Concurrency Control

Parke Godfrey

EECS-4411 Winter 2017 Concurrency Control

Thanks to

e These slides are authored by Hector
Garcia Molina (Stanford), 2002.

e They follow the class textbook
(“Stanford”).

EECS-4411 Winter 2017 Concurrency Control

Chapter 18 [18] Concurrency Control

T1 T2 ... 1In

\
\/\/
N

DB
(consistency
constraints)

N~

EECS-4411 Winter 2017 Concurrency Control

Example:

T1: Read(A) T2: Read(A)
A <— A+100 A < Ax2
Write(A) Write(A)
Read(B) Read(B)
B «— B+100 B < Bx2
Write(B) Write(B)

Constraint: A=B

EECS-4411 Winter 2017 Concurrency Control

Schedule A

T1 T2

Read(A); A — A+100

Write(A);

Read(B); B — B+100;

Write(B);
Read(A);A — Ax2;
Write(A);
Read(B);B < Bx2;
Write(B);

EECS-4411 Winter 2017 Concurrency Control

Schedule A

A B
L 12 25 | 25
Read(A); A — A+100 .
Write(A),; 15
Read(B); B < B+100;
Write(B); e
Read(A);A <= Ax2;
Write(A); 250
Read(B);B < Bx2;
Write(B); 250
250 | 250

EECS-4411 Winter 2017 Concurrency Control 6

Schedule B

T1 T2
Read(A);A — Ax2;
Write(A);
Read(B);B < Bx2;
Write(B);

Read(A); A — A+100

Write(A);

Read(B); B — B+100;

Write(B);

EECS-4411 Winter 2017 Concurrency Control

Schedule B

A B
T1 T2 25 | 25
Read(A);A < Ax2;
Write(A); 50
Read(B);B < Bx2;
Write(B); >0
Read(A); A — A+100
Write(A); 150
Read(B); B — B+100;
Write(B); 150
150 | 150

EECS-4411 Winter 2017 Concurrency Control 8

Schedule C

T1 12

Read(A); A — A+100
Write(A);

Read(A);A < Ax2;
Write(A);

Read(B); B — B+100;
Write(B);

Read(B);B < Bx2;
Write(B);

EECS-4411 Winter 2017 Concurrency Control

Schedule C

A B
o 12 25 | 25
Read(A); A — A+100 .
Write(A),; 15
Read(A);A — Ax2;
Write(A); 250
Read(B); B <— B+100;
Write(B),; .
Read(B);B < Bx2;
Write(B); 250
250 | 250

EECS-4411 Winter 2017 Concurrency Control 10

Schedule D

T1

12

Read(A); A <— A+100
Write(A);

Read(B); B — B+100;
Write(B);

EECS-4411 Winter 2017

Read(A);A < Ax2;
Write(A);
Read(B);B < Bx2;
Write(B);

Concurrency Control

11

Schedule D

A B
o 12 25 | 25
Read(A); A — A+100 .
Write(A),; 15
Read(A);A < Ax2;
Write(A); 250
Read(B);B < Bx2;
Write(B); 50
Read(B); B <— B+100;
Write(B); 150
250 | 150

EECS-4411 Winter 2017 Concurrency Control 12

Schedule E

T1

Same as Schedule D
but with new T2’

T2’

Read(A); A <— A+100

Write(A);

Read(B); B < B+100

Write(B);

EECS-4411 Winter 2017

/4

Read(A);A — Ax1;
Write(A);
Read(B);B < Bx1;
Write(B);

Concurrency Control

13

Same as Schedule D

SChed U Ie E but with new T2’

A B
L T2 25 | 25
Read(A); A — A+100 .
Write(A),; 15
Read(A);A < Ax1;
Write(A); 125
Read(B);B < Bx1;
Write(B); 25
Read(B); B <— B+100;
Write(B); 125
125 | 125

EECS-4411 Winter 2017 Concurrency Control 14

e Want schedules that are “good”,
regardless of

— initial state and
— transaction semantics

e Only look at order of read and writes

Example:
Sc=r1i(A)wWi(A)r2(A)w2(A)ri(B)wi(B)r2(B)w2(B)

EECS-4411 Winter 2017 Concurrency Control 15

Example:
Sc=ri(A)W1(A)r2(A)w2(A)ri(B)wi(B)r2(B)w2(B)

=
Sc’=r1(A)wi(A) ri(B)wi(B)r2(A)w2(A)r2(B)w2(B)

