

MIL CPS-1 Emulator
Design Notes and
Programmer’s Guide

Version 2.2
2021

Zbigniew Stachniak

York University Computer Museum
York University, Toronto, Ontario, Canada

©Zbigniew Stachniak, 2021

CONTENTS

Introduction 3

Section 1: The CPS-1 Architecture 3

1.1. The NF7114 instruction set 4
1.2. The CPS-1 memory organization 6
1.3. Virtual registers 7

Section 2: The CPS-1 Interfacing Techniques 7

2.1. Front panel as an I/O device 8
2.2. Interfacing a paper tape reader 11
2.3. Interfacing Burroughs SelfScan 13
2.4. Interfacing a numerical keypad 15

Section 3: Operating the CPS-1 Emulator 17

3.1. Representation of ROMs and paper tapes 17
3.2. Executing a CPS-1 application 18
3.3. The debugging mode 20

Section 4: Installing the CPS-1 Emulator 21

Section 5: CPS-1 Programs and Assembler 22

5.1. CPS-1 Programs 22
5.2. Data segments 24
5.3. No Arithmetic (yet) 24
5.4. How to Use the Assembler 24

Section 6: CPS-1 Emulator Applications Software 24

References 25

Introduction

The CPS-1 computer was the first Canadian microprocessor-based computer
and one of the world’s first such computers. It was designed at Microsystems
International Ltd. (MIL), Ottawa, between 1972 and 1973, and revised several
times in 1974. However, the underlying architecture of all CPS-1 computers was
the same. They used the MIL MP-1 chip set consisting of the MF7114 CPU (also
designed at MIL between 1971 and 1972 (see [1])) communicating with ROM
(e.g. MIL MF1601 or MIL 1701A chips) and RAM (e.g. MIL MF7115 chips)
memories over a 12-bit address bus and 4-bit data bus.

The simplicity and flexibility of the MF7114’s design allowed for diverse
hardware solutions concerning, for instance, the implementation of the front
panel and the interfacing of peripherals.

It is not known how many CPS-1 computers were built and sold and in what
configurations. Furthermore, none of the CPS-1 computers have survived. How-
ever, a rich CPS-1 documentation collected by the York University Computer
Museum (YUCoM) allowed to design and implement an emulator of the com-
puter in a basic hardware configuration consisting of the CPU module interfaced
with its front panel, paper tape reader, a plasma display, and a numeric keypad.

This manual describes the architecture, installation, and programming of the
CPS-1 Emulator developed at YUCoM between 2011 and 2021.

1 The CPS-1 Architecture

The main component of a CPS-1 systems is the MF7114 microprocessor (4-bit
data, 12-bit addressing). The microprocessor communicates with memory and
external I/O devices using 12-bit address bus and 5 control lines (COMBUS), as
well as 4-bit data bus (see [1, 2] for details). The microprocessor was designed
to work with standard memory devices.

The MF7114 CPU has only four internal registers:

– 4-bit accumulator AC,
– 1-bit overflow register OF,
– 12-bit data pointer register DP,
– 12-bit program counter PC.

Additional 16 (virtual) registers are implemented using the first 32 nibbles (or
4-bit words) of memory (more on virtual registers below).

3

1.1 The MF7114 instruction set

According to L.R. Schweizer (one of the main engineers behind the CPS-1 de-
sign), the MF7114’s instruction set “is equivalent to that of the PDP/8 series of
computers from DEC.” [5]. The instruction set, given in Table 1, was first pub-
lished in [2]. For each instruction, the table provides the instruction’s mnemonic,
binary code, and short description.

AC load and store instructions

LAD 00011000 Load AC with memory[DP].

LAM 00011xxx Load AC with memory[DP’], where DP’ is DP in which bits 6-4 are

replaced with xxx from the instruction; DP is not modified.

LAR 00010DDD Load AC with data register 0DDD

LAI 0111xxxx Load AC with nibble xxxx from the instruction.

SAD 00101000 Load memory[DP] with AC.

SAM 00101xxx Load memory[DP’] with AC, where DP’ is DP in which bits 6-4 are

replaced with xxx from the instruction; DP is not modified.

SAR 00100DDD Load data register 0DDD with AC

DP load and store instructions

LDI 1101xxxxxxxxxxxx Load DP with xxxxxxxxxxxx from the instruction.

LDR 10010AAA Load DP with address register 0AAA.

SDR 10000AAA Load address register 0AAA with DP.

IDP 00001000 Increment DP.

DDP 10100000 Decrement DP.

SIDR 10001AAA IDP followed by SDR.

XPD 00001111 Exchange DP and PC.

LDID 10011000 DP is loaded with three consecutive nibbles starting at address DP.

The least significant address nibble should be of the form xx01.

ISZD 01101000 Increment memory[DP]; if the increment results in 0, PC is

incremented by 4; OF is not affected.

