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More X-act Processing 

Parke Godfrey 



Thanks to 

•  These slides are authored by Hector 
Garcia Molina (Stanford), 2002. 

•  They follow the class textbook 
(“Stanford”). 
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Sections to Skim: 

•  Section 18.8 [18.8] 
•  Sections 19.2 19.4, 19.5, 19.6 

[none, i.e., read all Ch 19] 
•  [In the Second Edition, skip all of Chapter 20, and 

Sections 21.5, 21.6, 21.7, 22.2 through 22.7] 
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Chapter 19 [19]  More on transaction 
        processing 

Topics: 
•  Cascading rollback, recoverable schedule 
•  Deadlocks 

– Prevention 
– Detection 

•  View serializability 
•  Distributed transactions 
•  Long transactions (nested, compensation) 
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Example:           Tj     Ti  
 

    Wj(A) 
        ri(A) 
        Commit Ti 

 
    Abort Tj 

Concurrency control & recovery 

…
 

…
 

…
 

…
 

…
 

…
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Example:           Tj     Ti  
 

    Wj(A) 
        ri(A) 
        Commit Ti 

 
    Abort Tj 

Concurrency control & recovery 

…
 

…
 

…
 

…
 

…
 

…
 

E Non-Persistent Commit (Bad!) 
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Example:           Tj     Ti  
 

    Wj(A) 
        ri(A) 
        Commit Ti 

 
    Abort Tj 

Concurrency control & recovery 

…
 

…
 

…
 

…
 

…
 

…
 

E Non-Persistent Commit (Bad!) 

avoided by 
recoverable 
schedules 
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Example:           Tj     Ti  
 

    Wj(A) 
        ri(A) 
        wi(B) 

 
    Abort Tj 

                                                              [Commit Ti] 

Concurrency control & recovery 

…
 

…
 

…
 

…
 

…
 

…
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Example:           Tj     Ti  
 

    Wj(A) 
        ri(A) 
        wi(B) 

 
    Abort Tj 

                                                              [Commit Ti] 

Concurrency control & recovery 

…
 

…
 

…
 

…
 

…
 

…
 

E Cascading rollback (Bad!) 
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Example:           Tj     Ti  
 

    Wj(A) 
        ri(A) 
        wi(B) 

 
    Abort Tj 

                                                              [Commit Ti] 

Concurrency control & recovery 

…
 

…
 

…
 

…
 

…
 

…
 

E Cascading rollback (Bad!) 
avoided by 
avoids-cascading- 
rollback (ACR) 
schedules 
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•  Schedule is conflict serializable 
•  Tj         Ti 

•  But not recoverable 
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•  Need to make “final’ decision for each 
transaction: 
– commit decision - system guarantees 

transaction will or has completed, no 
matter what 

– abort decision - system guarantees 
transaction will or has been rolled back  

   (has no effect) 
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To model this, two new actions: 

•  Ci - transaction Ti commits 
•  Ai - transaction Ti aborts 
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...
 

...
 

...
 

...
 

Back to example: 
    

                Tj   Ti      
 
   Wj(A) 
     ri(A) 

 
     Ci  ← can we commit 

       here? 
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Definition 

Ti  reads from Tj in S (Tj  ⇒S Ti)  if 
 
(1) wj(A) <S  ri(A) 
 
(2)  aj  <S   ri(A)        (< : does not precede) 
 
(3) If wj(A) <S wk(A)  <S  ri(A)  then 
        ak <S ri(A)  
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Definition 

Schedule S is recoverable if  
whenever Tj  ⇒S Ti   and  j ≠ i and Ci ∈ S 
then Cj  <S  Ci 
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Note: in transactions, reads and writes  
   precede commit or abort 

➳  If Ci ∈ Ti, then ri(A) < Ci  

          wi(A) < Ci  

➳  If Ai ∈ Ti, then ri(A) < Ai 

          wi(A) < Ai  
 

•  Also, one of Ci, Ai per transaction 
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How to achieve recoverable schedules? 
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   With 2PL, hold write locks to   
 commit (strict 2PL) 

               Tj   Ti 
 

   Wj(A) 
 
   Cj 
   uj(A) 
     ri(A) 

 

...
 

...
 

...
 

...
 

...
 

...
 

...
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   With validation, no change! 
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•  S is recoverable if each transaction 
commits only after all transactions from 
which it read have committed. 
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•  S is recoverable if each transaction 
commits only after all transactions from 
which it read have committed. 

