
Temporal probability models

Chapter 15, Sections 1–5

Chapter 15, Sections 1–5 1

Outline

♦ Time and uncertainty

♦ Inference: filtering, prediction, smoothing

♦ Hidden Markov models

♦ Kalman filters (a brief mention)

♦ Dynamic Bayesian networks

♦ Particle filtering

Chapter 15, Sections 1–5 2

Time and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

Xt = set of unobservable state variables at time t
e.g., BloodSugart, StomachContentst, etc.

Et = set of observable evidence variables at time t
e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

This assumes discrete time; step size depends on problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb

Chapter 15, Sections 1–5 3

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: Xt depends on bounded subset of X0:t−1

First-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−1)
Second-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

Sensor Markov assumption: P(Et|X0:t,E0:t−1) = P(Et|Xt)

Stationary process: transition model P(Xt|Xt−1) and
sensor model P(Et|Xt) fixed for all t

Chapter 15, Sections 1–5 4

Example

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R)

0.3f
0.7t

tR tP(U)

0.9t
0.2f

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressuret

Example: robot motion.
Augment position and velocity with Batteryt

Chapter 15, Sections 1–5 5

Inference tasks

Filtering: P(Xt|e1:t)
belief state—input to the decision process of a rational agent

Prediction: P(Xt+k|e1:t) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xk|e1:t) for 0 ≤ k < t
better estimate of past states, essential for learning

Most likely explanation: arg maxx1:t P (x1:t|e1:t)
speech recognition, decoding with a noisy channel

Chapter 15, Sections 1–5 6

Filtering

Aim: devise a recursive state estimation algorithm:

P(Xt+1|e1:t+1) = f(et+1,P(Xt|e1:t))

P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

= αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)

= αP(et+1|Xt+1)P(Xt+1|e1:t)

I.e., prediction + estimation. Prediction by summing out Xt:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)ΣxtP(Xt+1|xt, e1:t)P (xt|e1:t)

= αP(et+1|Xt+1)ΣxtP(Xt+1|xt)P (xt|e1:t)

f1:t+1 = Forward(f1:t, et+1) where f1:t=P(Xt|e1:t)
Time and space constant (independent of t)

Chapter 15, Sections 1–5 7

Filtering example

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

0.818
0.182

0.627
0.373

0.883
0.117

True
False

0.500
0.500

0.500
0.500

Chapter 15, Sections 1–5 8

Smoothing

X 0 X 1

1E tE

tXX k

Ek

Divide evidence e1:t into e1:k, ek+1:t:

P(Xk|e1:t) = P(Xk|e1:k, ek+1:t)

= αP(Xk|e1:k)P(ek+1:t|Xk, e1:k)

= αP(Xk|e1:k)P(ek+1:t|Xk)

= αf1:kbk+1:t

Backward message computed by a backwards recursion:

P(ek+1:t|Xk) = Σxk+1
P(ek+1:t|Xk,xk+1)P(xk+1|Xk)

= Σxk+1
P (ek+1:t|xk+1)P(xk+1|Xk)

= Σxk+1
P (ek+1|xk+1)P (ek+2:t|xk+1)P(xk+1|Xk)

Chapter 15, Sections 1–5 9

Smoothing example

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

True
False

0.818
0.182

0.627
0.373

0.883
0.117

0.500
0.500

0.500
0.500

1.000
1.000

0.690
0.410

0.883
0.117

forward

backward

smoothed
0.883
0.117

Forward–backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(t|f|)

Chapter 15, Sections 1–5 10

Most likely explanation

Most likely sequence 6= sequence of most likely states!!!!