ISZM 01101xxx Increment memory[DP’], where DP’ is DP in which bits 6-4

are replaced with xxx from the instruction;

if the increment results in 0, PC is incremented by 4

(one 4-nibble instruction of rwo 2-nibble instructions).

DP and OF are not affected.

ISZR 01100DDD Increment data register 0DDD; if the increment results

in 0, PC is incremented by 4.

4

skip operations

NOP2 00000000 Increment PC by two.

NOP4 11100000 Increment PC by four.

jump instructions can modify the least significant 8

bits of the program counter (hence, the range of a jump

instruction is restricted to blocks of 256 nibbles);

let PC=aaaayyyyyyyy

JG 11100001xxxxxxxx If AC>9, then PC=aaaaxxxxxxxx.

JZ 11100010xxxxxxxx If AC=0, then PC=aaaaxxxxxxxx.

JGZ 11100011xxxxxxxx If AC>9 or AC=0, then PC=aaaaxxxxxxxx.

JT 11100100xxxxxxxx If OF=1, then PC=aaaaxxxxxxxx.

JTG 11100101xxxxxxxx If OF=1 or AC>9, then PC=aaaaxxxxxxxx.

JTZ 11100110xxxxxxxx If OF=1 or AC=0, then PC=aaaaxxxxxxxx.

JTGZ 11100111xxxxxxxx If OF=1, or AC>9, or AC=0, then PC=aaaaxxxxxxxx.

JMP 11101000xxxxxxxx PC=aaaaxxxxxxxx jump unconditionally.

JL 11101001xxxxxxxx If AC < 10, then PC=aaaaxxxxxxxx.

JN 11101010xxxxxxxx If AC > 0, then PC=aaaaxxxxxxxx.

JLN 11101011xxxxxxxx If 0 < AC < 10, then PC=aaaaxxxxxxxx.

JF 11101100xxxxxxxx If OF=0, then PC=aaaaxxxxxxxx.

JFL 11101101xxxxxxxx If OF=0 and AC < 10, then PC=aaaaxxxxxxxx.

JFN 11101110xxxxxxxx If OF=0 and AC > 0, then PC=aaaaxxxxxxxx.

JFLN 11101111xxxxxxxx If OF=0 and 0 < AC < 10, then PC=aaaaxxxxxxxx.

more operations on AC

ADD 01011000 Load AC with AC+memory[DP]; OF affected.

ADM 01011xxx DP is temporarily modified by replacing bits 6-4 with

xxx from the instruction giving DP’; load AC with

AC+memory[DP’]; OF affected; DP is not affected.

ADR 01010DDD Add data register 0DDD to AC

NAD 01001000 Load AC with (AC NAND memory[DP]).

NAM 01001xxx DP is temporarily modified by replacing bits 6-4 with

xxx from the instruction giving DP’; load AC with

(AC NAND memory[DP’]); DP is not affected.

NAR 01000DDD Load AC with (AC NAND data register 0DDD).

arithmetic operations

COM 00110000 Load AC with complement of AC.

RAR 00110001 Rotate OF and AC right one bit.

RAL 00110010 Rotate OF and AC left one bit.

IAC 00110011 Increment AC by 1; set OF to 1 if the increment results in overflow.

CLA 00110100 Set AC to 0.

CLARR 00110101 Do CLA followed by RAR.

CLARL 00110110 Do CLA followed by RAL.

STA 00110111 Set AC to 0001.

CLF 00111000 Set OF to 0.

5

CLFRR 00111001 Do CLF followed by RAR.

CLFRL 00111010 Do CLF followed by RAL.

IACCF 00111011 Do IAC followed by CLF.

STF 00111100 Set OF to 1.

STFRR 00111101 Do STF followed by RAR.

STFRL 00111110 Do STF followed by RAL.

IACS 00111111 Do IAC followed by STF.

Table 1. The MF7114 instruction set; memory[DP] denotes the nibble stored in memory

at address DP.

1.2 The CPS-1 memory organization

The 12-bit address bus of the MF7114 allows to directly address 4096 nibbles of
memory (1 nibble = 4 bits). This memory space can be populated with ROM
and RAM devices (such as the MF7115 64-nibble RAM and MF7102 EPROM)
provided that the first 32 nibbles are in RAM (cf. Fig. 1).

Figure 1. CPS-1 memory organization adopted in the emulator.

The first 32 nibbles are reserved for working (or virtual) registers that the CPU
can access directly (these registers are discussed in the next section).

Typically, a segment of memory starting from address 1024 is reserved for
ROM memory containing either an application program or a front panel/paper
tape reader software. The 64-nibble block of RAM starting at address 4032 is
reserved for interfacing with I/O devices. (This I/O memory space as well as the
CPS-1 interfacing techniques is discussed later.)

