More X-act Processing

Parke Godfrey

EECS-4411 Winter 2017 More X-act Processing

Thanks to

e These slides are authored by Hector
Garcia Molina (Stanford), 2002.

e They follow the class textbook
(“Stanford”).

EECS-4411 Winter 2017 More X-act Processing

Sections to Skim:

e Section 18.8 [18.8]

e Sections 19.2 19.4, 19.5, 19.6
[none, i.e., read all Ch 19]

e [In the Second Edition, skip all of Chapter 20, and
Sections 21.5, 21.6, 21.7, 22.2 through 22.7]

EECS-4411 Winter 2017 More X-act Processing

Chapter 19 [19] More on transaction
processing

Topics:
e Cascading rollback, recoverable schedule

e Deadlocks
— Prevention
— Detection

e View serializability
e Distributed transactions
e Long transactions (nested, compensation)

EECS-4411 Winter 2017 More X-act Processing 4

Concurrency control & recovery

Example:

EECS-4411 Winter 2017

T; Ti
Wj(A) :
ri(A)
Commit Ti
Abort T;

More X-act Processing

Concurrency control & recovery

Example: T Ti
Wj(A) :
ri(A)
Commit Ti
Abort T;

®" Non-Persistent Commit (Bad!)

EECS-4411 Winter 2017 More X-act Processing

Concurrency control & recovery

Example: T Ti
Wj(A) :
ri(A)
Commit Ti
Abort T;

®" Non-Persistent Commit (Bad!)

avoided by
recoverable

EECS-4411 Winter 2017 More X-act Processing

schedules
7

Concurrency control & recovery

Example: T Ti
Wj(A) :
ri(A)
wi(B)
Abort T;
[Commit Ti]

EECS-4411 Winter 2017 More X-act Processing

Concurrency control & recovery

Example: T Ti
Wj(A) :
ri(A)
wi(B)
Abort T;
[Commit Ti]

®- Cascading rollback (Bad!)

EECS-4411 Winter 2017 More X-act Processing

Concurrency control & recovery

Example: T Ti
Wj(A) :
ri(A)
wi(B)
Abort T;
[Commit Ti]
avoided by

g Cascading rollback (Bad') avoids-cascading-

rollback (ACR)

schedules
EECS-4411 Winter 2017 More X-act Processing 10

e Schedule is conflict serializable
e [j—— Ti

e But not recoverable

EECS-4411 Winter 2017 More X-act Processing

11

e Need to make “final’ decision for each
transaction:

— commit decision - system guarantees
transaction will or has completed, no
matter what

— abort decision - system guarantees
transaction will or has been rolled back

(has no effect)

EECS-4411 Winter 2017 More X-act Processing 12

To model this, two new actions:

e Ci - transaction Ti commits
e Ai - transaction Ti aborts

EECS-4411 Winter 2017 More X-act Processing

13

Back to example:

T;

Ti

Wi(A)

EECS-4411 Winter 2017

ri(A)

Ci < can we commit
here?

More X-act Processing

14

Definition

Ti reads from T5in S (Tj = Ti) if
(1) wi(A) <g ri(A)

(2) aj <5 ri(A) (£ : does not precede)

(3) If wi(A) <gWk(A) <¢ ri(A) then
ak < ri(A)

EECS-4411 Winter 2017 More X-act Processing

15

Definition

Schedule S is recoverable if
whenever Tj =< Ti and j=iand G& S

then G <¢ Gi

EECS-4411 Winter 2017 More X-act Processing

16

Note: in transactions, reads and writes
precede commit or abort

»+ If Gie Ti, then ri(A) < Ci
Wi(A) < Ci
» If Aie Ti, then ri(A) < Ai
Wi(A) < Ai

e Also, one of Ci, Ai per transaction

EECS-4411 Winter 2017 More X-act Processing

17

How to achieve recoverable schedules?

EECS-4411 Winter 2017 More X-act Processing 18

* With 2PL, hold write locks to
commit (strict 2PL)

Tj Ti
Wij(A)
.
Ui(A)
: ri(A)

EECS-4411 Winter 2017 More X-act Processing

19

* With validation, no change!

EECS-4411 Winter 2017 More X-act Processing

20

e S is recoverable if each transaction
commits only after all transactions from
which it read have committed.