•  S avoids cascading rollback if each 
transaction may read only those values 
written by committed transactions. 
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•  S is recoverable if each transaction 
commits only after all transactions from 
which it read have committed. 

•  S avoids cascading rollback if each 
transaction may read only those values 
written by committed transactions. 

•  S is strict if each transaction may read 
and write only items previously written 
by committed transactions. 
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•  Relationship of RC, ACR, Strict 

Avoids cascading rollback 

RC 

ACR 

ST SERIAL 
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Examples 

•  Recoverable: 
– w1(A) w1(B)  w2(A) r2(B)   c1 c2 

•  Avoids Cascading Rollback: 
– w1(A) w1(B)  w2(A)  c1  r2(B)   c2 

•  Strict: 
– w1(A) w1(B) c1  w2(A) r2(B)   c2 

Assumes w2(A) is done 
without reading 
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Where are serializable schedules? 

Avoids cascading rollback 

RC 

ACR 

ST SERIAL 
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Deadlocks 

•  Detection 
– Wait-for graph 

•  Prevention 
– Resource ordering 
– Timeout 
– Wait-die 
– Wound-wait 



EECS-4411 Winter 2017 More X-act Processing 28 

Deadlock Detection 

•  Build Wait-For graph 
•  Use lock table structures 
•  Build incrementally or periodically 
•  When cycle found, rollback victim 

T1 

T3 

T2 

T6 

T5 

T4 
T7 
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Resource Ordering 

•  Order all elements A1, A2, …, An 

•  A transaction T can lock Ai after Aj only 
if  i > j 
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Resource Ordering 

•  Order all elements A1, A2, …, An 

•  A transaction T can lock Ai after Aj only 
if  i > j 

 
Problem : Ordered lock requests not 
realistic in most cases 
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Timeout 

•  If transaction waits more than L sec., 
    roll it back! 

•  Simple scheme 
•  Hard to select L 
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Wait-die 

•  Transactions given a timestamp when 
they arrive …. ts(Ti) 

•  Ti can only wait for Tj if ts(Ti)< ts(Tj) 
     ...else die 
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     T1 
 (ts =10) 

     T2 
    (ts =20) 

 

   T3 

          (ts =25) 
 

 

wait 

wait 

Example: 
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     T1 
 (ts =10) 

     T2 
    (ts =20) 

 

   T3 

          (ts =25) 
 

 

wait 

wait 

Example: 

wait? 
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     T1 
 (ts =10) 

     T2 
    (ts =20) 

 

   T3 

          (ts =25) 
 

 

wait 

wait 

Example: 

wait? 
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Starvation with Wait-Die 

•  When transaction dies, re-try later 
with what timestamp? 
– original timestamp 
– new timestamp (time of re-submit) 
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Starvation with Wait-Die 

•  Resubmit with original timestamp 
•  Guarantees no starvation 

– Transaction with oldest ts never dies 
– A transaction that dies will eventually 

have oldest ts and will complete... 
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     T1 
 (ts =22) 

     T2 
    (ts =20) 

 

   T3 

          (ts =25) 
 

 

wait(A) 

Second Example: 

requests A: wait for T2 or T3? 

Note: ts between 
20 and 25. 
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     T1 
 (ts =22) 

     T2 
    (ts =20) 

 

   T3 

          (ts =25) 
 

 

wait(A) 

Second Example (continued): 

wait(A) 

One option: T1 waits just for T3, transaction holding lock. 
But when T2 gets lock, T1 will have to die! 
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     T1 
 (ts =22) 

     T2 
    (ts =20) 

 

   T3 

          (ts =25) 
 

 

wait(A) 

Second Example (continued): 

wait(A) 

wait(A) 

Another option: T1 only gets A lock after T2, T3 complete, 
so T1 waits for both T2, T3   ⇒   T1 dies right away! 
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     T1 
 (ts =22) 

     T2 
    (ts =20) 

 

   T3 

          (ts =25) 
 

 

wait(A) 

Second Example (continued): 

wait(A) 

wait(A) 

Yet another option: T1 preempts T2, so T1 only waits for 
T3; T2 then waits for T3 and T1...   ⇒   T2 may starve? 

redundant arc 
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Wound-wait 

•  Transactions given a timestamp when 
they arrive … ts(Ti) 