The MF7114 is designed in such a way that its reset (through the CPU’s
reset pin) always results in the program counter PC set to the address 1024
(leaving all other registers undefined). This allows an immediate execution of an
application program upon CPU’s reset.

The CPS-1 emulator’s memory map is depicted in Fig. 1. The emulator’s
memory consists of 1024 nibbles of RAM followed some amount of ROM and
64 nibbles of RAM at the end. The remaining memory space can be populated
with either RAM or ROM.

6

1.3 Virtual registers

The CPS-1 supports eight 1-nibble data registers (D0, . . . D7) and eight 3-nibble
address registers (Adr0, . . . , Adr7) located in the first 32 nibbles of memory. In
this emulator, a 12-bit address is stored in an address register Adri using three
consecutive nibbles in little-endian order, 1 as shown in Fig. 2:

Figure 2. Address storing convention for virtual address registers with least (resp. most)

significant nibble first (res. last).

The memory address of the Di register is 4i, i ≤ 7. The address of the first
nibble of the Adri register is 4i + 1, i ≤ 7. In other words, the data and address
registers are interwoven in the following way:

D0 Adr0 D1 Adr1 . . . D7 Adr7

2 CPS-1 Interfacing Techniques

The CPS-1 used the I/0 memory space to interface I/O devices such a paper
tape reader, a Self-Scan plasma display, and even the front panel. (Fig. 3 depicts
the CPS-1 emulator’s three I/O devices. The top module is the front panel. The
middle and the bottom modules depict a Self-Scan display and a paper tape
reader/punch, respectively.)

Each I/O device was connected to the computer’s address and data buses and
was assigned one or more (but unique) addresses from the I/O memory space.
The CPS-1 communicated with an I/O device by reading from or writing to
memory at assigned addresses using instructions such as LAD and LDID (read-
ing) and SAD (writing). For instance, each time the CPU placed an address adr
assigned to a device and executed LAD, that device responded by placing the
content of mem[adr] on the data bus which was then placed in the accumulator.
Hence, the CPU interacted with an I/O device in the same way as with a mem-
ory device.

1 Some MIL CPS-1 documents indicate the little-endian order for storing 12-bit data
(e.g. numbers) and addresses in virtual registers.

7

Figure 3. The CPS-1 Emulator’s front panel.

2.1 Front panel as an I/O device

John Heckman, a former MIL’s employee and a member of the CPS-1 design
group, indicated that the functionality of the CPS-1’s front panel was imple-
mented in software and was modelled after similar techniques implemented for
minicomputers of that era (specifically, minicomputers manufactured by Data
General Corp. such as the Nova computer introduced in 1969), [6]. In other
words, the front panel was an I/O device. The software approach to the emu-
lation of the front panel was also considered in MIL’s document Techniques for
the CPS/1 [3].

CPS-1 documentation in the YUCoM’s MIL collection does not provide de-
tailed information concerning the design and functionality of the front panel.
However, one of the documents contains a drawing of a front panel from which
the main features of such a design can be deduced. The CPS-1 Emulator’s front
panel (depicted in Fig. 3) is implemented using that information as well as the
fact that some of that functionality was adopted from minicomputer designs.
Let us note that the CPS-1’s front panel is just an user-defined I/O device and,

8

hence, much of its functionality depends on software written to interact with it.

The CPS-1 Emulator’s front panel contains 26 switches and 31 LEDs. All the
switches can be actuated by left clicking on their images. The meanings of all
these devices are defined below.

– D3,..., D0 – these data switches set the four bits of the accumulator;
– OF - this switch sets the overflow register;
– A0,..., A11 – these switches set a 12-bit address.

The remaining nine function switches are defined as follows:

– MASTER RESET - sets PC to address 1024; sets all the LEDs to correspond
to the positions of switches OF, D0,..., D3, and A0,..., A11.

– FP-RST - resets the front panel; Heckman recollected that ”FP-RST was
a reset that forced a different reset address to enter the console program.”
In the CPS-1 Emulator, FP-RST sets PC to 1028 which, in the supplied
boot4.rom program, starts the paper tape loader.

– EXAM - displays the contents of memory at the address set by A0,..., A11
(as indicated by the bottom row of 12 LEDs); the contents is displayed using
LEDs above D0,...,D3.

– EXAM NEXT - increases the address displayed by the top row of 12 LEDs
by 1 and displays memory contents at this new address using LEDs above
D0,..., D3.

– DEPOSIT - saves data set by D0, ..., D4 in memory at the address specified
by the switches A0,...,A11 and displayed by the bottom row of 12 LEDs;

– DEPOSIT NEXT - increases the address displayed by the top row of 12 LEDs
by 1 and saves data set by D0, ..., D4 in memory at this new addressed;

– LOAD AC & OF - loads the accumulator and OF registers with data set by
switches D0,...,D3 and OF;

– SET BREAKPT - sets breakpoint – currently not implemented;
– START - sets PC to the address indicated by the switches A0,...,A11 and

displayed by the bottom row of 12 LEDs.