Y Y

T1 T2

EECS-4411 Winter 2017 Concurrency Control 16

The Transaction Game

A

B

T1

T2

EECS-4411 Winter 2017

Concurrency Control

17

The Transaction Game

A

W

W

B

=

T1

=

T2

EECS-4411 Winter 2017

Concurrency Control

18

The Transaction Game

A r

W

r

W

B

until ¢

rolumn

v

T1 r

hits so

mething

W <«

Tw

T2

W

J

EECS-4411 Winter 2017

P

Tt

can move column

Concurrency Control

19

~ —
A r w{ \
B r w\ W
Tl r|w
T2 WJ\ r|w
A r w
B r w W
T1 r |w
T2 r w W

EECS-4411 Winter 2017

Concurrency Control

20

Schedule D

A r w

B r wW
T1 W
T2 r w|r

EECS-4411 Winter 2017

Concurrency Control

21

However, for Sd:
Sd= {1(A)W1(A/) r2(A)w2(A) r2(B)w2(B) [1(B)W1(B)

Nt S

e as a matter of fact,
T2must precede T
in any equivalent schedule,
l.e., T2—Ti

EECS-4411 Winter 2017 Concurrency Control 22

e [2—Ti1
e Also, T1 — T2

N\
T1 T2
~—-

EECS-4411 Winter 2017

—) Sd cannot be rearranged
into a serial schedule

—) Sd is not “equivalent” to
any serial schedule

—) Sd is “bad”

Concurrency Control

23

Returning to Sc

Sc=ri(A)Wi1(A)r2(A)w2(A)ri(B)wi(B)r2(B)w2(B)
N/ N/

T1— To T1— To

EECS-4411 Winter 2017 Concurrency Control 24

Returning to Sc

Sc=ri(A)Wi1(A)r2(A)w2(A)ri(B)wi(B)r2(B)w2(B)
N/ N/

T1— To T1— To

*- no cycles = Sc is “equivalent” to a
serial schedule
(in this case Ti,T2)

EECS-4411 Winter 2017 Concurrency Control 25

Concepts

Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: <r1(A) <wz(A) <w1(A)
W2(A) “TF1(A) “W2(A)

Schedule: represents chronological order
in which actions are executed

Serial schedule: no interleaving of actions
or transactions

EECS-4411 Winter 2017 Concurrency Control 26

Is it OK to model reads & writes as
occurring at a single point
in time in a schedule?

e S=... rn(x) ... w2(b) ...

EECS-4411 Winter 2017 Concurrency Control

27

What about conflicting, concurrent actions
on same object?

sta[t ri(A) erld ri(A)

*

4 "
start w2(A) end w2(A) time

EECS-4411 Winter 2017 Concurrency Control 28

What about conflicting, concurrent actions
on same object?

sta[t ri(A) erld ri(A)

*

4 "
start w2(A) end w2(A) time

e Assume equivalent to either ri(A) w2(A)

or wW2(A) ri(A)
e = |ow level synchronization mechanism
e Assumption called “atomic actions”

EECS-4411 Winter 2017 Concurrency Control 29

Definition

S1, S2 are conflict equivalent schedules

if S1 can be transformed into Sz by a
series of swaps on non-conflicting
actions.

EECS-4411 Winter 2017 Concurrency Control

30

Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial
schedule.

EECS-4411 Winter 2017 Concurrency Control

31

Precedence graph P(S) (S is schedule)

Nodes: transactions in S
Arcs: Ti — Tj whenever
- pi(A), gij(A) are actions in S

- Pi(A) <g qi(A)
- at least one of pi, gj is a write

EECS-4411 Winter 2017 Concurrency Control

32

Exercise:

e What is P(S) for
S = w3(A) w2(C) r1(A) wi(B) r1(C) w2(A) ra(A) wa(D)

e Is S serializable?

EECS-4411 Winter 2017 Concurrency Control 33

Another Exercise:

e What is P(S) for
S = wi(A) r2(A) r3(A) wa(A) ?

EECS-4411 Winter 2017 Concurrency Control

34

Lemma

S1, S2 conflict equivalent = P(51)=P(Sz2)

EECS-4411 Winter 2017 Concurrency Control

35

Lemma

S1, S2 conflict equivalent = P(51)=P(Sz2)

Proof:
Assume P(51) = P(S2)

= J Ti: Ti —= Tjin S1 and not in $2

= S1 = ...pi(A)... gi(A)...
S2 = ...qgi(A)...pi(A)...

!
<

\conflict

=> S1, Sz not conflict equivalent

EECS-4411 Winter 2017 Concurrency Control

36

Note: P(S1)=P(S2) # Si, Sz conflict equivalent

EECS-4411 Winter 2017 Concurrency Control 37

Note: P(S1)=P(S2) # Si, Sz conflict equivalent

Counter example:

Si=wi1(A) r2(A) wz2(B) ri(B)

S2=r2(A) wi(A) ri(B) wz(B)

EECS-4411 Winter 2017 Concurrency Control 38

Theorem

P(S1) acyclic <= S1 conflict serializable

EECS-4411 Winter 2017 Concurrency Control

39

Theorem

P(S1) acyclic <= S1 conflict serializable

(<) Assume Si is conflict serializable
= 3 Ss: Ss, S1 conflict equivalent

= P(Ss) = P(51)

