LE/EECS 3401 3.0 Intro. to Artificial Intelligence and Logic Programming

Department of Electrical Engineering & Computer Science

Name:

Student Number:

Midterm Test — October 24, 2018

Solutions

Duration: 80 minu
No aids allowed.

tes

Total marks: 75.

/10
/10

/5
/10
/20
/10
/10
/75

Fall 2018
York University

1. [10 points 2 points each] For each of the following statements indicate whether it is
true or false:

An agent is an entity that perceives its environment and acts upon it. True

In the Turing Test, a judge must determine whether he/she is chatting with a
computer or a human. True

A chess playing agent is operating in a fully observable environment. True
A self-driving vehicle is operating in a discrete environment. False

Resolution is sound, i.e., if a clause ¢ can be derived by resolution from a set of
clauses S, then S entails ¢. True

Resolution is complete, i.e., if a clause c is entailed by a set of clauses .S,
then ¢ can be derived from S in a forward chaining resolution proof. False

(p,q,—r) is a Horn clause. False
In SLD-resolution, only negative clauses are derived. True

An advantage of the forward chaining procedure for Horn clauses is that it is goal
directed. False

In general, determining whether a sentence is entaiiled by a set of sentences in
first-order logic is undecidable. True

2. [10 points, 2 points each] Translate the following English sentences into first-order logic:
(a) Every employee has a supervisor.
VE.employee(E) D 3S.supervises(S, E)
(b) No student likes a test that is hard.

—35.3T.student(S) A test(T) A hard(T) A likes(S,T)
or VSVT.student(S) A test(T) A hard(T) — —likes(S,T)

(c¢) There is no question such that no student knows the answer.

—3Q.question(Q) A ~3S.student(S) N knowAnswer (S, Q)
or VQ.question(Q) — 3S.student(S) A knowAnswer(S, Q)

(d) All but one of the students are happy.

3S.student(S) ANVT.student(T) NT # S — happy(T)

(e) A professor is happy if he/she belongs to no committees.

VP.professor(P) A =3C.committee(C) A belongs(P, C') — happy(P)

3. [5 points] Say whether or not the following pairs of expressions are unifiable, and show
the most general unifier for each unifiable pair:

(a) p(X,b,0) and p(a,Y, Z)
ves, {X =a,Y =b,7Z =b}
(b) p(f(X,X),a) and p(f(Y, f(Y.a)),a)

(©) plg(f(V)),9(U)) and p(X, X)
yes, {X = g(f(V)),U = f(V)}

4. [10 points| Implement the following description of a grandfather relation using one or
more Prolog rules:

X is the father of Y and Y is the father of Z or X is the father of Y and Y
is the mother of Z implies X is the grandfather of Z .

father (X, Y), father(Y, Z).
father (X, Y), mother(Y, Z).

grandfather (X, Z)
grandfather (X, Z)

or

grandfather (X, Z) father (X, Y), father(Y, Z)

father (X, Y), mother(Y, Z).

5. [20 points] Suppose that we have the following knowledge base (KB) represented as a
set of clauses about three elephants, Sam, Clyde, and Oscar:

(1) (pink(sam)) Sam is pink.
(2) (gray(clyde)) Clyde is gray.
(
(

(3)

(4) (pink(oscar), gray(oscar)) Oscar is either pink or gray.

likes(clyde, oscar)) Clyde likes Oscar.

(5) (—pink(oscar), ~gray(oscar)) Oscar is not both pink and gray.

(6) likes(oscar, sam) Oscar likes Sam.

(a) Prove that the KB does not entail that Oscar is pink. That is, show that there
is an interpretation that satisfies the KB but does not satisfy this conclusion.

Let Z = (D, ¢,1,v) where

D = {sam, clyde, oscar}

¢(z) =x forallz € D

p(pink) = {sam}

Y(gray) = {clyde, oscar}

Y(likes) = {{clyde, oscar), (oscar, sam)}
v can be any variable assignment.

7 trivially satisfies (1), (2), (3), and (6).

7 |= (4), since Z = gray(oscar).

7 = (5), since Z = —pink(oscar).

However, Z [~ pink(oscar), since ¥ (pink)(¢(oscar)) = false.
QED

(b) Use resolution refutation to prove that some grey elephant likes some pink ele-
phant. Give the representation of the query in first-order logic, and its translation
in clausal form. You can display the proof either in tree form or as a sequence of
statements. Clearly indicate the parents of each resolvent.

Query: 3X.3Y.grey(X) A pink(Y) Alikes(X,Y).
Negated query in clausal form: (—grey(X), —pink(Y'), ~likes(X,Y)) (7).

(9) R[3, 8b[{Y = oscar} —pink(oscar)

(10) R[4a, 9] grey(oscar)

(11) R[1, 7b{Y = sam } (—grey(X), ~likes(X, sam))
(12) R[6, 11b]{X = oscar} —grey(oscar)

(13) R

6. [10 points] Consider the following Prolog program:

p(a). p(b).

q(a). q(c).

r1(X):- p(X), qX).
r2(X):- p(X).

r2(X):- q(X).

r3(X):- p(X), \+ qX).
r4(X):- \+ qX), p(X).
r5(X):- p(X), !, qX).
r5(X):- X = b.

For each of the following queries, say whether it succeeds or fails; also if it succeeds
and contains the variable X, give all the values of X for which the query succeeds:

a) 7- r1(X).

X =a ;
false.

b) 7- r2(X).

b
b

I

<o o< =
I
O p T P

c) 7- r3(X).
X =b.

d) 7- r4(X).
false.

e) 7- r5(b).

false.

7. [10 points]

(a) Give a definition of a Prolog predicate permutation(L1, L2) that holds if and
only if the list L2 is a permutation of the list L1. L2 is a permutation of L1 if the
two lists contain exactly the same components, but possibly in a different order.
Include definitions of all non-built-in predicates that you use.

permutation([], [1).
permutation(L, [H|T]):- append(PL,[H|SL],L), append(PL,SL,NL),
permutation(NL,T).

Another version uses an auxiliary predicate remove(L,X,R) which behaves like
append (PL, [X|SL],L), append(PL,SL,NL).

The definition should work when there are duplicates.

(b) Suppose that there are 5 people (John, Wally, Mary, Helen, and Ming) who work in
an office with 5 cubicles in a single row. We want to assign the workers to cubicles
in a way that satisfies their constraints. Let’s represent a cubicle assignment as
a list of 5 workers where the first component is the name of the worker who
will get the first cubicle, the second component is the name of the worker who
will get the second cubicle, and so on. The constraints are that Ming does not
want to be next to Wally and that John does not want to have the first cubicle.
Give a definition of a Prolog predicate cubicleAssignment (L) that holds if and
only if the list L is a cubicle assignment that satisfies all the constraints. Include
definitions of all non-built-in predicates that you use. In your answer, you may
use the permutation predicate specified in (a).

cubiculeAssignment (L) :- permutation([john, wally, mary, helen, ming],L),
\+ nextTo(ming,wally,L),
\+ L = [john|_].

nextTo(A,B,L) :- append(_, [A,B|_],L); append(_,[B,Al_],L).