Note that the MASTER RESET switch can only reset PC to 1024. To execute
an instruction stored at a different address, one has to set such an address using
switches A0,..., A11 and, then toggle the START switch. Alternatively, one can
use the FP-RST to start the emulator’s execution at the reset address.

The front panel of the CPS-1 Emulator is an I/O device that communicates
with CPU using the following six uniquely assigned addresses to store:

– 4040 - panel’s status;
– 4041 - the most significant nibble of an address;
– 4042 - the second nibble of an address;
– 4043 - the least significant nibble of an address;
– 4044 - 1 nibble of data corresponding to switches D0, ..., D3;
– 4045 - 1 nibble of data corresponding to OF.

9

It is plausible that in the physical implementation of the panel, the bottom row of
12 address LEDs always displayed the address stored in mem[4041], mem[4042],
and mem[4043]. Furthermore, the 4 LEDs above D0, ..., D3 always displayed the
contents of mem[4044]. Finally, the LED above the OF switch always displayed
the contents of mem[4045].

To get information from the panel, the front panel software sends the ”4040
request” first. The panel responds by writing a unique integer to mem[4040] de-
pending on the switch that has been currently actuated. This integer to switches
assignment is shown below:

– 0 – no switch pressed;
– 8 – MASTER RESET pressed;
– 3, 4, 5, 6, 7 – unassigned;
– 9 – FP-RST is pressed;
– 10 – EXAM is pressed;
– 11 – EXAM NEXT is pressed;
– 12 – DEPOSIT is pressed;
– 13 – DEPOSIT NEXT is pressed;
– 14 – LOAD AC & OF is pressed;
– 2 – SET BREAKPT is pressed (currently not implemented);
– 15 – START is pressed.

Depending on the response, the CPS-1 may request a nibble of data (via mem-
ory locations 4044 and 4045 when, for instance, LOAD AC & OF is pressed)
or an address (via memory locations 4041 to 4043 when, for instance, EXAM is
pressed). It can write a nibble of data to mem[4044] (when EXAM or EXAM
NEXT is pressed). The following example explains the way the START switch
is implemented.

Example. Suppose that the CPS-1 front panel software sends the panel status
request (LDI 4040) and that START switch is pressed. The front panel responds
by placing 15 on the data bus which triggers the 4041 request (LDI 4041) to
which the panel responds by writing the address currently set by the switches
A0,...,A11 in memory at locations 4041, 4042, 4043. Finally, the emulator col-
lects the address using the LDID instruction and does something with it (e.g.
stores it in the address register 0). Here is a sample code:

LOOP: LDI 4040 ; request panel status
LAD ; store status in AC
JZ LOOP ; try again, if status=0
LDI 4041 ; send address request
LDID ; store address in DP
SDR 0 ; store address in address register 0

All other function switches (with the exception of SET BREAKPT) are im-
plemented in a similar way.

10

The CPS-1 Emulator front panel features 26 LEDs to visually support the func-
tionality of the panel switches. The bottom row of 12 LEDs always displays the
positions of address switches A0,..., A11. The top row of 12 LEDs has a differ-
ent purpose. In the emulator, it is used to display the address at which data
is to be stored or examined when either DEPOSIT NEXT or EXAM NEXT
switches are pressed during the execution of the front panel software. Initially,
these LEDs display the same address as the bottom row of LEDs. However, when
either EXAM NEXT or DEPOSIT NEXT is pressed, the LEDs display the next
memory address whose contents is to be examined or rewritten. Pressing the
MASTER RESET switch will reset all these LEDs to correspond to the settings
of the corresponding address switches. The top raw of LEDs could be assigned
other functionality as well. According to John Heckman, ”one bank of 12 leds
was intended to also display contents of the 12 bit registers... The bottom row
would probably display the current program counter and breakpoint address.”
[6].

The top five LEDs are used to support the functionality of LOAD AC&OF,
EXAM, and EXAM NEXT switches. The LEDs above the OF, D0,..., D3 switches
visualize either the bits destined for OF and AC registers or the contents of a
specific memory location. When EXAM or EXAM NEXT switch is pressed, the
LEDs above D0,..., D3 display the nibble stored at the address indicated by the
top row of 12 LEDs above the switches A0,...,A11.

Anytime a switch OF, D0,...,D3 changes its position, the LED correspond-
ing to that switch displays the switch’s new position. The MASTER RESET
switch resets all the LEDs to correctly display the positions of the OF, D0,...,D3
switches.