EECS-4411 Winter 2017 More X-act Processing 21

e S is recoverable if each transaction
commits only after all transactions from
which it read have committed.

e S avoids cascading rollback if each
transaction may read only those values
written by committed transactions.

EECS-4411 Winter 2017 More X-act Processing

22

e S is recoverable if each transaction
commits only after all transactions from
which it read have committed.

e S avoids cascading rollback if each
transaction may read only those values
written by committed transactions.

e S is strict if each transaction may read
and write only items previously written
by committed transactions.

EECS-4411 Winter 2017 More X-act Processing

23

o Relationship of RC, ACR, Strict

RC

ST

SERIAL

ACR

EECS-4411 Winter 2017

More X-act Processing

24

Examples

e Recoverable:

—w;(A) wi(B) Wy(A) r(B) ¢; ¢
e Avoids Cascading Rollback:

—w;(A) wi(B) Wy(A) ¢; r(B) ¢,
o Strict:

- W, (A) wy(B) ¢; wy(A) ry(B) ¢,

EECS-4411 Winter 2017 More X-act Processing

Assumes w,(A) is done
without reading

25

Where are serializable schedules?

RC

ST

SERIAL

ACR

EECS-4411 Winter 2017

More X-act Processing

26

Deadlocks

e Detection
— Wait-for graph
e Prevention

— Resource ordering

— Timeout
— Wait-die
— Wound-wait

EECS-4411 Winter 2017

More X-act Processing

27

Deadlock Detection

e Build Wait-For graph

e Use lock table structures

e Build incrementally or periodically
e When cycle found, rollback victim

%5 @ ©

@

EECS-4411 Winter 2017 More X-act Processing

28

Resource Ordering

e Order all elements Ai, A, ..., An

o A transaction T can lock Ai after A; only
if i>]

EECS-4411 Winter 2017 More X-act Processing

29

Resource Ordering

e Order all elements Ai, A, ..., An

o A transaction T can lock Ai after A; only
if i>]

Problem : Ordered lock requests not
realistic in most cases

EECS-4411 Winter 2017 More X-act Processing

30

Timeout

o If transaction waits more than L sec.,
roll it back!

e Simple scheme
e Hard to select L

EECS-4411 Winter 2017 More X-act Processing

31

Wait-die

e Transactions given a timestamp when
they arrive ts(Ti)

e Tican only wait for Tj if ts(Ti)< ts(T;)
...else die

EECS-4411 Winter 2017 More X-act Processing

32

Example:

T1

(ts =10) W
12

(ts =20)

T3
(ts =25)

EECS-4411 Winter 2017 More X-act Processing

33

Example:

T1

(ts =10) W
‘ T2

\
\

wait? (ts =20)

. walt
\ /

\

T3
(ts =25)

EECS-4411 Winter 2017 More X-act Processing

34

(ts =10) W
‘ T2

wa (ts =20)
‘y
(ts =25)

EECS-4411 Winter 2017 More X-act Processing

35

Starvation with Wait-Die

e When transaction dies, re-try later
with what timestamp?

— original timestamp
— new timestamp (time of re-submit)

EECS-4411 Winter 2017 More X-act Processing

36

Starvation with Wait-Die

e Resubmit with original timestamp

e Guarantees no starvation
— Transaction with oldest ts never dies

— A transaction that dies will eventually
have oldest ts and will complete...

EECS-4411 Winter 2017 More X-act Processing

37

Second Example:

T1 requests A: wait for T, or T5?
(ts =22)

Note: ts between
20 and 25. (ts =20)

T3
(ts =25)

EECS-4411 Winter 2017 More X-act Processing

Second Example (continued):

One option: T, waits just for T, transaction holding lock.
But when T, gets lock, T; will have to die!

T1
(ts =22)

T2
(ts =20)

T3
(ts =25)

wait(A)

EECS-4411 Winter 2017 More X-act Processing 39

Second Example (continued):

Another option: T, only gets A lock after T,, T; complete,
so T, waits for both T,, T; = T, dies right away!

:

wait(A)

T2
(ts =20)

T3
(ts =25)

EECS-4411 Winter 2017 More X-act Processing 40

Second Example (continued):

Yet another option: T, preempts T,, so T, only waits for
T5; T, then waits for T; and T;... = T, may starve?