=> P(S1) acyclic since P(Ss) is acyclic

EECS-4411 Winter 2017 Concurrency Control

40

Theorem

P(S1) acyclic <= S1 conflict serializable

T1
RN
T2 T3

SN/
T4

EECS-4411 Winter 2017 Concurrency Control 41

Theorem
P(S1) acyclic <= S1 conflict serializable

N
(=) Assume P(S1) is acyclic T T3
Transform Si as follows: /N T4/

(1) Take T1 to be transaction with no incident arcs
(2) Move all T1 actions to the front

Si= .. Qi(A).......p1(A).....
—

(3) we now have S1 = < T1 actions ><... rest...>

(4) repeat above steps to serialize rest!
EECS-4411 Winter 2017 Concurrency Control 42

How to enforce serializable schedules?

Option 1: run system, recording P(S);
at end of day, check for P(S)
cycles and declare if execution
was good

EECS-4411 Winter 2017 Concurrency Control 43

How to enforce serializable schedules?

Option 2: prevent P(S) cycles from

occurring
T1 T2 Tn
N\ o
Scheduler

EECS-4411 Winter 2017 Concurrency Control 44

A locking protocol

Two new actions:
lock (exclusive): i (A)

unlock: ui (A)
Tll lTZ
hedul lock
scheduler table

]

EECS-4411 Winter 2017 Concurrency Control

Rule #1: Well-formed transactions

Ti: ... li(A) ... pi(A) ... Ui(A) ...

EECS-4411 Winter 2017 Concurrency Control

46

Rule #2 Legal scheduler

S=.... i(A) e, Ui(A)

EECS-4411 Winter 2017 Concurrency Control

47

Exercise:

e What schedules are legal?
What transactions are well-formed?

S1 = [1(A)l1(B)ri(A)wi(B)l2(B)ui(A)ui(B)
r2(B)w2(B)u2(B)I3(B)r3(B)u3(B)

S2 = l1(A)ri(A)wi(B)ui(A)ui(B)
12(B)r2(B)w2(B)I3(B)r3(B)us(B)

S3 = l1(A)ri(A)u1(A)l1(B)w1(B)ui(B)
12(B)r2(B)w2(B)u2(B)I3(B)r3(B)u3(B)

EECS-4411 Winter 2017 Concurrenc y Control

48

Exercise:

e What schedules are legal?
What transactions are well-formed?

S1 = i(A)(B)r1(A)w1(BI(B)ui(A)us(B)

r2(B)w2(B)u2(B)I3(B)r3(B)u3(B)

S2 = l1(A)ri(A)wi(B)ui(A)ui(B)
I2(B)r2(B)wz(B3(B)U3(B)
S3 = l1(A)ri(A)u1(A)l1(B)w1(B)ui(B)

12(B)r2(B)w2(B)u2(B)I3(B)r3(B)u3(B)

EECS-4411 Winter 2017 Concurrenc y Control

49

Schedule F

T1 T2

11(A);Read(A)

A+ A+100;Write(A);u1(A)
12(A);Read(A)
A<~Ax2;Write(A);u2(A)
12(B);Read(B)
B+ Bx2;Write(B);u2(B)

11(B);Read(B)
B—B+100;Write(B);u1(B)

EECS-4411 Winter 2017 Concurrency Control

50

Schedule F

T1

12

11(A);Read(A)
A+ A+100;Write(A);u1(A)

11(B);Read(B)
B+--B+100;Write(B);u1(B)

EECS-4411 Winter 2017

12(A);Read(A)
A<+Ax2;Write(A);u2(A)
12(B);Read(B)
B+ Bx2;Write(B);u2(B)

Concurrency Control

A

25

25

125

250

50

150

250

150

51

Rule #3 Two phase locking (2PL)

for transactions

Ti= ... i(A) .., . Ui(A)

no unlocks no locks

EECS-4411 Winter 2017 Concurrency Control

52

locks
held by
Ti

Time

. Growing __ Shrinking
Phase Phase

v

EECS-4411 Winter 2017 Concurrency Control 53

Schedule G

T1 T2
11(A);Read(A) |
A«A+100;Write(A) |
11(B); u1(A) f
lo(A)Read(A)

EECS-4411 Winter 2017

- A~ Ax2;Write(A); /|

Concurrency Control

54

Schedule G

T1 T2

11(A);Read(A) |

A« A+100;Write(A)

11(B); ui(A) :
2(A);Read(n) &
A ~AX2;Write(A); -/

Read(B);B* B+100 :
Write(B); u1(B) '

EECS-4411 Winter 2017

Concurrency Control

55

Schedule G

11

11(A);Read(A) |
A~ A+100;Write(A)
11(B); u1(A) |

Rv)

