
Winter 2007 COSC-6421: Advanced Database Systems—Godfrey p. 1

Negation
Datalog with Negation

Okay. Let us add “not” to the Datalog language (Datalog¬).

E.g.,

cousin (X, Y) ← grandparent (P, X),

grandparent (P, Y),

X 6= Y,

not sibling (X, Y).

We only allow use of “not” on the right-hand side of the ‘←’.

The intuitive meaning of “not” is quite clear.

How to handle it formally is far from clear.

• What are the models of a Datalog¬ database?

• What should the proof procedure be for Datalog¬?

This “not” is not logical negation (‘¬’)!



Winter 2007 COSC-6421: Advanced Database Systems—Godfrey p. 2

Safeness
Extended for Datalog¬

We require that Datalog¬ programs be safe.

We need to extend the definition of safeness for Datalog¬:

Any variable that appears either in the head atom of the rule (on the

left-hand side) or in a negated atom must also appear in a non-negated

atom in the body (on the right-hand side). Thus,

h (X1, . . . , Xk) ← b 1 (Y1, . . . , Yj1), . . . , b m (Yj
m−1

, . . . , Yjm),

not d 1 (Z1, . . . , Zj1), . . . , not d n (Zj
n−1

, . . . , Zjn).

is safe if

({X1, . . . , Xk} ∪ {Z1, . . . ,Zjn}) ⊆ {Y1, . . . , Yjm}



Winter 2007 COSC-6421: Advanced Database Systems—Godfrey p. 3

Non-Monotonicity
Non-classical Logic!

Adding a new fact many require that we retract other things that we used

to know.

P : a ← b, not c.

b.

From P , a follows.

P ′: a ← b, not c.

b.

c.

However, from P ′, a does not follow. In fact, we want to say that ¬a

follows.

Classical logic is monotonic. Thus this is a change from classical logic.

This also means that what we have in mind for “not” really is different

from classical negation (‘¬’).



Winter 2007 COSC-6421: Advanced Database Systems—Godfrey p. 4

Stratification
No cycles through “not”

The Grandmother database is statically stratified, even with the predicate

cousin.

A program is statically stratified iff the predicates can be ordered such

that no predicate employs another predicate negated that appears before it

in the ordered list.

integer (0).

integer (I) ← integer (J), I is J + 1.

even (0).

even (I) ← integer (I), I > 0, J is I− 1, not even (J).

odd (I) ← integer (I), not even (I).

This odd-even program is clearly not statically stratified. However, it is

locally stratified.

A program is locally stratified iff for any ground atom A (e.g., even (7)), it

is not possible for the negation of atom A (e.g, not even (7)) to appear in a

resolution path from A.

In other words, no “proof” of A relies on notA.



Winter 2007 COSC-6421: Advanced Database Systems—Godfrey p. 5

The Perfect Model
For Stratified Datalog¬ Programs

Just as there is one minimum model for a Datalog program, there exists

one special model named the perfect model for each Datalog¬ program.

Let P denote the perfect model of program P . The interpretation in which

A is assigned true when A ∈ P and is assigned false when A 6∈ P is a

model of P (in which the not’s are treated as logical ¬’s), and is, in a sense,

minimal.

Negation-as-finite-failure (NAFF) remains a sound proof strategy for

stratified datalog¬ programs.



Winter 2007 COSC-6421: Advanced Database Systems—Godfrey p. 6

Non-mon Negation in Datalog¬
Extends Expressiveness

Modeling

• Can ask queries with negative components.

• Can express many views (e.g., cousin) that we cannot in

Datalog.

• Can model databases more succiently

Towards capturing SQL

• Of course, we now can do except.

• Can express aggregation using not.

NULLs and full-fledged arithmetic in SQL are still a problem.



Winter 2007 COSC-6421: Advanced Database Systems—Godfrey p. 7

Negation
Example: Game of Peggly

The game of Peggly is played by two players with a pile of k coins.

• The players alternate turns.

• On a player’s turn, the player removes one, two, or three coins.

• If only one coin remains, the player whose turn it is must take it.

• The player to take the last coin loses. (And thus the other player

is the winner.)

Generic.

win (X) ← move (X, Y), notwin (Y).

Peggly Rules.

move (X, Y) ← X ≥ 1, Y is X− 1.

move (X, Y) ← X ≥ 2, Y is X− 2.

move (X, Y) ← X ≥ 3, Y is X− 3.

win (0).



Winter 2007 COSC-6421: Advanced Database Systems—Godfrey p. 8

Non-mon Negation in Datalog¬
Computationally Expensive!

Why? To prove a not, one must show that every possible proof path fails.

state(11) wins because state(9) loses.
state(9) loses because

state(8) wins

state(8) wins because state(5) loses.
state(5) loses because

state(4) wins
state(4) wins because state(1) loses.

state(1) loses because
that is all.

AND
state(3) wins
state(3) wins because state(1) loses.

state(1) has been shown to lose.
AND

state(2) wins
state(2) wins because state(1) loses.

state(1) has been shown to lose.
AND

that is all.
AND
state(7) wins

state(7) wins because state(5) loses.
state(5) has been shown to lose.

AND
state(6) wins

state(6) wins because state(5) loses.
state(5) has been shown to lose.
AND

that is all.



Winter 2007 COSC-6421: Advanced Database Systems—Godfrey p. 9

Non-Stratified

Of course there are Datalog¬ programs (databases) that are not even

locally stratified.

a ← not b.

b ← not a.

Do we ever need a non-stratified Datalog¬ programs?

Unfortunately, there are natural cases.

Also, the decision problem to determine whether an arbitrary Datalog¬

program is locally stratified is undecidable.

For non-stratified Datalog¬ programs:

• What is the semantics?

Well, we have choices. . .

• What is the proof procedure?

NAFF no longer works.


