TEMPORAL PROBABILITY MODELS

CHAPTER 15, SECTIONS 1-5

Chapter 15, Sections 1-5 1

Outline

O RV R R O

Time and uncertainty

Inference: filtering, prediction, smoothing
Hidden Markov models

Kalman filters (a brief mention)

Dynamic Bayesian networks

Particle filtering

Chapter 15, Sections 1-5

2

Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents,;, etc.

E, = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

This assumes discrete time; step size depends on problem

Notation: X, = X, X .1,.... X1, X,

Chapter 15, Sections 1-5 3

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X, depends on bounded subset of X,

First-order Markov process: P (X, X,) = P(X;|X;)
Second-order Markov process: P (X, | X, 1) = P(Xy|X; 5, X; 1)

st D~ CD—~ O~
_— o

Sensor Markov assumption: P(E,;| X, Eo, 1) = P(E,|X})

Stationary process: transition model P(X;|X; ;) and
sensor model P(E;|X;) fixed for all

Chapter 15, Sections 1-5 4

Example

Ri_1| P(R¢)

t 0.7
f 0.3

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add T'emp,;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,

Chapter 15, Sections 1-5 5

Inference tasks

Filtering: P(X,|e|)
belief state—input to the decision process of a rational agent

Prediction: P (X, . |e;,) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(X|e ;) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: argmaxy, , P(x;./|e1,)
speech recognition, decoding with a noisy channel

Chapter 15, Sections 1-5 6

Filtering

Aim: devise a recursive state estimation algorithm:

P<Xt+1‘elzt+1) — f(et+17 P<Xt‘elzt>)

P(X¢iiler1) = P(Xiyilers, e1)
— CVP<et+1|X1t+17 el:t>P<Xt+1|e1:t>
= OéP<et+1|Xt+1)P(Xt+1|elzt)

|.e., prediction + estimation. Prediction by summing out X;:

P(X1leri1) = @P<et+1’Xt+1>ZXtP<Xt+1’Xt7 erq) P(x;|er)
= oP (e 1] Xp41) 2 P (X1 [x0) P(x€14)

f1:t+1 — FORWARD(flzt, et+1) where fl:t — P(Xt|61:t)
Time and space constant (independent of ?)

Chapter 15, Sections 1-5

7

Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.2!18 0.383
False 0.500 0.182 0.117

Chapter 15, Sections 1-5 8

Smoothing

e

Divide evidence e, into e, €, 1.

P(Xjlei) = P(Xy|eir, €rti1:)
= oaP(Xy|err)P(err1:4| Xy, €1.r)
= aP(Xj|err)P (e 14| Xy)
= oty b1y

Backward message computed by a backwards recursion:

Pep14|Xi) = 2x,, Pleri1| X, Xpp1) P (%511 X))
= X } P(ek+1:t|Xk+1>P<Xk+1|Xk>

— Zxkﬂp(ekﬂ’Xk+1)P(ek:+2:t|Xk+1>P<Xk+1|Xk>

Chapter 15, Sections 1-5 9

Smoothing example

0.500 0.627
0.500 0.373
True 0.500 o.z!18 O.§83 f .
False 0.500 0.182 0.117 orwar
0.!83 0.5!83 <moothed
0.117 0.117
0.690 1.000
-
0.410 1.000 backward

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(%|f])

Chapter 15, Sections 1-5

10

Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x,,
= most likely path to some x; plus one more step

)lglla%({f P<X17 sy Xt Xt—i—l‘el:t—l—l)
= P(e;1|X¢11) max (P<Xt+1‘xt) xiDeX P(x1,. .., X1, Xt\eu))

|dentical to filtering, except f;.; replaced by

mi.; = Xlr.n..ia(iil P(X17 cee oy Xt 1, Xt‘elzt)7

l.e., my(7) gives the probability of the most likely path to state 1.
Update has sum replaced by max, giving the Viterbi algorithm:

My = P<et+1‘Xt+1) H}QX <P<Xt+1‘xt)m1:t)