Iy(A);Read(n) 2V

Read(B);B+ B+100
Write(B); ui(B) '

 A—AX2;Write(A); ()}

 12(B); u2(A);Read(B)
B < Bx2;Write(B);u2(B);

EECS-4411 Winter 2017

Concurrency Control 56

Schedule H (T2 reversed)

T1 ™

l1(A); Read(A) ~ I2(B);Read(B)
A+ A+100;Write(A) . B+ Bx2;Write(B)
“““ \ delayed \“"“”(\.delayed

EECS-4411 Winter 2017 Concurrency Control

57

e Assume deadlocked transactions are
rolled back

— They have no effect
— They do not appear in schedule

E.g., Schedule H =

N o
This space intentionally
left blank!

EECS-4411 Winter 2017 Concurrency Control 58

Next step:

Show that rules #1,2,3 = conflict-
serializable
schedules

EECS-4411 Winter 2017 Concurrency Control

59

Conflict rules for i(A), ui(A):

e li(A), li(A) conflict
e li(A), uj(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), ri(A)>,...

EECS-4411 Winter 2017 Concurrency Control

60

Theorem Rules #1,2,3 = conflict
(2PL) serializable
schedule

EECS-4411 Winter 2017 Concurrency Control

61

Theorem Rules #1,2,3 = conflict
(2PL) serializable
schedule

To help in proof:
Definition Shrink(Ti) = SH(Ti) =
first unlock

action of Ti

EECS-4411 Winter 2017 Concurrency Control 62

Lemma
Ti—=Tjin S = SH(

) <s SH(Tj)

EECS-4411 Winter 2017 Concurrency Control

63

Lemma
Ti — Tjin S = SH(Ti) <¢ SH(Tj)
Proof of lemma:
Ti — Tj means that

S=..pi(A).. qgA) ..., p,qconflict
By rules 1,2:

S =..pi(A) .. ulA) .. li(A) ... gi(A) ...

EECS-4411 Winter 2017 Concurrency Control 64

Lemma
Ti — Tjin S = SH(Ti) <¢ SH(Tj)

Proof of lemma:
Ti — Tj means that

S=..pi(A).. qgA) ..., p,qconflict
By rules 1,2:

S =..pi(A).. Ui(AI) ...Ilj(A) .. Qi(A) ...

By rule 3: SH(Ti) SH(Tj)
So, SH(Ti) <¢ SH(Tj)

EECS-4411 Winter 2017 Concurrency Control 65

Theorem Rules #1,2,3 — conflict
(2PL) serializable
schedule

Proof:

(1) Assume P(S) has cycle
Ti—-T2—-.Th=T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic

(4) = S is conflict serializable

EECS-4411 Winter 2017 Concurrency Control 66

2PL subset of Serializable

Serializable e

EECS-4411 Winter 2017 Concurrency Control

67

Serializable

Sl

S1: wi(x) w3(x) w2(y) wi(y)

EECS-4411 Winter 2017 Concurrenc y Control

68

S1: wi(x) w3(x) w2(y) wi(y)

e S1 cannot be achieved via 2PL.:
The lock by T1 for y must occur after w2(y),
so the unlock by T1 for x must occur after
this point (and before w1(x)). Thus, w3(x)
cannot occur under 2PL where shown in S1
because T1 holds the x lock at that point.

e However, S1 is serializable
(equivalent to T2, T1, T3).

EECS-4411 Winter 2017 Concurrency Control 69

If you need a bit more practice:

Are our schedules S- and Sy 2PL schedules?

Sc: wi1(A) w2(A) wi(B) w2(B)

Sp: W1(A) w2(A) w2(B) wl(B)

EECS-4411 Winter 2017 Concurrency Control 70

e Beyond this simple 2PL protocol, it is all
a matter of improving performance and
allowing more concurrency....

— Shared locks

— Multiple granularity

— Inserts, deletes and phantoms
— Other types of C.C. mechanisms

EECS-4411 Winter 2017 Concurrency Control /1

Shared locks

So far:
S = ...[1(A) ri(A) ur(A) ... 2(A) r2(A) u2(A) ...

o~

Do not conflict

EECS-4411 Winter 2017 Concurrency Control 72

Shared locks

So far:
S = ...[1(A) ri(A) ur(A) ... 2(A) r2(A) u2(A) ...

o~

Do not conflict

Instead:
S=... Is1(A) ri(A) Is2(A) r2(A) usi(A) usz(A)

EECS-4411 Winter 2017 Concurrency Control 73

Lock actions
I-ti(A): lock A in t mode (tis S or X)
u-ti(A): unlock t mode (t is S or X)

Shorthand:
ui(A): unlock whatever modes
Ti has locked A

EECS-4411 Winter 2017 Concurrency Control

74

Rule #1 Well formed transactions

Ti =... I-S1(A) ... r1(A) ... u1 (A) ...
Ti =... I-X1(A) ... w1(A) ... ui(A) ...