•  Ti wounds Tj if  ts(Ti)< ts(Tj) 
         else Ti  waits 
 
“Wound”: Tj rolls back and gives lock to Ti 
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     T1 
 (ts =25) 

     T2 
    (ts =20) 

 

   T3 

          (ts =10) 
 

 

wait 

wait 

Example: 
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     T1 
 (ts =25) 

     T2 
    (ts =20) 

 

   T3 

          (ts =10) 
 

 

wait 

wait 

Example: 

wait 
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Starvation with Wound-Wait 

•  When transaction dies, re-try later 
with what timestamp? 
– original timestamp 
– new timestamp (time of re-submit) 
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     T1 
 (ts =15) 

     T2 
    (ts =20) 

 

   T3 

          (ts =10) 
 

 

wait(A) 

Second Example: 

requests A: wait for T2 or T3? 

Note: ts between 
10 and 20. 
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     T1 
 (ts =15) 

     T2 
    (ts =20) 

 

   T3 

          (ts =10) 
 

 

wait(A) 

Second Example (continued): 

wait(A) 

One option: T1 waits just for T3, transaction holding lock. 
But when T2 gets lock, T1 waits for T2 and wounds T2. 



EECS-4411 Winter 2017 More X-act Processing 48 

     T1 
 (ts =15) 

     T2 
    (ts =20) 

 

   T3 

          (ts =10) 
 

 

wait(A) 

Second Example (continued): 

wait(A) 

wait(A) 

Another option: T1 only gets A lock after T2, T3 complete, 
so T1 waits for both T2, T3   ⇒   T2 wounded right away! 
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     T1 
 (ts =15) 

     T2 
    (ts =20) 

 

   T3 

          (ts =10) 
 

 

wait(A) 

Second Example (continued): 

wait(A) 

wait(A) 

Yet another option: T1 preempts T2, so T1 only waits for 
T3; T2 then waits for T3 and T1...   ⇒   T2 is spared! 
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User/Program commands 

Lots of variations, but in general 
•  Begin_work 
•  Commit_work 
•  Abort_work 
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Nested transactions 

User program: 
   
 Begin_work; 

 
 
 If results_ok, then commit work 
   else abort_work 

...
 

...
 

...
 



EECS-4411 Winter 2017 More X-act Processing 52 

Nested transactions 

User program: 
   
Begin_work; 
   Begin_work; 
    
   If results_ok, then commit work 
       else {abort_work; try something else…} 
 

 If results_ok, then commit work 
   else abort_work 

...
 

...
 

...
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Parallel Nested Transactions 
T1:  begin-work 

 parallel: 
 T11:  begin_work 

  commit_work 

 T12:  begin_work 

  commit_work 

 commit_work 

...
 

...
 

...
 

...
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Parallel Nested Transactions 
T1:  begin-work 

 parallel: 
 T11:  begin_work 

  commit_work 

 T12:  begin_work 

  commit_work 

 commit_work 

...
 

...
 

...
 

...
 

T1 

T11 T12 
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Parallel Nested Transactions 
T1:  begin-work 

 parallel: 
 T11:  begin_work 

  commit_work 

 T12:  begin_work 

  commit_work 

 commit_work 

...
 

...
 

...
 

...
 

T1 

T11 T12 

T1 
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Locking 
    Locking 

 
What are we really locking? 
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Example: 

Ti 
  Read record r1 

   
  Read record r1   do record 
       locking   
  Modify record r3 

...
 

...
 

...
 

...
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But underneath: 

 
 

Disk 
pages 

R3 

R1 

R2 

record id 
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But underneath: 

 
 

Disk 
pages 

R3 

R1 

R2 

record id 
If we lock all 

data involved in read  

of R1, we may prevent 

an update to R2 

(which may require  

reorganization within 

block) 
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Solution:  view DB at two levels 

Top level: record actions 
    record locks 
    undo/redo actions — logical 

 
   e.g., Insert record(X,Y,Z) 
          Redo: insert(X,Y,Z) 
          Undo: delete 
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Low level: deal with physical details 
    latch page during action 
   (release at end of action) 
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Note: undo does not return physical DB to 
original state; only same logical state 

 
e.g.,       Insert R3   Undo (delete R3) 

R1 R1 
R2 

R1 
R2 

R2 R3 
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Logging Logical Actions 

•  Logical action typically span one block 
(physiological actions) 

•  Undo/redo log entry specifies undo/redo 
logical action 



Question 

•  How to deal with spanned record? 
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part (a) part (b) part (c) 
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Logging Logical Actions 

•  Logical action typically span one block 
(physiological actions) 

•  Undo/redo log entry specifies undo/redo 
logical action 

•  Challenge: making actions idempotent 
• Example (bad): redo insert ⇒ 

    key inserted multiple times! 
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Solution: Add Log Sequence Number  

Log record: 
• LSN=26 
• OP=insert(5,v2) 
         into P 
•  ... 