Most likely path to each xt+1

= most likely path to some xt plus one more step

max
x1...xt

P(x1, . . . ,xt,Xt+1|e1:t+1)

= P(et+1|Xt+1)max
xt



P(Xt+1|xt) max
x1...xt−1

P (x1, . . . ,xt−1,xt|e1:t)




Identical to filtering, except f1:t replaced by

m1:t = max
x1...xt−1

P(x1, . . . ,xt−1,Xt|e1:t),

I.e., m1:t(i) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1)max
xt

(P(Xt+1|xt)m1:t)

Chapter 15, Sections 1–5 11

Viterbi example

Rain1 Rain2 Rain3 Rain4 Rain5

true

false

true

false

true

false

true

false

true

false

.8182 .5155 .0361 .0334 .0210

.1818 .0491 .1237 .0173 .0024

m 1:1 m 1:5m 1:4m 1:3m 1:2

state
space
paths

most
likely
paths

umbrella true truetruefalsetrue

Chapter 15, Sections 1–5 12

Hidden Markov models

Xt is a single, discrete variable (usually Et is too)
Domain of Xt is {1, . . . , S}

Transition matrix Tij = P (Xt= j|Xt−1= i), e.g.,









0.7 0.3
0.3 0.7









Sensor matrix Ot for each time step, diagonal elements P (et|Xt= i)

e.g., with U1= true, O1 =









0.9 0
0 0.2









Forward and backward messages as column vectors:

f1:t+1 = αOt+1T
⊤f1:t

bk+1:t = TOk+1bk+2:t

Forward-backward algorithm needs time O(S2t) and space O(St)

Chapter 15, Sections 1–5 13

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 14

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 15

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 16

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 17

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 18

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 19

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 20

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 21

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 22

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = αOt+1T
⊤f1:t

O−1

t+1f1:t+1 = αT⊤f1:t

α′(T⊤)−1O−1

t+1f1:t+1 = f1:t

Algorithm: forward pass computes ft, backward pass does fi, bi

Chapter 15, Sections 1–5 23

Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—Xt=X,Y, Z, Ẋ, Ẏ , Ż.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .

tZ t+1Z

tX t+1X

tX t+1X

Gaussian prior, linear Gaussian transition model and sensor model

Chapter 15, Sections 1–5 24

Updating Gaussian distributions

Prediction step: if P(Xt|e1:t) is Gaussian, then prediction

P(Xt+1|e1:t) =
∫

xt
P(Xt+1|xt)P (xt|e1:t) dxt

is Gaussian. If P(Xt+1|e1:t) is Gaussian, then the updated distribution

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

is Gaussian

Hence P(Xt|e1:t) is multivariate Gaussian N(µt,Σt) for all t

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t → ∞

Chapter 15, Sections 1–5 25

Simple 1-D example

Gaussian random walk on X–axis, s.d. σx, sensor s.d. σz

µt+1 =
(σ2

t + σ2
x)zt+1 + σ2

zµt

σ2
t + σ2

x + σ2
z

σ2

t+1 =
(σ2

t + σ2
x)σ

2
z

σ2
t + σ2

x + σ2
z

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-8 -6 -4 -2 0 2 4 6 8

P(
X

)

X position

P(x0)

P(x1)

P(x1 | z1=2.5)

*z1

Chapter 15, Sections 1–5 26

General Kalman update

Transition and sensor models:

P (xt+1|xt) = N(Fxt,Σx)(xt+1)
P (zt|xt) = N(Hxt,Σz)(zt)

F is the matrix for the transition; Σx the transition noise covariance
H is the matrix for the sensors; Σz the sensor noise covariance

Filter computes the following update:

µt+1 = Fµt +Kt+1(zt+1 −HFµt)

Σt+1 = (I−Kt+1)(FΣtF
⊤ +Σx)

where Kt+1= (FΣtF
⊤ +Σx)H

⊤(H(FΣtF
⊤ +Σx)H

⊤ +Σz)
−1

is the Kalman gain matrix

Σt and Kt are independent of observation sequence, so compute offline

Chapter 15, Sections 1–5 27

2-D tracking example: filtering

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D filtering

true
observed
filtered

Chapter 15, Sections 1–5 28

2-D tracking example: smoothing

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D smoothing

true
observed
smoothed

Chapter 15, Sections 1–5 29

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around xt=µt

Fails if systems is locally unsmooth

Chapter 15, Sections 1–5 30

Dynamic Bayesian networks

Xt, Et contain arbitrarily many variables in a replicated Bayes net

0.3f
0.7t

0.9t
0.2f

Rain0 Rain1

Umbrella1

P(U)1R1

P(R)1R0

0.7

P(R)0

Z1

X1

X1tXX 0

X 0

1BatteryBattery 0

1BMeter

Chapter 15, Sections 1–5 31

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

X t Xt+1

tY t+1Y

tZ t+1Z

Sparse dependencies ⇒ exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20× 23=160 parameters, HMM has 220× 220 ≈ 1012

Chapter 15, Sections 1–5 32

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What’s the battery charge?