EECS-4411 Winter 2017 Concurrency Control

75

e \What about transactions that read and
write same object?

Option 1: Request exclusive lock
Ti= ...I-X1(A) ... r1(A) ... wi(A) ... u(A) ...

EECS-4411 Winter 2017 Concurrency Control

76

e \What about transactions that read and
write same object?

Option 2: Upgrade

(E.g., need to read, but don't know if will write...)

Ti=... I-S1(A) ... ri(A) ... I-X1(A) ...w1(A) ...u(A)...

LThink of

- Get 2nd lock on A, or
- Drop S, get X lock

EECS-4411 Winter 2017 Concurrency Control 77

Rule #2 Legal scheduler

S =..IS(A) ui(A) ...

no 1-Xj(A)

S =..1-X(A)ui(A) ..

no |-X;(A)
no I-Sj(A)

EECS-4411 Winter 2017 Concurrency Control

78

A way to summarize Rule #?2

Compatibility matrix

Comp S X

0p)

true false

X | false false

EECS-4411 Winter 2017 Concurrency Control

79

Rule # 3 2PL transactions

No change except for upgrades:
(I) If upgrade gets more locks
(e.g., S — {5, X}) then no change!

(II) If upgrade releases read (shared)
lock (e.g., S — X)

- can be allowed in growing phase

EECS-4411 Winter 2017 Concurrency Control 80

Theorem Rules 1,2,3 = Conf.serializable
for S/X locks schedules

Proof: similar to X locks case

Detail:
I-ti(A), I-ri(A) do not conflict if comp(t,r)
I-ti(A), u-ri(A) do not conflict if comp(t,r)

EECS-4411 Winter 2017 Concurrency Control 81

Lock types beyond S/X

Examples:
(1) increment lock
(2) update lock

EECS-4411 Winter 2017 Concurrency Control

82

Example (1): increment lock

e Atomic increment action: INi(A)
{Read(A); A < A+Kk; Write(A)}

e INi(A), INj(A) do not conflict!
INj(A)

INi(A A=7
=5 +2 m\’

INj(A) INi(A)

A A=17

EECS-4411 Winter 2017 Concurrency Control

83

Comp

EECS-4411 Winter 2017

0p)

i

Concurrency Control

84

Comp

EECS-4411 Winter 2017

0p)

i

ulR BEE R (7

M| ™M | T X

— | ™M ™M

Concurrency Control

85

Update locks

A common deadlock problem with upgrades:

T1 T2
-S1(A) 5
-S2(A)

--- Deadlock ---

EECS-4411 Winter 2017 Concurrency Control 86

Solution

If Ti wants to read A and knows it
may later want to write A, it requests
update lock (not shared)

EECS-4411 Winter 2017 Concurrency Control

87

New request

Comp S| X | U
S
Lock
alrggc_ly 5 X
held in U

EECS-4411 Winter 2017 Concurrency Control

New request

Comp S U
S| T F T

Lock _
alrggc_ly < X F 3 F
heldin U |TorF F | F

-> symmetric table?

EECS-4411 Winter 2017 Concurrency Control 89

Note: object A may be locked in different

modes at the same time.

S1=...1-S1(A)...l-S2(A)...-Us(A)...

-S4(A)...?

EECS-4411 Winter 2017 Concurrency Control

1-Us(A)...?

90

Note: object A may be locked in different
modes at the same time...

S1=...1-Si(A)...1-Sa(A)...l-Us(A)...| I-S4(A)...?
-Us(A)..?

e To grant a lock in mode t, mode t must
be compatible with all currently held
locks on object

EECS-4411 Winter 2017 Concurrency Control 91

How does locking work in practice?

e Every system is different

(E.g., may not even provide
CONFLICT-SERIALIZABLE schedules)

e But here is one (simplified) way ...

EECS-4411 Winter 2017 Concurrency Control

92

Sample Locking System:

(1) Don't trust transactions to
request/release locks

(2) Hold all locks until transaction
commits

#
locks

time

EECS-4411 Winter 2017 Concurrency Control

93

Ti

| Begin;, Read,(A), Write,(B), ...

lock
table

| Scheduler, part 1

| I(A),Read(A),I(B),Write,(B), ...

neduler, part II

\ 4

EECS-4411 Winter 2017

Read,(A),Write,(B), ...

