
EECS-4411 Winter 2017 More X-act Processing 1

More X-act Processing

Parke Godfrey

Thanks to

•  These slides are authored by Hector
Garcia Molina (Stanford), 2002.

•  They follow the class textbook
(“Stanford”).

EECS-4411 Winter 2017 More X-act Processing 2

EECS-4411 Winter 2017 More X-act Processing 3

Sections to Skim:

•  Section 18.8 [18.8]
•  Sections 19.2 19.4, 19.5, 19.6

[none, i.e., read all Ch 19]
•  [In the Second Edition, skip all of Chapter 20, and

Sections 21.5, 21.6, 21.7, 22.2 through 22.7]

EECS-4411 Winter 2017 More X-act Processing 4

Chapter 19 [19] More on transaction
 processing

Topics:
•  Cascading rollback, recoverable schedule
•  Deadlocks

– Prevention
– Detection

•  View serializability
•  Distributed transactions
•  Long transactions (nested, compensation)

EECS-4411 Winter 2017 More X-act Processing 5

Example: Tj Ti

 Wj(A)
 ri(A)
 Commit Ti

 Abort Tj

Concurrency control & recovery

…

…

…

…

…

…

EECS-4411 Winter 2017 More X-act Processing 6

Example: Tj Ti

 Wj(A)
 ri(A)
 Commit Ti

 Abort Tj

Concurrency control & recovery

…

…

…

…

…

…

E Non-Persistent Commit (Bad!)

EECS-4411 Winter 2017 More X-act Processing 7

Example: Tj Ti

 Wj(A)
 ri(A)
 Commit Ti

 Abort Tj

Concurrency control & recovery

…

…

…

…

…

…

E Non-Persistent Commit (Bad!)

avoided by
recoverable
schedules

EECS-4411 Winter 2017 More X-act Processing 8

Example: Tj Ti

 Wj(A)
 ri(A)
 wi(B)

 Abort Tj

 [Commit Ti]

Concurrency control & recovery

…

…

…

…

…

…

EECS-4411 Winter 2017 More X-act Processing 9

Example: Tj Ti

 Wj(A)
 ri(A)
 wi(B)

 Abort Tj

 [Commit Ti]

Concurrency control & recovery

…

…

…

…

…

…

E Cascading rollback (Bad!)

EECS-4411 Winter 2017 More X-act Processing 10

Example: Tj Ti

 Wj(A)
 ri(A)
 wi(B)

 Abort Tj

 [Commit Ti]

Concurrency control & recovery

…

…

…

…

…

…

E Cascading rollback (Bad!)
avoided by
avoids-cascading-
rollback (ACR)
schedules

EECS-4411 Winter 2017 More X-act Processing 11

•  Schedule is conflict serializable
•  Tj Ti

•  But not recoverable

EECS-4411 Winter 2017 More X-act Processing 12

•  Need to make “final’ decision for each
transaction:
– commit decision - system guarantees

transaction will or has completed, no
matter what

– abort decision - system guarantees
transaction will or has been rolled back

 (has no effect)

EECS-4411 Winter 2017 More X-act Processing 13

To model this, two new actions:

•  Ci - transaction Ti commits
•  Ai - transaction Ti aborts

EECS-4411 Winter 2017 More X-act Processing 14

...

...

...

...

Back to example:

 Tj Ti

 Wj(A)
 ri(A)

 Ci ← can we commit

 here?

EECS-4411 Winter 2017 More X-act Processing 15

Definition

Ti reads from Tj in S (Tj ⇒S Ti) if

(1) wj(A) <S ri(A)

(2) aj <S ri(A) (< : does not precede)

(3) If wj(A) <S wk(A) <S ri(A) then
 ak <S ri(A)

EECS-4411 Winter 2017 More X-act Processing 16

Definition

Schedule S is recoverable if
whenever Tj ⇒S Ti and j ≠ i and Ci ∈ S
then Cj <S Ci

EECS-4411 Winter 2017 More X-act Processing 17

Note: in transactions, reads and writes
 precede commit or abort

➳ If Ci ∈ Ti, then ri(A) < Ci

 wi(A) < Ci

➳ If Ai ∈ Ti, then ri(A) < Ai

 wi(A) < Ai

•  Also, one of Ci, Ai per transaction

EECS-4411 Winter 2017 More X-act Processing 18

How to achieve recoverable schedules?

EECS-4411 Winter 2017 More X-act Processing 19

 With 2PL, hold write locks to
 commit (strict 2PL)

 Tj Ti

 Wj(A)

 Cj
 uj(A)
 ri(A)

...

...