3, v1 
sem lsn=25 ... 

3, v1 
sem lsn=26 ... 

5, v2 
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Still Have a Problem! 

3, v1 
lsn=24 ... 

4, v2 
3, v1 

lsn=25 ... 

3, v1 
lsn=26 ... 

5, v3 

T1 
Del 4 

T2 
Ins 5 
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Still Have a Problem! 

3, v1 
lsn=24 ... 

4, v2 
3, v1 

lsn=25 ... 

3, v1 
lsn=26 ... 

5, v3 

T1 
Del 4 

T2 
Ins 5 

3, v1 
lsn=?? ... 

5, v3 
4, v2 

undo 
Del 4 
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Still Have a Problem! 

3, v1 
lsn=24 ... 

4, v2 
3, v1 

lsn=25 ... 

3, v1 
lsn=26 ... 

5, v3 

T1 
Del 4 

T2 
Ins 5 

3, v1 
lsn=?? ... 

5, v3 
4, v2 

undo 
Del 4 

Make log entry 
for undo 

lsn=27 
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Compensation Log Records 

•  Log record to indicate undo (not redo) 
action performed 

•  Note: Compensation may not return 
page to exactly the initial state 
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At Recovery: Example 

lsn=21 
T1 
a1 
p1 

lsn=35 
T1 
a2-1 

p2 

lsn=27 
T1 
a2 
p2 

... ... ... ... 

Log: 
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What to do with p2 (during T1 rollback)? 

•  If lsn(p2)<27 then ... ? 
•  If 27 ≤ lsn(p2) < 35 then ... ? 
•  If lsn(p2) ≥ 35 then ... ? 

Note: lsn(p2) is lsn of p copy on disk 
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Recovery Strategy 

[1] Reconstruct state at time of crash 
– Find latest valid checkpoint, Ck, and let ac 

be its set of active transactions 
– Scan log from Ck to end: 

•  For each log entry [lsn, page] do: 
if lsn(page) < lsn then redo action 

•  If log entry is start or commit, update ac 
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Recovery Strategy 

[2] Abort uncommitted transactions 
– Set ac contains transactions to abort 
– Scan log from end to Ck : 

•  For each log entry (not undo) of an ac transaction, 
undo action (making log entry) 

– For ac transactions not fully aborted, 
read their log entries older than Ck and 
undo their actions 
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Example: What To Do After Crash 

lsn=21 
T1 
a1 
p1 

lsn=35 
T1 
a2-1 

p2 

lsn=27 
T1 
a2 
p2 

... ... ... ... 

Log: 

... 

lsn=29 
T1 
a3 
p3 

lsn=31 
T1 
a3-1 

p3 ... 

chk 
pt 
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During Undo: Skip Undo’s 

lsn=21 
T1 
a1 
p1 

lsn=35 
T1 
a2-1 

p2 

lsn=27 
T1 
a2 
p2 

... ... ... ... 

Log: 

... 

lsn=29 
T1 
a3 
p3 

lsn=31 
T1 
a3-1 

p3 ... 

chk 
pt 

pointer to forward action 

pointer to previous T1 action 
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Related idea: Sagas 
•  Long running activity: T1, T2, ... Tn 

•  Each step/trasnaction Ti has a 
compensating transaction Ti-1 

•  Semantic atomicity: execute one of 
– T1, T2, ... Tn  
– T1, T2, ... Tn-1  T-1

n-1, T-1
n-2, ... T-1

1 
– T1, T2, ... Tn-2   T-1

n-2, T-1
n-3, ... T-1

1 
 

– T1,  T-1
1 

– nothing 

...
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Summary 

•  Cascading rollback 
 Recoverable schedule 

•  Deadlock 
– Prevention 
– Detectoin 

•  Nested transactions 
•  Multi-level view 