2.2 Interfacing a paper tape reader

The paper tape reader allows a user to load data and applications programs
stored on paper tapes. The reader is interfaced to a CPS-1 as if it were an 8-bit
device. The MIL document CPS/1 Software Notes specifies that the paper tape
interface uses ASCII format (with or without parity) and that only 7 bits (out
of 8) will be internally stored or tested. This implies that, in general, a byte of
data YZ (in hex) can only be transmitted as two consecutive nibbles Y followed
by Z.

According to the CPS-1 input/output conventions for operating with 8-bit
data, upon receiving a byte YZ (in hex) of data, 4 least significant bits, Z, are
stored in the accumulator and the most significant, Y, in the data register D0.
In addition, the address register A0 may, optionally, contain the address of an
I/O device.

In view of this information, the CPS-1 emulator implements a paper tape
reader (PTR) which transmits binary data using 7-hole paper tape (no parity).
Four least significant bits are used to encode data (in hex) while 3 most signif-
icant bits may be used as ‘control bits’ to transmit control information such as

11

the end of tape indicator, the beginning of character data, etc. An 8-hole paper
PTR could be emulated in exactly the same way.

In the CPS-1 Emulator, PTR is assigned the following four addresses:

– 4032 – PTR’s status request,
– 4033 – data ready request,
– 4034 – 4 bits of data (most significant)
– 4035 – 4 bits of data (least significant)

Before we can get any data from PTR, the reader has to be initialized. This is
accomplished by sending the request address 4032

LDI 4032

Upon receiving it, PTR places 0 on the data bus, goes through its initializa-
tion loop and, when done, places ”done” message–a non-zero value–on the data
bus. Since the initialization of a physical PTR may take some time, the CPS-1
PTR loader software initializes the device by executing this code:

loop: LDI 4032 ; paper tape reader’s status request
LAD ; get status from memory[4032]
JZ loop ; jump to loop if AC=0

At this point, the device address (4032) can be placed in A0

SDR 0 ; load A0 with DP=4032

Next, to get a single byte from PTR, the CPS-1 inquiries PTR about its ‘data
ready’ status. PTR responds either with 0–not ready–or 1 – ready. The CPS-1
executes the following loop until a byte is ready for transmission:

loop1: LDI 4033 ; data ready status request
LAD ; get data ready status from memory[4033]
JZ loop1 ; jump to loop1 if AC=0

Finally, since a byte of data is ready for transmission, the CPS-1 emulator gets
it into the accumulator and D0 by executing

LDI 4034
LAD ; load AC with memory[4034]
SAR 0 ; load D0 with memory[4034]
LDI 4035
LAD ; load AC with memory[4035]

12

2.3 Interfacing Burroughs Self-Scan

The Self-Scan displays were introduced by Burroughs in the early 1970s. The
MCM/70 microcomputer designed by a Canadian company Micro Computer
Machines and announced in 1973 used such a device for its built-in display.
Hence, the CPS-1 could, in principle, operate with such a display as well. (In
fact, one of an early drawings made by a member of the MIL CPS-1 group in
April 1972, depicts a CPS-1 system as a calculator using a LED display and a
16-key numeric keypad.)

The CPS-1 Emulator includes the emulation of the Burroughs SSD 1000-
0030 Self-Scan display. The display consists of 111 columns of display cells, each
column consisting of 7 cells. It is assumed that the SelfScan display is controlled
by an interface card connected to the 12-bit address bus and 4-bit data bus of
the CPS-1. Two display modes are emulated: the text and graphics mode. We
describe both modes separately.

Text Mode: In the text mode (originally offered for SSD 1000-0030), the de-
vice displays 16 patterns (characters) in a single-row; each character occupying
a 7-by-5 matrix of display cells, with two columns of space between characters.
The display has a repertoire of 64 characters, each character being defined by a
six-bit code. The following pattern codes are adopted from [4]:

A 0 @ 36 ; 44 $ 52 > 60
B 1 ∼ 37 ? 45 ” 53 [61
.. .. { 38 / 46 + 54] 62
Z 25 } 39 % 47 - 55 empty 63
1 26 (40 : 48 ! 56
.. ..) 41 ’ 49 # 57
9 34 . 42 , 50 & 58
0 35 = 43 * 51 < 59

(For more information on the SSD 1000-0030 consult [4]).

In the text mode, the interface card of SelfScan can store 16 patterns and their
locations in the so-called pattern memory. During the Self-Scan’s refresh cycle,
this pattern memory area is scanned, position after position, and the corre-
sponding patterns presented to the Self-Scan for display. The CPS-1 Emulator
can update the pattern memory of the Self-Scan’s control card using standard
CPS-1 interfacing techniques and the following addresses:

– 4050: to send the 1st digit (tens) of a pattern code;
– 4051: to send the 2nd digit (units) of the code;
– 4052: to send 1 nibble representing pattern’s position on Self-Scan.