Concurrency Control

94

Ti
| Begin;, Read,(A), Write,(B), Cmt,

| Scheduler, part 1

lock
table l Ii(A)IReadi(A)l '(B)I\Nritei(B)lcmtil ui(A)lui(B)

| Schedu ler, part II

Read,(A),Write,(B),Cmt;

\ 4

EECS-4411 Winter 2017 Concurrency Control 95

Conceptually

If null, object is unlocked

- ———, |Lock info for C

Lock table
5 | [ALA
% B
© C
% A
S
>
0,

D

Lock info for B

EECS-4411 Winter 2017

Concurrency Control

96

But use hash table:

A .
@ A > | Lock info for A

If object not found in hash table, it is
unlocked

EECS-4411 Winter 2017 Concurrency Control

Lock info for A - example

— Object:A
Group mode:U
Waiting:yes

T1
/ =

List:

EECS-4411 Winter 2017

tran mode wait? Nxt T_link

Concurrency Control

S | no
U | no
T3 | X |yes
To other T3
records

98

What are the objects we lock?

Relation A

Relation B

DB

EECS-4411 Winter 2017

Tup

e A

Tup

e B

Tup

e C

Disk
block
A

Disk
block
B

DB

DB

Concurrency Control

99

e Locking works in any case, but should
we choose small or large objects?

EECS-4411 Winter 2017 Concurrency Control 100

e Locking works in any case, but should
we choose small or large objects?

e If we lock large objects (e.g., Relations)
— Need few locks
— Low concurrency

e If we lock small objects (e.q., tuples,fields)
— Need more locks
— More concurrency

EECS-4411 Winter 2017 Concurrency Control 101

We can have it both ways!!

Ask any janitor to give you the solution...

Stall 1 Stall 2 | Stall 3 Stall 4

restroom

EECS-4411 Winter 2017 Concurrency Control 102

Example

w ®@

EECS-4411 Winter 2017 Concurrency Control 103

Example

T1(IS)

W
©

T1(S)

EECS-4411 Winter 2017 Concurrency Control 104

Example

T1(I5) , T2(S)

W
©

T1(S)

EECS-4411 Winter 2017 Concurrency Control 105

Example (b)

T1(IS)

W
©

T1(S)

EECS-4411 Winter 2017 Concurrency Control 106

Example

T1(IS) , T2(IX)

W
D @ 0
T1(S) @ TZ(IX)5

EECS-4411 Winter 2017 Concurrency Control 107

Multiple granularity

Comp
IS
Holder IX
S
SIX

X

EECS-4411 Winter 2017

Requestor
IS IX S SIX X

Concurrency Control

108

Multiple granularity

Comp Requestor
IS IX S SIX X

IS TIT|TITIF
Holder IX

S
SIX
X

m| = - -
M| M| M|

F
T
F
F

1|11 |11 | T
1|11 |11 | T

EECS-4411 Winter 2017 Concurrency Control 109

Parent Child can be
locked in locked in

IX
S
SIX
X

P
IS
<

EECS-4411 Winter 2017 Concurrency Control 110

Parent Child can be locked
locked in by same transaction in
IS IS, S e
IX IS, S, IX, X, SIX
S none
SIX X, IX, [SIX]
X none ™ e

EECS-4411 Winter 2017 Concurrency Control 111

Rules

(1) Follow multiple granularity comp function

(2) Lock root of tree first, any mode

(3) Node Q can be locked by Ti in S or IS only if
parent(Q) locked by Ti in IX or IS

(4) Node Q can be locked by Ti in X,SIX,IX only
if parent(Q) locked by Ti in IX,SIX

(5) Ti is two-phase

(6) Ti can unlock node Q only if none of Q’s
children are locked by Ti

EECS-4411 Winter 2017 Concurrency Control 112

Exercise:

e Can T2 access object f2.2 in X mode?
What locks will T2 get?

EECS-4411 Winter 2017 Concurrency Control 113

Exercise:

e Can T2 access object f2.2 in X mode?
What locks will T2 get?

Exercise:

e Can T2 access object f3.1 in X mode?
What locks will T2 get?

Exercise:

e Can T2 access object f2.2 in S mode?
What locks will T2 get?

EECS-4411 Winter 2017 Concurrency Control 116

Exercise:

e Can T2 access object f2.2 in X mode?
What locks will T2 get?

EECS-4411 Winter 2017 Concurrency Control 117

Insert + delete operations

— Insert

EECS-4411 Winter 2017 Concurrency Control 118

Modifications to locking rules:

(1) Get exclusive lock on A before
deleting A

(2) At insert A operation by Ti,
Ti is given exclusive lock on A

EECS-4411 Winter 2017 Concurrency Control 119

Still have a problem: Phantoms

Example: relation R (E#,name,...)

ol
02

constraint: E# is key
use tuple locking

E# Name

55 | Smith

/5 | Jones

EECS-4411 Winter 2017 Concurrency Control

120

T1: Insert <12,0bama,...> into R
T2: Insert <12,Romney,...> into R

T1 T2
S1(01) S2(01)
S1(02) S2(02)

Check Constraint éCheck Constraint

Insert 03[12,0bama,..]
gInsert 04[12,Romney,..]