...

...

...

...

...

EECS-4411 Winter 2017 More X-act Processing 20

 With validation, no change!

EECS-4411 Winter 2017 More X-act Processing 21

•  S is recoverable if each transaction
commits only after all transactions from
which it read have committed.

EECS-4411 Winter 2017 More X-act Processing 22

•  S is recoverable if each transaction
commits only after all transactions from
which it read have committed.

•  S avoids cascading rollback if each
transaction may read only those values
written by committed transactions.

EECS-4411 Winter 2017 More X-act Processing 23

•  S is recoverable if each transaction
commits only after all transactions from
which it read have committed.

•  S avoids cascading rollback if each
transaction may read only those values
written by committed transactions.

•  S is strict if each transaction may read
and write only items previously written
by committed transactions.

EECS-4411 Winter 2017 More X-act Processing 24

•  Relationship of RC, ACR, Strict

Avoids cascading rollback

RC

ACR

ST SERIAL

EECS-4411 Winter 2017 More X-act Processing 25

Examples

•  Recoverable:
– w1(A) w1(B) w2(A) r2(B) c1 c2

•  Avoids Cascading Rollback:
– w1(A) w1(B) w2(A) c1 r2(B) c2

•  Strict:
– w1(A) w1(B) c1 w2(A) r2(B) c2

Assumes w2(A) is done
without reading

EECS-4411 Winter 2017 More X-act Processing 26

Where are serializable schedules?

Avoids cascading rollback

RC

ACR

ST SERIAL

EECS-4411 Winter 2017 More X-act Processing 27

Deadlocks

•  Detection
– Wait-for graph

•  Prevention
– Resource ordering
– Timeout
– Wait-die
– Wound-wait

EECS-4411 Winter 2017 More X-act Processing 28

Deadlock Detection

•  Build Wait-For graph
•  Use lock table structures
•  Build incrementally or periodically
•  When cycle found, rollback victim

T1

T3

T2

T6

T5

T4
T7

EECS-4411 Winter 2017 More X-act Processing 29

Resource Ordering

•  Order all elements A1, A2, …, An

•  A transaction T can lock Ai after Aj only
if i > j

EECS-4411 Winter 2017 More X-act Processing 30

Resource Ordering

•  Order all elements A1, A2, …, An

•  A transaction T can lock Ai after Aj only
if i > j

Problem : Ordered lock requests not
realistic in most cases

EECS-4411 Winter 2017 More X-act Processing 31

Timeout

•  If transaction waits more than L sec.,
 roll it back!

•  Simple scheme
•  Hard to select L

EECS-4411 Winter 2017 More X-act Processing 32

Wait-die

•  Transactions given a timestamp when
they arrive …. ts(Ti)

•  Ti can only wait for Tj if ts(Ti)< ts(Tj)
 ...else die

EECS-4411 Winter 2017 More X-act Processing 33

 T1
 (ts =10)

 T2
 (ts =20)

 T3

 (ts =25)

wait

wait

Example:

EECS-4411 Winter 2017 More X-act Processing 34

 T1
 (ts =10)

 T2
 (ts =20)

 T3

 (ts =25)

wait

wait

Example:

wait?

EECS-4411 Winter 2017 More X-act Processing 35

 T1
 (ts =10)

 T2
 (ts =20)

 T3

 (ts =25)

wait

wait

Example:

wait?

EECS-4411 Winter 2017 More X-act Processing 36

Starvation with Wait-Die

•  When transaction dies, re-try later
with what timestamp?
– original timestamp
– new timestamp (time of re-submit)

EECS-4411 Winter 2017 More X-act Processing 37

Starvation with Wait-Die

•  Resubmit with original timestamp
•  Guarantees no starvation

– Transaction with oldest ts never dies
– A transaction that dies will eventually

have oldest ts and will complete...

EECS-4411 Winter 2017 More X-act Processing 38

 T1
 (ts =22)

 T2
 (ts =20)

 T3

 (ts =25)

wait(A)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
20 and 25.

EECS-4411 Winter 2017 More X-act Processing 39

 T1
 (ts =22)

 T2
 (ts =20)

 T3

 (ts =25)

wait(A)

Second Example (continued):

wait(A)

One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 will have to die!

EECS-4411 Winter 2017 More X-act Processing 40

 T1
 (ts =22)

 T2
 (ts =20)

 T3

 (ts =25)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3 ⇒ T1 dies right away!