13

As soon as the address 4052 is placed on the address bus, the Self-Scan’s control
card computes the pattern number using data stored at memory locations 4050
and 4051:

pattern=memory[4050]×10+ memory[4051]

Then, it updates its pattern memory at the position stored at the address 4052.
The following sequence of instructions will display the message ”CPS” on the
Self-Scan, starting at position 0:

LAI 0
LDI 4050
SAD
LAI 2
LDI 4051
SAD ; pattern 02 (C) transmitted
LAI 0
LDI 4052
SAD ; C displayed
LAI 1
LDI 4050
SAD
LAI 5
LDI 4051
SAD ; pattern 15 (P) transmitted
LAI 1
LDI 4052
SAD ; P displayed
LAI 1
LDI 4050
SAD
LAI 8
LDI 4051
SAD ; pattern 18 (S) transmitted
LAI 2
LDI 4052
SAD ; S displayed

Graphics Mode: In the graphics mode, (model SSD 1000-0039), each of 111
columns of display cells can be actuated individually. The interface card of Self-
Scan accepts two nibbles of information defining a column and two nibbles of
x-coordinate (x < 112) and actuates the information. It does that using standard
CPS-1 interfacing techniques and the following addresses:

– 4055: to send the most significant nibble of x-coordinate;

– 4056: to send the least significant nibble of x-coordinate;

14

– 4057: to send the nibble defining cells 4, 5, and 6 of a column (1 represents
”cell on” while 0 represents ”cell off”);

– 4058: to send the nibble defining cells 0, 1, 2, and 3 of a column.

Here is an example of displaying a column of 7 cells in which the top and the
bottom cells are on while the remaining cells are off. The column is to be dis-
played at x=97.

LAI 6 ; AC=most significant nibble of 97 in binary
LDI 4055
SAD ; most significant nibble of 97 transmitted
LAI 1 ; AC=least significant nibble of 97 in binary
LDI 4056
SAD ; least significant nibble of 97 transmitted
LAI 4 ; turn the 6th cell on
LDI 4057
SAD ; information re cells 4, 5, and 6 transmitted
LAI 1 ; turn the 0th cell on
LDI 4058
SAD ; information re cells 0,...,3 transmitted

In both modes, SelfScan can be cleared (blanked) by storing 8 at address 4050
as shown here:

LAI 8
LDI 4050
SAD ; blank screen

2.4 Interfacing numeric keypad

The CPS-1 Emulator can be interfaced with a numeric keypad by pressing the
F4 key on the keyboard of the computer on which the emulator’s software is
executed. Upon pressing F4, a 17-key keypad is displayed (see Fig. 4).

Figure 4. Numeric keypad.

15

The keypad can be operated using a mouse. The following table shows all these
keys and their codes.

key code key code
- 15 7 7
+ 14 6 6
∗ 13 5 5
/ 12 4 4
= 11 3 3
. 10 0 2
9 9 1 1
8 8 0 0
C 11

The ”C” key is used to clear the display.

To interface the keypad with the CPS-1 emulator, the emulator is using the
following addresses:

4060 – data ready request,
4061 – data request.

When the CPS-1 puts the address 4060 on the bus, the keypad responds by
consulting its data-ready port and places one of the following values on the data
bus:

0 - key has not been pressed;
1 - key has been pressed and character is ready.

When the CPS-1 puts the address 4061 on the bus, the keypad responds by
consulting its data port and places its contents (character code) on the data bus.

Example: The following list of instructions is a fragment of a program that
waits for a keypad input and executes subroutine process0 when the ”0” key is
pressed (process0 could, for instance, display ”0” on the Self-Scan).

LDI 4060
loop2: LAD

JZ loop2 ; wait for char ready

; char ready, so get it.
LDI 4061
LAD

; if char is 0, then process it by jumping to process0
JZ process0

16

In the current implementation, the ”=” and ”C” keys have the same code. This
means that both keys can be used to clear the display. To properly implement
the ”C” key, we need to assign a unique code to ”C” which means that keypad
codes have to be composed of two nibbles which would require two data request
addresses.

3 Operating the CPS-1 Emulator

The CPS-1 Emulator requires a ROM program which is either some applications
software that the computer is to execute or a bootstrap program implementing
the functionality of the front panel and PTR. The CPS-1 Emulator is supplied
with such a bootstrap program named boot4.rom (or similar). With a bootstrap
software installed, paper tapes with applications programs or data can be read
into the computer’s RAM using PTR and the front panel. Both ROM programs
and applications programs stored on paper tapes are discussed next.

3.1 Representation of ROMs and paper tapes in the CPS-1
Emulator

In the current implementation of the emulator both ROM programs and pa-
per tapes are just binary files of CPU instructions or data. These files can be
generated using the MF7114 assembler (supplied with emulator). The adopted
naming convention for such files requires that ROM and paper tape files have
extensions .rom and .pt, respectively.

