LE/EECS 3401 3.0 Intro. to Artificial Intelligence and Logic Programming

Department of Electrical Engineering & Computer Science

Final Examination — December 7, 2018

Name:

Student Number:

Duration: 180 minutes
No aids allowed.
Total marks: 135.

1) /15
2) /10
3) /8
4) /4
5) /8
6) /10
7) /20
) /20
9) /10
10) /10
11) /10
12) /10
Total /135

Fall 2018
York University

1. [15 points] For each of the following statements indicate whether it is true or false:

(0)

Hill climbing search may get stuck in a local maximum.
A Horn clause has at most one positive literal.

When we make the closed world assumption about a 2-place predicate/relation r,
if the knowledge base does not entail that r(a,b), then r(a,b) must be false.

Iterative deepening depth-first search uses more space than breadth-first search
on problems with a large search space.

A constraint satisfaction problem that has been made arc-consistent
can always be solved without backtracking.

In forward checking, we check constraints that have only one
uninstantiated variable and delete values that violate the constraint.

If a heuristic is admissible, it must be monotone/consistent.

If ¢; is conditionally independent from ¢, then ¢y is conditionally independent
from ¢;.

When A* uses a heuristic that is only admissible, it may not find the optimal
path.

Markov decision processes assume that the state is fully observable.
The value iteration algorithm can be used to solve a Markov decision process.
In Q-learning, one learns the transition model P(s'|s, a).

Decision-tree learning produces models that are more understandable than neural
network learning does.

A single-layer feedforward neural network (perceptron) can learn any continuous
function.

A learned model that displays overfitting generalizes well.

2. [10 points| Suppose that we have a search algorithm that keeps unexpanded nodes in
a sorted list, the frontier (or fringe), and that always selects the first node from the
frontier. What kind of search do we have if...

(a) we always place the successors of the current node at the front of the frontier?

(b) we always place the successors of the current node at the back of the frontier?

(c) we insert the successors of the current node so as to keep the frontier sorted by
path cost g(n) (i.e. the cost of the path from the start node to node n)?

(d) we insert the successors of the current node so as to keep the frontier sorted by
the value of the heuristic function h(n)?

(e) we insert the successors of the current node so as to keep the frontier sorted by
the value of the sum of the path cost and the heuristic function g(n) + h(n)?

3. [8 points] Implement the following description of an above relation (in a blocks world)
using one or more Prolog rules:

if X is on Y, then X is above Y;
if X on Y and Y is above Z, then X is above Z;

nothing else is in the above relation.

You can assume that the on(X,Y) predicate has already been defined.

4. [4 points] What is the output of the following Prolog program, when we invoke the
query ?- q.

q:- writeln(qa), r.
writeln(gb), !, r.
q:- writeln(qc), fail.

Q
|

r:- writeln(ra), !, fail.
r:- writeln(rb), fail.

5. [8 points] The predicate bagof (T, Q, S) constructs a list S of all instances of T for
which Q is true. A textbook describes the computation as follows: the query Q is
satisfied in all possible ways, and for each instantiation of the variables in the arguments

of Q, T is instantiated and recorded as such in the list S.

(a) Give the value computed for L by the query
?7- bagof (X, (member (X, [0, 8, 5, 4]), not(X >= 7)), L).

(b) The following query will not work:
7- bagof (X, member(0, X), L).
Explain briefly why.

6. [10 points] Convert the following formulas into clausal form (recall that the 8 steps are:
eliminate implications, move negations inward, standardize variables, skolemize, con-
vert to prenix, distribute V over A, flatten conjunctions and disjunctions, and convert

to clauses):

(a) (BX.p(X)) Vv (EX.q(X))) = 3X.p(X) V(X))

(b) VX.(p(X) — IY.(VZ.(¢(X, Y, 2)) Ar(X,Y, Z)))

7. [20 points] Consider the problem of finding a path in a grid using heuristic search. The
problem is to find a path from square S = s12 to square G = s13, given that you can
move only horizontally and vertically, one square at a time, and no step may be made
into a shaded square. Each step has cost one.

S1 $2
S5 S6
Ss7 S8
S11 S S12

Suppose that we want to use A* search with cycle-checking and the Manhattan distance
as the heuristic function h to solve this problem. The Manhattan distance between
two cells is the sum of the horizontal and vertical distances (counting shaded squares
as well). Note that this heuristic is monotonic.

(a) Write down the h values of squares sl through s13 in the grid below (the values
for the start node s12 and the goal node s13 have already been given):

S1 S2
h= h=

S5 S6
h= |h=

S7 S8
h= |h=

S11 S S12
h= h=2

(b) Now, apply the A* search: continue writing down the frontier for each step of
the algorithm in the format shown below (it must be sorted on f values, and f
written as f = g + h). In the case of equal f values, break ties as follows: the
square with the larger number comes first (e.g. s11 before s10 and s5). Underline
the node selected for expansion at each step. Remember to enforce cycle-checking.