EECS-4411 Winter 2017 More X-act Processing 41

 T1
 (ts =22)

 T2
 (ts =20)

 T3

 (ts =25)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for
T3; T2 then waits for T3 and T1... ⇒ T2 may starve?

redundant arc

EECS-4411 Winter 2017 More X-act Processing 42

Wound-wait

•  Transactions given a timestamp when
they arrive … ts(Ti)

•  Ti wounds Tj if ts(Ti)< ts(Tj)
 else Ti waits

“Wound”: Tj rolls back and gives lock to Ti

EECS-4411 Winter 2017 More X-act Processing 43

 T1
 (ts =25)

 T2
 (ts =20)

 T3

 (ts =10)

wait

wait

Example:

EECS-4411 Winter 2017 More X-act Processing 44

 T1
 (ts =25)

 T2
 (ts =20)

 T3

 (ts =10)

wait

wait

Example:

wait

EECS-4411 Winter 2017 More X-act Processing 45

Starvation with Wound-Wait

•  When transaction dies, re-try later
with what timestamp?
– original timestamp
– new timestamp (time of re-submit)

EECS-4411 Winter 2017 More X-act Processing 46

 T1
 (ts =15)

 T2
 (ts =20)

 T3

 (ts =10)

wait(A)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
10 and 20.

EECS-4411 Winter 2017 More X-act Processing 47

 T1
 (ts =15)

 T2
 (ts =20)

 T3

 (ts =10)

wait(A)

Second Example (continued):

wait(A)

One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 waits for T2 and wounds T2.

EECS-4411 Winter 2017 More X-act Processing 48

 T1
 (ts =15)

 T2
 (ts =20)

 T3

 (ts =10)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3 ⇒ T2 wounded right away!

EECS-4411 Winter 2017 More X-act Processing 49

 T1
 (ts =15)

 T2
 (ts =20)

 T3

 (ts =10)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for
T3; T2 then waits for T3 and T1... ⇒ T2 is spared!

EECS-4411 Winter 2017 More X-act Processing 50

User/Program commands

Lots of variations, but in general
•  Begin_work
•  Commit_work
•  Abort_work

EECS-4411 Winter 2017 More X-act Processing 51

Nested transactions

User program:

 Begin_work;

 If results_ok, then commit work
 else abort_work

...

...

...

EECS-4411 Winter 2017 More X-act Processing 52

Nested transactions

User program:

Begin_work;
 Begin_work;

 If results_ok, then commit work
 else {abort_work; try something else…}

 If results_ok, then commit work
 else abort_work

...

...

...

EECS-4411 Winter 2017 More X-act Processing 53

Parallel Nested Transactions
T1: begin-work

 parallel:
 T11: begin_work

 commit_work

 T12: begin_work

 commit_work

 commit_work

...

...

...

...

EECS-4411 Winter 2017 More X-act Processing 54

Parallel Nested Transactions
T1: begin-work

 parallel:
 T11: begin_work

 commit_work

 T12: begin_work

 commit_work

 commit_work

...

...

...

...

T1

T11 T12

EECS-4411 Winter 2017 More X-act Processing 55

Parallel Nested Transactions
T1: begin-work

 parallel:
 T11: begin_work

 commit_work

 T12: begin_work

 commit_work

 commit_work

...

...

...

...

T1

T11 T12

T1

EECS-4411 Winter 2017 More X-act Processing 56

Locking
 Locking

What are we really locking?

EECS-4411 Winter 2017 More X-act Processing 57

Example:

Ti
 Read record r1

 Read record r1 do record
 locking
 Modify record r3

...

...

...

...

EECS-4411 Winter 2017 More X-act Processing 58

But underneath:

Disk
pages

R3

R1

R2

record id

EECS-4411 Winter 2017 More X-act Processing 59

But underneath:

Disk
pages

R3

R1

R2

record id
If we lock all

data involved in read

of R1, we may prevent

an update to R2

(which may require

reorganization within

block)

EECS-4411 Winter 2017 More X-act Processing 60

Solution: view DB at two levels

Top level: record actions
 record locks
 undo/redo actions — logical

 e.g., Insert record(X,Y,Z)
 Redo: insert(X,Y,Z)
 Undo: delete

EECS-4411 Winter 2017 More X-act Processing 61

Low level: deal with physical details
 latch page during action
 (release at end of action)

EECS-4411 Winter 2017 More X-act Processing 62

Note: undo does not return physical DB to
original state; only same logical state

e.g., Insert R3 Undo (delete R3)

R1 R1
R2

R1
R2

R2 R3

EECS-4411 Winter 2017 More X-act Processing 63

Logging Logical Actions

•  Logical action typically span one block
(physiological actions)

•  Undo/redo log entry specifies undo/redo
logical action

Question

•  How to deal with spanned record?