One of the MIL documents specifies that PTR transmits ASCII characters
(with or without parity) and that the end of paper tape is indicated by the
sequence of three characters: $ (CR) (LF) (i.e., $ followed by carriage return
(CR), and line feed (LF)). If the paper tape file is produced using the CPS-1
assembler, then these end of tape characters are placed by the assembler and
there is no need to add them explicitly when creating a program.

Data can be represented in a variety of ways. One of the MIL documents rec-
ommends the following representation for binary and decimal integers and for
characters:

binary integers: 16 consecutive nibbles;

decimal integers: sixteen digits of 4 bit BCD format;

characters: eight bit USASCII.

To load program and data files into specific memory locations, the CPS-1 Emula-
tor expects that the first three nibbles of a program (or a data set) file constitute
the loading address (LS nibble first, see Fig. 2). Therefore, a paper tape is logi-
cally organized as shown in Fig. 5.

17

Figure 5. Paper tape format.

3.2 Executing a CPS-1 application

Both ROM and paper tape files should be placed in the Software subdirectory.
All these files are accessible via ”right click” menus as shown in Figure 6.

Figure 6. ROM and paper tapes selection menus.

To explain how to operate the CPS-1, let us assume that, in addition to the boot-
strap program, the Software directory contains a program called cps1 demo.pt
which, when executed, will display the message ”CPS-1 READY:” on the Self-
Scan. To execute cps1 demo.pt, the following steps should be taken:

Step 1. Select the ROM program boot4.rom from the Software menu ”select
ROM”. When the selection is completed, the CPS-1 emulator begins the execu-
tion of the front panel loop.

18

Step 2. Select the cps1 demo.pt tape from tapes menu ”select tape” as shown in
Fig. 6. Note that when the selection is completed, cps1 demo.pt is not yet loaded
into the computer’s memory – it’s just ”inserted” into PTR for transmission.

Step 3. Set the address switches A11,..., A0 to the paper tape loader address
1028 (decimal) (or 0100 0000 0100 (binary)) as shown in Fig. 7

Figure 7. Setting the address 0100 0000 0100.

Step 4. Click on START switch; the emulator initializes PTR and, then, loads
the contents of the paper tape cps1 demo.tp to RAM starting at the address
indicated by the first three nibbles on the tape (in program cps1 demo.pt, this
address is 2048 (decimal)).

Alternatively, Steps 3 and 4 can be replaced with just a single click on the
FP-RST switch which sets PC to 1028 and begins the execution of the PTR
loader. After the successful loading of cps1 demo.pt (indicated by PTR stopping
its operations) the paper tape loader program jumps back to 1024 and resumes
the execution of the front panel loop.

19

Figure 8. The execution of the cps1 demo.pt program results in ”CPS-1 READY:”

message displayed on the Self-Scan.

Step 5. Set the address to 2048 (the loading address of cps1 demo.pt) and click
on START switch to execute the program (see Fig. 8).

If more than one tape is needed (e.g. one containing data and one an appli-
cation program), then Steps 2–4 have to be repeated for each tape.

It is advisable that every application program terminates with either the jump
to 1024 (to allow other apps to be loaded) or an infinite loop

loop: JMP loop

3.3 The debug mode

The emulator can be executed in the debug mode. At any time of the emulator’s
execution, pressing the F1 key will cause the emulator to enter the single step
mode during which the contents of all the registers will be displayed, as shown

20

in Fig. 9. Continue to press F1 for single-stepping. To end the debug mode, press
F2.

Figure 9. The emulator in the debug mode.

4 Installing the CPS-1 Emulator

The tarball cps.tar.gz contains all the necessary directories and files. The emula-
tor is written in C and requires OpenGL and Glut (or FreeGlut) libraries. Before
compiling the emulator’s code make sure that these libraries are available; they
are typically located in /usr/include. Executing:

gcc cps1.c -lGL -lglut -o cps1

should create executable file cps1.

21

5 CPS-1 Programs and Assembler

The tarball cps.tar.gz also contains a CPS-1 assembler–cps1asm.c–for the MIL
MF7114 microprocessor. The program is written in C. The assembler translates a
CPS-1 program into an MF7114 binary code ready for loading into and execution
by the CPS-1 emulator.

5.1 CPS-1 Programs

A syntactically correct CPS-1 program consists of a loading address, a sequence
of MF714 instructions, comments, labels, and data. These components are dis-
cussed below.

Loading address: A program is loaded into a continuous block of memory.
Therefore it should contain information about such a block in the form of the
address of the first nibble of the block. Such an address (an integer) is placed at
the beginning of the program and must be proceeded by at least one blank. It
can also be proceeded by any number of comment lines as shown in this example:

;—————————————————–
; sample program, July 2019
;—————————————————–
;
; loading address

2048

where lines beginning with ”;” are comments which are defined next.
A ROM code should always be loaded at memory address 1024.