T1
(ts =22) wait(A)
T2

ts =20
wagt(A)

~

T3 e
(ts =25)

wait(A)

redundant arc

EECS-4411 Winter 2017 More X-act Processing

41

Wound-wait

e Transactions given a timestamp when
they arrive ... ts(Ti)

o Tiwounds Tjif ts(Ti)< ts(T;)
else Ti waits

“"Wound”: Tjrolls back and gives lock to Ti

EECS-4411 Winter 2017 More X-act Processing 42

Example:

T1

(ts =25) W
12

(ts =20)

T3
(ts =10)

EECS-4411 Winter 2017 More X-act Processing

43

Example:

\

N
\
walt |

EECS-4411 Winter 2017

W
T2

(ts =20)

. walt
\ /

\

T3
(ts =10)

More X-act Processing

44

Starvation with Wound-Wait

e When transaction dies, re-try later
with what timestamp?

— original timestamp
— new timestamp (time of re-submit)

EECS-4411 Winter 2017 More X-act Processing

45

Second Example:

T1 requests A: wait for T, or T5?

(ts =15)

Note: ts between
10 and 20. (ts =20)

T3
(ts =10)

EECS-4411 Winter 2017 More X-act Processing

46

Second Example (continued):

One option: T, waits just for T, transaction holding lock.
But when T, gets lock, T, waits for T, and wounds T..

T1
(ts =15)

T2
(ts =20)

T3
(ts =10)

wait(A)

EECS-4411 Winter 2017 More X-act Processing 47

Second Example (continued):

Another option: T, only gets A lock after T,, T; complete,
so T, waits for both T,, T; = T, wounded right away!

T1
(ts =15) W
wait(A) (ts _
wait(A

T3
(ts =10)

EECS-4411 Winter 2017 More X-act Processing 48

Second Example (continued):

Yet another option: T, preempts T,, so T, only waits for
T5; T, then waits for T; and T;... = T, is spared!

T1
(ts =15) wait(A)
T2
(ts =20)

T3
(ts =10)

wait(A)

EECS-4411 Winter 2017 More X-act Processing

49

User/Program commands

Lots of variations, but in general
e Begin_work

e Commit_work

e Abort_work

EECS-4411 Winter 2017 More X-act Processing

50

Nested transactions

User program:
Begin_work;

If results_ok, then commit work
else abort_work

EECS-4411 Winter 2017 More X-act Processing

51

Nested transactions

User program:
Begin_work;
Begin_work;

If re.sults_ok, then commit work
else {abort_work; try something else...}

If résults_ok, then commit work
else abort_work

EECS-4411 Winter 2017 More X-act Processing

52

Parallel Nested Transactions

T

begin-work

parailel:
Tyy: begin_work

commit_work
T;,: begin_work
. comfnit_work

commit_work

EECS-4411 Winter 2017 More X-act Processing

53

Parallel Nested Transactions

T,: begin-work

parailel:

Tyy: begin_work G
comlinit_work

T;,: begin_work @ @
. comfnit_work

commit_work

EECS-4411 Winter 2017 More X-act Processing

54

Parallel Nested Transactions

T,: begin-work

parailel:
T,;: begin_work T G
: 1
commit_work
T;,: begin_work @ @
. commit_work

commit_work

EECS-4411 Winter 2017 More X-act Processing

55

Locking
Locking

What are we really locking?

EECS-4411 Winter 2017 More X-act Processing

56

Example:

Ti

Read record ri

Read record r1

Modify record r3

EECS-4411 Winter 2017

More X-act Processing

. do record

locking

57

But underneath:

record id

EECS-4411 Winter 2017

RN

F‘Rl

R>

R3

Disk
pages

More X-act Processing

58

But underneath:

P e — o

-
-

record id

EECS-4411 Winter 2017

Disk
pages

More X-act Processing

If we lock all

data involved in read
of R1, we may prevent
an update to R2
(which may require
reorganization within
block)

59

Solution: view DB at two levels

Top level: record actions
record locks
undo/redo actions — logical

e.g., Insert record(X,Y,Z)
Redo: insert(X,Y,Z)
Undo: delete

EECS-4411 Winter 2017 More X-act Processing 60

Low level: deal with physical details
latch page during action
(release at end of action)