Z1

X1

X1tXX 0

X 0

1BatteryBattery 0

1BMeter

0BMBroken 1BMBroken

-1

0

1

2

3

4

5

15 20 25 30

E
(B

at
te

ry
)

Time step

E(Battery|...5555005555...)

E(Battery|...5555000000...)

P(BMBroken|...5555000000...)

P(BMBroken|...5555005555...)

Chapter 15, Sections 1–5 33

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

0.3f
0.7t

0.9t
0.2f

Rain1

Umbrella1

P(U)1R1

P(R)1R0

Rain0

0.7

P(R)0

0.3f
0.7t

0.9t
0.2f

Rain1

Umbrella1

P(U)1R1

P(R)1R0

0.3f
0.7t

0.9t
0.2f

P(U)1R1

P(R)1R0

0.3f
0.7t

0.9t
0.2f

P(U)1R1

P(R)1R0

0.3f
0.7t

0.9t
0.2f

P(U)1R1

P(R)1R0

0.3f
0.7t

0.9t
0.2f

P(U)1R1

P(R)1R0

0.9t
0.2f

P(U)1R1

0.3f
0.7t

P(R)1R0

0.9t
0.2f

P(U)1R1

0.3f
0.7t

P(R)1R0

Rain0

0.7

P(R)0

Umbrella2

Rain3

Umbrella3

Rain4

Umbrella4

Rain5

Umbrella5

Rain6

Umbrella6

Rain7

Umbrella7

Rain2

Problem: inference cost for each update grows with t

Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination

Largest factor is O(dn+1), update cost O(dn+2)
(cf. HMM update cost O(d2n))

Chapter 15, Sections 1–5 34

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

Rain1

Umbrella1

Rain0

Umbrella2

Rain3

Umbrella3

Rain4

Umbrella4

Rain5

Umbrella5

Rain2

LW samples pay no attention to the evidence!
⇒ fraction “agreeing” falls exponentially with t
⇒ number of samples required grows exponentially with t

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

R
M

S
er

ro
r

Time step

LW(10)
LW(100)

LW(1000)
LW(10000)

Chapter 15, Sections 1–5 35

Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for et

true

false

(a) Propagate (b) Weight (c) Resample

Rain t Rain t +1Rain t +1Rain t +1

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
105-dimensional state space

Chapter 15, Sections 1–5 36

Particle filtering contd.

Assume consistent at time t: N(xt|e1:t)/N = P (xt|e1:t)

Propagate forward: populations of xt+1 are

N(xt+1|e1:t) = ΣxtP (xt+1|xt)N(xt|e1:t)

Weight samples by their likelihood for et+1:

W (xt+1|e1:t+1) = P (et+1|xt+1)N(xt+1|e1:t)

Resample to obtain populations proportional to W :

N(xt+1|e1:t+1)/N = αW (xt+1|e1:t+1) = αP (et+1|xt+1)N(xt+1|e1:t)

= αP (et+1|xt+1)ΣxtP (xt+1|xt)N(xt|e1:t)

= α′P (et+1|xt+1)ΣxtP (xt+1|xt)P (xt|e1:t)

= P (xt+1|e1:t+1)

Chapter 15, Sections 1–5 37

Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
vg

 a
bs

ol
ut

e
er

ro
r

Time step

LW(25)
LW(100)

LW(1000)
LW(10000)

ER/SOF(25)

Chapter 15, Sections 1–5 38

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
– transition modelP(Xt|Xt−1)
– sensor model P(Et|Xt)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n3) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

Chapter 15, Sections 1–5 39