1 {(s12,2=0+2)}

2. {(s11,4=1+3), }

8. [20 points] Consider the following constraint satisfaction problem. We have the graph
shown below with 6 nodes A, B,C, D, E, and F. We want to color each node such that
no two nodes connected by an edge get the same color. There are only three colors b, g
and r (i.e. blue, green, red) available for nodes C, D, E', F'. Moreover, node A must be
colored red and node B must be colored blue.

(a)

Write down the domain of each of the 6 variables (do not apply forward checking
yet).

Dom(A) = { }, Dom(B)=A{ }, Dom(C)
Dom(D) = { Y, Dom(E)={ }, Dom(F)

{ 2
{ }-

Complete the search tree on the next page to show the tree that would be explored
by the backtracking search with forward checking algorithm. Remember that in
this algorithm, constraints are checked when all but one of their variables have
been assigned and values that violate the constraint are removed from the domain
of the unassigned variable. You are to use a static variable ordering whereby each
branch considers assignments to the variables in the sequence A, B, C, D, E, F'.
The values are also tried in the sequence b, g, and r when applicable. Annotate
each edge with what variable is assigned what value and the updated domains
of the remaining variables. Use the symbol DWO to mark whenever a domain
wipe-out happens.

Q2b: Complete the search tree. Remember to try values in the order b, g,
and then r. The graph on the left is shown for your convenience.

N

10

9. [10 points] Consider the following dynamic domain, to be specified in the situation
calculus. Suppose that we have a fluent isOpen (X, S) that is true if and only if door
X is open in situation S and another fluent isLocked(X,S) that is true if and only if
door X is locked in situation S. Suppose also that we have an action open(X) whose
only effect is to open a closed (i.e. not open) door X provided that X is not locked,
as well as an action close(X) whose only effect is to close an open door X. Finally,
assume that these are the only actions that affect the fluent isOpen.

a) Write effect axioms for the actions open and close; your axioms should capture all
the effects of these actions.

b) Write a frame axiom for the action open and the fluent isOpen.

c) Write a successor state axiom for the fluent isOpen.

11

10. [10 points] Consider the following STRIPS actions:

Action Name Preconditions Add Effects Delete Effects
. D -
- 0
q r
r _

Oawe
o g o

Suppose that the start state is Sy = {o} and the goal is G = {p, ¢, , 0}.

(a) Which actions are applicable in the start state Sy? What is the new state for each
of the applicable actions?

(b) Suppose we want to do backward/regression planning. Which actions are consis-
tent with the goal G7 What is the regressed goal for all the consistent actions?

(c) Give a sequence of actions that achieves the goal G when executed in the starting
state Sp.

12

11. [10 points] Suppose that we have the following belief network (or Bayes net):

(a) True or false, given this belief network, is it the case that Pr(qi|qe,qs,q1) =
Pr(qilg2, q3)?

(b) What are the conditional probabilities that need to be specified to fully determine
the joint probability distribution?

(c) Express Pr(qs|ge) in terms of the conditional probabilities given in your answer
to the previous question.

13

12. [10 points| In this question, you must write a Prolog program that solves the N queens
problem, that is, figures out how to place N queens on a N by N rectangular board
so that no queen attacks another, i.e., no pair of queens is on the same row, column,
or diagonal. We can assume that each row contains exactly one queen. So we can
represent a potential solution, a placement of the queens, as a list [c1, ca, . .., cn] where
c1 is the number of the column that the queen on row 1 is placed, ¢y is the number of
the column that the queen on row 1 is placed, ..., and cy is the number of the column
that the queen on row 1 is placed. We can assume that columns are numbered from 1
to N. Since we can’t have more than one queen in any given column, we can represent
a potential solution as a permutation of the list of the positive integers from 1 to N.
For example [2,4, 1, 3] is a solution to the 4 queens problem. We want to mplement a
solution to this problem using a “generate and test” approach.

(a) Implement a Prolog predicate safe(L) that succeeds if and only if the list L rep-
resenting a placement of the queens (a permutation of the first N positive integers
as discussed above) is safe, i.e., no pair of queens is on the same row, column, or
diagonal. You may introduce auxiliary predicates, with suitable documentation.
You must provide definitions for all non-built-in predicates that you use.

14

(b) Implement a Prolog predicate queens(N,L) that holds if and only if the list L
represents a placement of N queens (as discussed earlier) that is a solution to the
N queens problem. You may use the predicate safe(L) defined in (a) in your
solution. You may also use (without defining it) a predicate permutation(L,P)
that holds if and only if list P is a permutation of the list L. You may introduce
auxiliary predicates, with suitable documentation. You must provide definitions
for all non-built-in predicates that you use.

15