EECS-4411 Winter 2017 More X-act Processing

61

Note: undo does not return physical DB to
original state; only same logical state

e.g., Insert R3

-

VR1

UNdoO (delete R3)
-

W

R1

|
v

v

v |R2

////////

EECS-4411 Winter 2017

'R3

More X-act Processing

62

Logging Logical Actions

e | ogical action typically span one block
(physiological actions)

e Undo/redo log entry specifies undo/redo
logical action

EECS-4411 Winter 2017 More X-act Processing 63

Question

e How to deal with spanned record?

part (a)

—>

EECS-4411 Winter 2017

part (b) — part (c)

More X-act Processing

64

Logging Logical Actions

e | ogical action typically span one block
(physiological actions)

e Undo/redo log entry specifies undo/redo
logical action

e Challenge: making actions idempotent

e Example (bad): redo insert =
key inserted multiple times!

EECS-4411 Winter 2017 More X-act Processing 65

Solution: Add Log Sequence Number

........

iInto P

........

ct Processing //////// 66

Still Have a Problem!

...................

T1 T2
Del 4 Ins 5

Still Have a Problem!

.......

IIIII

.......

7//

lsn=7?? | ...

Del 4 Ins 5 Del 4

Still Have a Problem!

.......

IIIII

.......

7//

/

7//

lsn=27

lsn=7?? | ...

////////

T1 T2 undo
Del 4 Ins 5 Del 4

Compensation Log Records

e L og record to indicate undo (not redo)
action performed

e Note: Compensation may not return
page to exactly the initial state

EECS-4411 Winter 2017 More X-act Processing 70

At Recovery: Example

Log:

Ish=21
T1
al

pl

lshn=27
T1
a2

Isn=35
T1
a2l

EECS-4411 Winter 2017

More X-act Processing

/1

What to do with p2 (during T1 rollback)?

o If Isn(p2)<27 then ... ?
o If 27 <lIsn(p2) < 35then...?
o If Isn(p2) = 35 then ... ?

Note: Isn(p2) is Isn of p copy on disk

EECS-4411 Winter 2017 More X-act Processing 72

Recovery Strategy

[1] Reconstruct state at time of crash

— Find latest valid checkpoint, Ck, and let ac
be its set of active transactions

— Scan log from Ck to end:

e For each log entry [Isn, page] do:
if Isn(page) < Isn then redo action

e If log entry is start or commit, update ac

EECS-4411 Winter 2017 More X-act Processing 73

Recovery Strategy

[2] Abort uncommitted transactions
— Set ac contains transactions to abort

— Scan log from end to Ck :

e For each log entry (not undo) of an ac transaction,
undo action (making log entry)

— For ac transactions not fully aborted,
read their log entries older than Ck and
undo their actions

EECS-4411 Winter 2017 More X-act Processing 74

Example: What To Do After Crash

Log:

chk Isn=21 Ish=27 Isn=29 Isn=31 Isn=35

ot T1 T1 T1 T1 T1
al a2 a3 a3l a2-1
pl p2 p3 p3 p2

EECS-4411 Winter 2017

More X-act Processing

75

During Undo: Skip Undo’s

Log: \Mward action
chk Isn=21 Isn=27 Isn=29 Isn=31 Isn=35
ot T1 T1 T1 T1 T

al a2 a3 a3 a2-1

pl p2 p3 p3 D2

/

EECS-4411 Winter 2017

More X-act Processing

pointer to previous T1 action

76

Related idea: Sagas

e Long running activity: T4, T,, ... T,

e Each step/trasnaction Ti has a
compensating transaction Ti-1

e Semantic atomicity: execute one of
- Ty, Ty o T,
-T, Ty, . T T, T 5, 0 T
-T, Ty e Ty T, T 5, 0 T

- Ty T
— nothing

EECS-4411 Winter 2017 More X-act Processing 77

Summary

e Cascading rollback
Recoverable schedule

e Deadlock

— Prevention
— Detectoin

¢ Nested transactions
e Multi-level view

EECS-4411 Winter 2017 More X-act Processing 78