Comments: A comment is a string of characters on a program line that be-
gins with ”;” and extends up until the end of the line. In other words ”;” and
every character on the line to the right of ”;” is treated as a comment character
and will be ignored by the assembler. So, the code:

;—————————————————–
; sample program
;—————————————————–
;
; loading address

2048
LAM 13 ; 13 is sufficient
LAD ; don’t delete this line

22

is equivalent to:

2048
LAM 13
LAD

MF714 instructions: are written as mnemonics (as illustrated in the above
examples). Each instruction must be proceeded by at least one blank.

Labels: A program may contain up to 1000 distinct labels which define memory
addresses. Each label is a string of up to 9 digits and capital letters and must
begin with a letter. A label has no leading blanks and must end with ”:”. A label
may appear by itself on a line, as shown in this code:

LABEL1:
LAM 13

or may be followed by an instruction or data, as shown in this code:

LABEL1: LAM 13

Data statements: A program may include integer data with values between 0
and 15. This is achieved using the assembler code of the form:

<LABEL> DEFN <INT LIST>

where:

<LABEL> is a program label and it is optional,
DEFN is the ”define nibble” assembler directive,
<LIST> is a comma separated list of integers (data).

Here is an example of including 8 nibbles of data:

SCORE:
DEFN 7, 0, 4, 8, 0, 0, 0, 0

To store integer data with values greater than 15, one can use multiple nib-
bles. For example, one can store the hex value 0xACE1 in the following way:

DEFN 10,12,14,1 ; seed value 0xACE1, msn first and lsn last

23

5.2 Data segments

A data segment is a program consisting of data statements exclusively. Such
data segments can be stored on paper tapes provided that the loading address
is present. Here is an example of a data segment consisting of 16 integers

;————————–
; sample data segment
;————————–
;
; loading address

2048
;
; data:

DEFN 0,0,1,1,2,2,3,3
DEFN 4,4,5,5,6,6,7,7

5.3 No Arithmetic (yet)

The cps1asm.c code is a rudimentary assembler with plenty of room for improve-
ment. In particular, the assembler does not perform any evaluation of arithmetic
expressions. So,

LDI 1024+48

is not a legal instruction.

5.4 How to Use the Assembler

Compile the assembler with

gcc cps1asm.c -o cps1 cps1asm

The MF7114 code to be assembled has to be in the same directory as the as-
sembler. Execute the assembler cps1asm code and follow the instructions.

6 CPS-1 Emulator Applications Software

The CPS-1 Emulator comes with the boot4.rom bootstrap program and several
applications programs described below.

Calculator ROM

calc.rom is a rudimentary 12-digit, 4-function calculator which demonstrates
that in the early 1970s, the MIL MF7114 microprocessor could be used for

24

the implementation of a basic electronic calculator. To execute this program,
select calc.rom from the ROM menu. Press F4 to interface the emulator with
a numeric keypad. Then, press MASTER RESET. Use a mouse to perform
calculations; the ”C” key is used to clear the display.

CPS-1 Utility Tape

The utility tape utils.pt contains several subroutines frequently required by
applications programs, subroutines such as pseudo random number generator
and a delay program. The contents of this tape is stored in the utils file in the
assembler directory.

CPS-1 Demo

The tape cps1 demo.pt contains a program that demonstrates the display ca-
pabilities of Burroughs Self-Scan. To execute this program load the utils.pt tape
first followed by the cps1 demo.pt tape. Execute the program by entering the
address 2048 and pressing START.
Requires the boot4.rom bootstrap ROM.

Screen Caterpillar

caterpillar.pt is another demonstration program that requires both boot4.rom
and utils.pt. To see a screen caterpillar crawling along the display edges, execute
the program by entering the address 2048 and pressing START.

Horse Race Game

horses.pt is a horse racing game that demonstrates the use of a pseudo random
number generator. Requires both boot4.rom and utils.pt.

References

[1] Z. Stachniak, The MIL MF7114 Microprocessor, IEEE Annals of the History
of Computing, October-December 2010 (vol. 32 no. 4) pp. 48-59.

[2] How To Use The CPS/1 Micro-Computer System, Bulletin 50001, Microsys-
tems International Ltd., 1972.

[3] Techniques for the CPS/1, MIL preliminary document, no author and no
date specified (York University Computer Museum has a copy of this docu-
ment).

[4] Burroughs Specifying Guide: Electronic components and systems, Bulletin
1061K, Burroughs, 1970.

[5] L/R. Schweizer, CPS/1 Concepts and Facilities. MIL Report, May 1972.
[6] Author’s correspondence with John Heckman, 2011.

25

