 RETURN true;

 Is this check too restrictive ?

EECS-4411 Winter 2017 Concurrency Control 150

Improving Check(Tj)

For Ti ∈ VAL - IGNORE (Tj) DO
 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR
 (Ti ∉ FIN AND WS(Ti) ∩ WS(Tj) ≠ ∅)]
 THEN RETURN false;

RETURN true;

EECS-4411 Winter 2017 Concurrency Control 151

Exercise:

T: RS(T)={A,B}
 WS(T)={A,C}

V: RS(V)={B}
 WS(V)={D,E}

U: RS(U)={B}
 WS(U)={D}

W: RS(W)={A,D}
 WS(W)={A,C}

start
validate
finish

EECS-4411 Winter 2017 Concurrency Control 152

Is Validation = 2PL?

2PL
Val

2PL
Val

2PL
Val

Val
2PL

EECS-4411 Winter 2017 Concurrency Control 153

S2: w2(y) w1(x) w2(x)

•  Achievable with 2PL?
•  Achievable with validation?

EECS-4411 Winter 2017 Concurrency Control 154

S2: w2(y) w1(x) w2(x)

•  S2 can be achieved with 2PL:
l2(y) w2(y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(y) u2(x)

•  S2 cannot be achieved by validation:
The validation point of T2, val2 must occur before
w2(y) since transactions do not write to the database
until after validation. Because of the conflict on x,
val1 < val2, so we must have something like
 S2: val1 val2 w2(y) w1(x) w2(x)
With the validation protocol, the writes of T2 should
not start until T1 is all done with its writes, which is
not the case.

EECS-4411 Winter 2017 Concurrency Control 155

Validation subset of 2PL?

•  Possible proof (Check!):
– Let S be validation schedule
– For each T in S insert lock/unlocks, get S’:

• At T start: request read locks for all of RS(T)
• At T validation: request write locks for WS(T);

release read locks for read-only objects
• At T end: release all write locks

– Clearly transactions well-formed and 2PL
– Must show S’ is legal (next page)

EECS-4411 Winter 2017 Concurrency Control 156

•  Say S’ not legal (due to w-r conflict):
S’: ... l1(x) w2(x) r1(x) val1 u1(x) ...
–  At val1: T2 not in Ignore(T1); T2 in VAL

–  T1 does not validate: WS(T2) ∩ RS(T1) ≠ ∅
–  contradiction!

•  Say S’ not legal (due to w-w conflict):
S’: ... val1 l1(x) w2(x) w1(x) u1(x) ...
–  Say T2 validates first (proof similar if T1 validates first)
–  At val1: T2 not in Ignore(T1); T2 in VAL
–  T1 does not validate:

T2 ∉ FIN AND WS(T1) ∩ WS(T2) ≠ ∅)
–  contradiction!

EECS-4411 Winter 2017 Concurrency Control 157

Conclusion:
Validation subset 2PL

2PL
Val

2PL
Val

2PL
Val

Val
2PL

EECS-4411 Winter 2017 Concurrency Control 158

Validation (also called optimistic
concurrency control) is useful in some
cases:
 - Conflicts rare
 - System resources plentiful
 - Have real time constraints

EECS-4411 Winter 2017 Concurrency Control 159

Summary

Have studied C.C. mechanisms used in
practice
 - 2 PL
 - Multiple granularity
 - Tree (index) protocols
 - Validation

