
1 EECS 3401 F 2018

text processing in Prolog

Yves Lespérance
Adapted from Peter Roosen-Runge

2 EECS 3401 F 2018

Prolog representation for
parsing text

◆  want to parse natural language text
◆  one way to represent grammar rules:

 sentence --> noun_phrase, verb_phrase.
 stands for
 sentence(X):- append(Y,Z,X),

 noun_phrase(Y), verb_phrase(Z).
 determiner --> [the].
 stands for
 determiner([the]).

◆  must guess how to split the sequence,
inefficient; let constituent parsers decide

3 EECS 3401 F 2018

a better representation

◆  sentence(S0,S):-
 noun_phrase(S0,S1), verb_phrase(S1,S).

◆  determiner([the | S],S).
◆  1st argument is sequence to parse and 2nd

argument is what is left after removing it
◆  Rule means “there is a sentence between S0

and S if …”
◆  ?-sentence([the, boy, drinks, the, juice], []).

succeeds
◆  ?-noun_phrase([the, boy, drinks, the, juice],

R). succeeds with R = [drinks, the, juice]

4 EECS 3401 F 2018

definite clause grammar
(DCG) notation

 sentence --> noun_phrase,verb_phrase.
 stands for
 sentence(S0,S):- noun_phrase(S0,S1),

 verb_phrase(S1,S).
 determiner --> [the].
 stands for
 determiner([the|S],S).

5 EECS 3401 F 2018

enforcing constraints
between constituents

◆  suppose we want to enforce number
agreement

◆  can add extra argument to pass this info
between constituents

◆  noun_phrase(N) --> determiner(N), noun(N).
◆  noun(singular) --> [boy].
◆  noun(plural) --> [boys].
◆  determiner(singular) --> [a].
◆  ?- noun_phrase(N,[a, boys],[]). fails
◆  ?- noun_phrase(N,[a, boy],[]). succeeds with

N = singular

6 EECS 3401 F 2018

returning a parse tree or
interpretation

◆  Extra arguments can also be used to return a
parse tree or interpretation

◆  noun_phrase(np(D,N)) --> determiner(D),
noun(N).

◆  determiner(determiner(a)) --> [a].
◆  noun(noun(boy)) --> [boy].
◆  ?- noun_phrase(PT,[a, boy],[]). succeeds with

PT = np(determiner(a),noun(boy))

7 EECS 3401 F 2018

adding extra tests

◆  can invoke predicates for tests or
interpretation by putting between {}

◆  don’t match input tokens
◆  e.g. accessing a lexicon
◆  noun(N,noun(W)) --> [W],

 {is_noun(W,N)}.

◆  is_noun(boy,singular).

8 EECS 3401 F 2018

grammar writing tips

◆  good grammars:
§  are very modular
§  achieve broad coverage with small number

of rules
u collecting a corpus of examples can help

design and test grammar
u  identify patterns built out of certain

types of constituents

9 EECS 3401 F 2018

Prolog & text processing

◆  Prolog good for analyzing and generating text
◆  parsing involves pattern-matching
◆  text & parse-trees are recursive data

structures
◆  text patterns involve many alternatives,

backtracking is helpful
◆  steadfast predicates can analyze and generate