Chapter 15, Sections 1-5

11

Viterbi example

state
space
paths

umbrella

most
likely
paths

Rain,

Rain,

Raing

Rain,

<

false

false

false

false

.8182

5155

false

.0361

<

1818

;
X

.0491

;
X

1:1

1:2

1237

X
;ij

Raing

false

Chapter 15, Sections 1-5

12

Hidden Markov models

X, is a single, discrete variable (usually E; is too)
Domain of X;is {1,...,5}

Transition matrix T, = P(X, =j| X, | =1), eg, (0'7 0'3)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(¢;| X, =1)
0.9 0)

e.g., with Uy =true, O = (0 0.9

Forward and backward messages as column vectors:

-
fl:t+1 — OéOtHT fl:t
bk—i—l:t — Tok:+1bk:+2:t

Forward-backward algorithm needs time O(5*¢) and space O(S?)

Chapter 15, Sections 1-5 13

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 14

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 15

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 16

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 17

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 18

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 19

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 20

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 21

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 22

Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

.
fl:t+1 — OéOtHT fl:t
1 T
Ot_|_1f1:t—i—1 = aT fl:t
frm T =1 -1
O‘<T) Ot+1f1:t+1 = £

Algorithm: forward pass computes f;, backward pass does f;, b,

Chapter 15, Sections 1-5 23

Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, = XY, 7 X YV Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

Gaussian prior, linear Gaussian transition model and sensor model

Chapter 15, Sections 1-5 24

Updating Gaussian distributions

Prediction step: if P(X;|e;;) is Gaussian, then prediction
P(Xiilen) = f, P(Xii|xe) P(xi]ers) dx;

is Gaussian. If P(X, ||e;;) is Gaussian, then the updated distribution
P(Xii1lernir1) = aP (e X)) P(Xys]ery)

is Gaussian

Hence P(X,|e|) is multivariate Gaussian N (s, 33;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — oo

Chapter 15, Sections 1-5 25

Simple 1-D example

Gaussian random walk on X —axis, s.d. o,, sensor s.d. .

(07 + 03) 2111 + o2y) (07 +02)0>

Hi+1 =

P(X)

2 2 2
Ot—i—O'I—I—OZ

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Oty1 =

o} + 02+ 02

| P(x1]z1=25)

z

X position

Chapter 15, Sections 1-5

26

General Kalman update

Transition and sensor models:

P<Xt+1‘Xt> - N(Fxt,ExKXm)
P(zi|x;) = N(Hxy, 3:)(z¢)

F' is the matrix for the transition; >, the transition noise covariance
H is the matrix for the sensors; >.. the sensor noise covariance

Filter computes the following update:

P = Fry + Ki(ze — HE py)
Y= [-Ki)(FEF' +3,)

where K, = (FE,F' + 3, H (HFX,F' + 3,)H' +3.)"!
is the Kalman gain matrix

>.; and K, are independent of observation sequence, so compute offline

Chapter 15, Sections 1-5 27

2-D tracking example: filtering

12

11

10

2D filtering

— & true

* observed
filtered

10 12 14 16 18 20 22 24 26

Chapter 15, Sections 1-5

28

2-D tracking example: smoothing

12

11

10

2D smoothing

—&— true
* observed
i > smoothed
| | | | | | | | |
10 12 14 16 18 20 22 24 26
X

Chapter 15, Sections 1-5

29

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth

Chapter 15, Sections 1-5 30

Dynamic Bayesian networks

Xy, E; contain arbitrarily many variables in a replicated Bayes net

P(Ro)

P(R1)

Chapter 15, Sections 1-5

31

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

/; N

/

N

Sparse dependencies = exponentially fewer parameters;
e.g., 20 state variables, three parents each

DBN has 20 x 27 = 160 parameters, HMM has 2% x 22 ~ 10

Chapter 15, Sections 1-5 32

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

| E(Bamteryl 5555005555)
x*%;\%‘ R
Kem
4r E(Battery|...5555000000..J
5 °f 1
g o |
L

L P(BM Broken...5555000000..)
0 & -&-8-8-B--B-8 - %%%%%%x%%#
P(BMBroken|...5555005555..))