EECS-4411 Winter 2017 More X-act Processing 64

part (a) part (b) part (c)

EECS-4411 Winter 2017 More X-act Processing 65

Logging Logical Actions

•  Logical action typically span one block
(physiological actions)

•  Undo/redo log entry specifies undo/redo
logical action

•  Challenge: making actions idempotent
• Example (bad): redo insert ⇒

 key inserted multiple times!

EECS-4411 Winter 2017 More X-act Processing 66

Solution: Add Log Sequence Number

Log record:
• LSN=26
• OP=insert(5,v2)
 into P
•  ...

3, v1
sem lsn=25 ...

3, v1
sem lsn=26 ...

5, v2

EECS-4411 Winter 2017 More X-act Processing 67

Still Have a Problem!

3, v1
lsn=24 ...

4, v2
3, v1

lsn=25 ...

3, v1
lsn=26 ...

5, v3

T1
Del 4

T2
Ins 5

EECS-4411 Winter 2017 More X-act Processing 68

Still Have a Problem!

3, v1
lsn=24 ...

4, v2
3, v1

lsn=25 ...

3, v1
lsn=26 ...

5, v3

T1
Del 4

T2
Ins 5

3, v1
lsn=?? ...

5, v3
4, v2

undo
Del 4

EECS-4411 Winter 2017 More X-act Processing 69

Still Have a Problem!

3, v1
lsn=24 ...

4, v2
3, v1

lsn=25 ...

3, v1
lsn=26 ...

5, v3

T1
Del 4

T2
Ins 5

3, v1
lsn=?? ...

5, v3
4, v2

undo
Del 4

Make log entry
for undo

lsn=27

EECS-4411 Winter 2017 More X-act Processing 70

Compensation Log Records

•  Log record to indicate undo (not redo)
action performed

•  Note: Compensation may not return
page to exactly the initial state

EECS-4411 Winter 2017 More X-act Processing 71

At Recovery: Example

lsn=21
T1
a1
p1

lsn=35
T1
a2-1

p2

lsn=27
T1
a2
p2

...

Log:

EECS-4411 Winter 2017 More X-act Processing 72

What to do with p2 (during T1 rollback)?

•  If lsn(p2)<27 then ... ?
•  If 27 ≤ lsn(p2) < 35 then ... ?
•  If lsn(p2) ≥ 35 then ... ?

Note: lsn(p2) is lsn of p copy on disk

EECS-4411 Winter 2017 More X-act Processing 73

Recovery Strategy

[1] Reconstruct state at time of crash
– Find latest valid checkpoint, Ck, and let ac

be its set of active transactions
– Scan log from Ck to end:

•  For each log entry [lsn, page] do:
if lsn(page) < lsn then redo action

•  If log entry is start or commit, update ac

EECS-4411 Winter 2017 More X-act Processing 74

Recovery Strategy

[2] Abort uncommitted transactions
– Set ac contains transactions to abort
– Scan log from end to Ck :

•  For each log entry (not undo) of an ac transaction,
undo action (making log entry)

– For ac transactions not fully aborted,
read their log entries older than Ck and
undo their actions

EECS-4411 Winter 2017 More X-act Processing 75

Example: What To Do After Crash

lsn=21
T1
a1
p1

lsn=35
T1
a2-1

p2

lsn=27
T1
a2
p2

...

Log:

...

lsn=29
T1
a3
p3

lsn=31
T1
a3-1

p3 ...

chk
pt

EECS-4411 Winter 2017 More X-act Processing 76

During Undo: Skip Undo’s

lsn=21
T1
a1
p1

lsn=35
T1
a2-1

p2

lsn=27
T1
a2
p2

...

Log:

...

lsn=29
T1
a3
p3

lsn=31
T1
a3-1

p3 ...

chk
pt

pointer to forward action

pointer to previous T1 action

EECS-4411 Winter 2017 More X-act Processing 77

Related idea: Sagas
•  Long running activity: T1, T2, ... Tn

•  Each step/trasnaction Ti has a
compensating transaction Ti-1

•  Semantic atomicity: execute one of
– T1, T2, ... Tn
– T1, T2, ... Tn-1 T-1

n-1, T-1
n-2, ... T-1

1
– T1, T2, ... Tn-2 T-1

n-2, T-1
n-3, ... T-1

1

– T1, T-1
1

– nothing

...

EECS-4411 Winter 2017 More X-act Processing 78

Summary

•  Cascading rollback
 Recoverable schedule

•  Deadlock
– Prevention
– Detectoin

•  Nested transactions
•  Multi-level view