EECS-4411 Winter 2017 Concur'rency Control 121

Solution

e Use multiple granularity tree
e Before insert of node Q,
lock parent(Q) in

X mode @
& o

EECS-4411 Winter 2017 Concurrency Control 122

Back to example

T1: Insert<12,0bama> T2: Insert<12,Romney>
T1 T2
X1(R) ’

("’ ________ / delayed
Check constraint
Insert<12,0bama>
U,(R)
X2(R)
Check constraint
Oops! e# = 12 already in R!

EECS-4411 Winter 2017 | Concurrency Control 123

Instead of using R, can use index on R:

100<E#<200

EECS-4411 Winter 2017 Concurrency Control 124

e This approach can be generalized to
multiple indexes...

EECS-4411 Winter 2017 Concurrency Control 125

Next:

e Tree-based concurrency control
e Validation concurrency control

EECS-4411 Winter 2017 Concurrency Control 126

Example

» all objects accessed
through root,
following pointers

yol b

@ &

EECS-4411 Winter 2017

Concurrency Control

127

Example

» all objects accessed
through root, T1 lock
following pointers @J
T1 lock /

T1 lock
O

& @

EECS-4411 Winter 2017 Concurrency Control

128

Example

» all objects accessed
through root, T1 lock
following pointers @J
T1 lock /

@ T1 lock
GERG

« can we release A lock
if we no longer need A??

EECS-4411 Winter 2017 Concurrency Control 129

Idea: traverse like "Monkey Bars”

S L

@ e

EECS-4411 Winter 2017 Concurrenc y Control 130

Idea: traverse like "Monkey Bars”

@\J—l lock

e

@ T1 lock
& &

EECS-4411 Winter 2017 Concurrency Control 131

Idea: traverse like "Monkey Bars”

A)

T1 lock / N\
T1 lock /

L)

& @

EECS-4411 Winter 2017 Concurrency Control 132

Why does this work?

o Assume all Ti start at root; exclusive lock
e Ti— Tj = Tilocks root before Tj

e

@}n ¢

o ActuaIIy works if we don't always
start at root

EECS-4411 Winter 2017 Concurrency Control 133

Rules: tree protocol (exclusive locks)

(1) First lock by Ti may be on any item

(2) After that, item Q can be locked by T
only if parent(Q) locked by Ti

(3) Items may be unlocked at any time
(4) After Ti unlocks Q, it cannot relock Q

EECS-4411 Winter 2017 Concurrency Control 134

e Tree-like protocols are used typically for
B-tree concurrency control

Root - *

e SN

E.g., during insert, do not release parent lock, until you
are certain child does not have to split

EECS-4411 Winter 2017 Concurrency Control 135

Tree Protocol with Shared Locks

e Rules for shared & exclusive locks?

T1 S lock(released)
(A~
T1 X lock (released)

T1 S lock (held% / \GD
@2 T1 X lock (will get)

EECS-4411 Winter 2017 Concurrency Control 136

Tree Protocol with Shared Locks

e Rules for shared & exclusive locks?

T1 S lock(released)
(A~
T1 X lock (released)

T1 S lock (held)

@2 T1 X lock (will get)

EECS-4411 Winter 2017 Concurrency Control 137

T2 reads:
e B modified by T1
e F not yet modified by T1

Tree Protocol with Shared Locks

 Need more restrictive protocol

e Will this work??

— Once T, locks one object in X mode,
all further locks down the tree must be
in X mode

EECS-4411 Winter 2017 Concurrency Control 138

Validation

Transactions have 3 phases:
(1) Read
— all DB values read
— writes to temporary storage
— no locking

(2) Validate
— check if schedule so far is serializable

(3) Write
— if validate ok, write to DB

EECS-4411 Winter 2017 Concurrency Control

139

Key idea

e Make validation atomic

o If T1, T2, T3, ... is validation order, then
resulting schedule will be conflict
equivalent to Ss = T1 T2 T3...

EECS-4411 Winter 2017 Concurrency Control 140

To implement validation, system keeps
two sets:

e FIN = transactions that have finished
phase 3 (and are all done)

e VAL = transactions that have
successfully finished phase 2
(validation)

EECS-4411 Winter 2017 Concurrency Control 141

Example of what validation must prevent:

RS(T2)={B} ~—RS(T3)={AB} £ ¢
WS(T2)={B,D} WS(T3)={C}

start

T2 T3 T2 T3
l start J l validated lvalidated

time

EECS-4411 Winter 2017 Concurrency Control 142

allow
Example of what validation must prevent:

RS(T2)={B} ~—RS(T3)={AB} £ ¢
WS(T2)={B,D} WS(T3)={C}

T2 T2 T3

l start l validated lvalidated
art

time

T2 ‘
finish
phase 3

{T3

start

EECS-4411 Winter 2017 Concurrency Control 143

Another thing validation must prevent:

RS(T2)={A} RS(T3)={A, B}
WS(T2)={D,E} WS(T3)={C,D}

JTZ 1T3

validated validated

finish .
T fime

EECS-4411 Winter 2017 Concurrency Control 144

Another thing validation must prevent:

RS(T2)={A} RS(T3)={A, B}
WS(T2)={D,E} WS(T3)={C,D}

validated validated

finish
T fime

BAD: w3(D) w2(D)

JTZ JT3

EECS-4411 Winter 2017 Concurrency Control 145

allow
Another thing validation must B;evem’?