1 1 1 1 1
15 20 25 30

Time step

Chapter 15, Sections 1-5 33

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

Ro | PRD Ro | PRD Ro | PR Ro | PRD Ro | PR Ro | PRD Ry FRR) LGN

P(Ro) 0 1) P(R 0 1, 0 0 o

T e T e e T T fF v 4 i 7 v 4

. o3 . - o3 . 03 | o3 " 02 L gmmm—n o3 m— {4 02 e e LD 03 ge= ==
Ey = — =N Raing Rain, Rain, Raing Rain, Raing) - = Je! Raing v == g’ Rain; 1
Smmrl L Smmrl L
Ry [P0 R: | POD Ry [P0 R: [POD Ry [P0 R: [PD 1R AU 1R R
T oo T | oo T oo T | oo T oo T | oo Cr05 508
f 0.2 f 0.2 f 0.2 f 0.2 f 0.2 f 0.2 - f_ a _D.Z - - f_ a _Oz o
mbrella, mbrella, Umbrella, Umbrella, Umbrella, Umbrellag " Unmbrellag™y «” Umbrella; ™3

~ ~

Problem: inference cost for each update grows with ¢

Rollup filtering: add slice 7 + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d"""), update cost O(d" ")
(cf. HMM update cost O(d*"))

Chapter 15, Sections 1-5 34

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
= fraction “agreeing” falls exponentially with ¢
= number of samples required grows exponentially with ¢

T ++¥”4‘ﬁ*+/*‘*
A LW(0)" ——
/ LW(180)
0.8 *,/*‘j LW(l@OO) ce |
' /- LW(18000)
A x
g
D6 aed
o] P D.‘"
0.4 + i ?
4 ful X
57
D osaE g
02t Vet VA R
i " B0% xx
~+ BDEEXQ
0 ﬁgé"gee'xxxf L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Time step

Chapter 15, Sections 1-5

35

Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e,

Rain Rain;, Rain; ., Rain; .
t t+1 t+1 t+1

YY) LYY coo ®
true YY) LYY 0o)

) oo Y) Y YY)
false) oo YY) LYY Y

(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

Chapter 15, Sections 1-5 36

Particle filtering contd.

Assume consistent at time 7: N(x;|ej;)/N = P(x/|e1;)
Propagate forward: populations of x;,; are

N(xpr1lers) = 2x, P(Xpr1[x) N (x¢]e1)
Weight samples by their likelihood for e, :

W (xes1leri) = Pler[xe1) N (Xit1]e1)

Resample to obtain populations proportional to I1:

N(x¢r1lere41)/N = aW(xi1lers1) = aP(er1|xee1) N (Xer1]€e1:)
— OéP<et+1|Xt+1)thP<Xt+1’Xt)N<Xt’elzt>
= O/P(etﬂ’Xt+1>2xtp(xt+1|Xt>P<Xt’elzt)

P(x¢y1]€1:441)

Chapter 15, Sections 1-5

37

Particle filtering performance

Approximation error of particle filtering remains bounded over time,

at least empirically—theoretical analysis is difficult

1 T T T T VNS **J—qﬁ#-\ﬁﬁﬁ@:‘?ﬁ—'@ﬂ
LW(25) = pewee™ =777
LW(100) ¢ P .
LW(1000) © :
08 I Lw(10000) -/ , §
_ ER/SOF(25) -+~ ? wi X
° 4 P g ° X
) i
Q 0.6 B EHE X
= +/*4 X
g) 04 / m’, . X
<E D X xx
& \D’i XX‘X
0.2 " XVX,X‘X’ ¥ ! >< x X
£ il ’ . "ﬁzyéAA‘AA&AAA-A—AAAMAA_AAAéAﬁAAA&»A AADABADDN DD
0 EEAaiTh D e 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time step

Chapter 15, Sections 1-5

38

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X;|X;)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(nS) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

Chapter 15, Sections 1-5 39