RS(T2)={A} RS(T3)={A, B}
WS(T2)={D,E} WS(T3)={C,D}

JTZ JT3

validated validated

finish i '.
T2 Tp Hme

EECS-4411 Winter 2017 Concurrency Control 146

Validation rules for Tj:

(1) When Tj starts phase 1:
ignore(Tj) < FIN
(2) at T;j Validation:
if check (Tj) then
[VAL < VAL U {Tj};
do write phase;
FIN <—FIN U {Tj}]

EECS-4411 Winter 2017 Concurrency Control 147

Check (T;):
For Ti & VAL - IGNORE (Tj) DO

IF [WS(Ti) M RS(T;) = @ OR
Ti €& FIN] THEN RETURN false:
RETURN true;

EECS-4411 Winter 2017 Concurrency Control 148

Check (T;):
For Ti & VAL - IGNORE (Tj) DO

IF [WS(Ti) M RS(T;) = @ OR
Ti €& FIN] THEN RETURN false:
RETURN true;

Is this check too restrictive ?

EECS-4411 Winter 2017 Concurrency Control 149

Improving Check(T;)

For Ti € VAL - IGNORE (T;) DO
IF [WS(Ti) M RS(T;) = @ OR

(Ti €& FIN AND WS(Ti) M WS(T;) = @)]
THEN RETURN false;
RETURN true;

EECS-4411 Winter 2017 Concurrency Control 150

A start
Exercise: S yancate
U: RS(U)={B} W: RS(W)={A,D}
WS(U)={D} WS(W)={A,C}
T: RS(T)={A,B} V: RS(V)={B}
WS(T)={A,C} WS(V)={D,E}

EECS-4411 Winter 2017 Concurrency Control 151

Is Validation = 2PL?

4@ e

EECS-4411 Winter 2017 Concurrency Control

S2: w2(y) wl(x) w2(x)

e Achievable with 2PL?
e Achievable with validation?

EECS-4411 Winter 2017 Concurrency Control 153

S2: w2(y) wl(x) w2(x)

e S2 can be achieved with 2PL:
12(y) w2(y) 11(x) wil(x) ul(x) 12(x) w2(x) u2(y) u2(x)
e S2 cannot be achieved by validation:
The validation point of T2, val2 must occur before
w2(y) since transactions do not write to the database
until after validation. Because of the conflict on X,
vall < val2, so we must have something like
S2: vall val2 w2(y) wl(x) w2(x)
With the validation protocol, the writes of T2 should
not start until T1 is all done with its writes, which is
not the case.

EECS-4411 Winter 2017 Concurrency Control 154

Validation subset of 2PL?

e Possible proof (Check!):
— Let S be validation schedule

— For each T in S insert lock/unlocks, get S’

o At T start: request read locks for all of RS(T)

e At T validation: request write locks for WS(T);
release read locks for read-only objects

e At T end: release all write locks
— Clearly transactions well-formed and 2PL
— Must show S’ is legal (next page)

EECS-4411 Winter 2017 Concurrency Control 155

e Say S’ not legal (due to w-r conflict):
S ... 11(x) w2(x) ri(x) vall ul(x) ...
— At vall: T2 not in Ignore(T1); T2 in VAL
— T1 does not validate: WS(T2) N RS(T1) = &
— contradiction!
e Say S’ not legal (due to w-w conflict):
S ...valll1(x) w2(x) wi(x) ul(x)...
— Say T2 validates first (proof similar if T1 validates first)

— At vall: T2 not in Ignore(T1); T2 in VAL

— T1 does not validate:
T2 & FIN AND WS(T1) N WS(T2) = &)

— contradiction!

EECS-4411 Winter 2017 Concurrency Control 156

Conclusion:
Validation subset 2PL

GSE %%

)

=)

EECS-4411 Winter 2017 Concurrenc y Control

Validation (also called optimistic
concurrency control) is useful in some

Cases.

- Conflic

(S rare

- System resources plentiful
- Have real time constraints

EECS-4411 Winter 2017

Concurrency Control 158

Summary

Have studied C.C. mechanisms used in
practice

-2 PL

- Multiple granularity

- Tree (index) protocols
- Validation

EECS-4411 Winter 2017 Concurrency Control 159

