
LE/EECS 3401 3.0 Intro. to Artificial Intelligence and Logic Programming Fall 2018
Department of Electrical Engineering & Computer Science York University

Deferred Final Examination — January 17, 2019

Duration: 180 minutes
No aids allowed.

Total marks: 135.

Name:

Student Number:

1) /15

2) /10

3) /8

4) /4

5) /8

6) /10

7) /20

8) /20

9) /10

10) /10

11) /10

12) /10

Total /135

1

1. [15 points] For each of the following statements, indicate whether it is true or false:

(a) A chess playing agent is operating in a stochastic environment.

(b) A checkers playing agent is operating in a fully observable environment.

(c) A Horn clause has at most one negative literal.

(d) We can make the closed-world assumption about a 2-place predicate/relation r if
we have complete information about all the pairs (a, b) where r(a, b) is true.

(e) Resolution is refutation complete, i.e., if the empty clause is entailed
by a set of formulas, it can be derived by resolution.

(f) Iterative deepening depth-first search has a lower space complexity than breadth-
first search.

(g) A constraint satisfaction problem that has been made arc-consistent
can always be solved without backtracking.

(h) If a heuristic is monotone/consistent, it must be admissible.

(i) If q1 is conditionally independent from q2, then q2 is conditionally independent
from q1.

(j) When A∗ uses a heuristic that is only admissible, it will nonetheless always find
an optimal path to a goal state (assuming a goal state is reachable).

(k) A solution to a Markov decision problem is a policy, i.e., a function from state to
action.

(l) The policy iteration algorithm can be used to solve a Markov decision problem.

(m) In Q-learning, one learns the function Q(a, s), whose value is the expected utility
to taking an action a in a state s.

(n) A single-layer feedforward neural network (perceptron) can learn any boolean
function that decision-tree learning can learn.

(o) A multi-layer feedforward neural network can learn any continuous function.

2

2. [10 points] Suppose that we have a search algorithm that keeps unexpanded nodes in
a sorted list, the frontier (or fringe), and that always selects the first node from the
frontier. What kind of search do we have if...

(a) we always place the successors of the current node at the back of the frontier?

(b) we always place the successors of the current node at the front of the frontier?

(c) we insert the successors of the current node so as to keep the frontier sorted by
the value of the heuristic function h(n)?

(d) we insert the successors of the current node so as to keep the frontier sorted by
path cost g(n) (i.e. the cost of the path from the start node to node n)?

(e) we insert the successors of the current node so as to keep the frontier sorted by
the value of the sum of the path cost and the heuristic function g(n) + h(n)?

3

3. [8 points] Implement the following description of an ancestor relation using one or
more Prolog rules:

if X is a parent of Y, then X is an ancestor of Y;

if X is a parent of Y and Y is an ancestor of Z, then X is an ancestor of Z;

nothing else is in the ancestor relation.

You can assume that the parentOf(X,Y) predicate has already been defined.

4. [4 points] What is the output of the following Prolog program, when we invoke the
query ?- p.

p:- writeln(p1), q.

p:- writeln(p2), !, q.

p:- writeln(p3), fail.

q:- writeln(q1), !, fail.

q:- writeln(q2), fail.

4

5. [8 points] The predicate bagof(T, Q, S) constructs a list S of all instances of T for
which Q is true. A textbook describes the computation as follows: the query Q is
satisfied in all possible ways, and for each instantiation of the variables in the arguments
of Q, T is instantiated and recorded as such in the list S.

(a) Give the value computed for L by the query

?- bagof(p(X), member(X, [a, t(0), b, a]), L).

(b) The following query will not work:

?- bagof(X, member(0, X), L).

Explain briefly why.

5

6. [10 points] Convert the following formulas into clausal form (recall that the 8 steps are:
eliminate implications, move negations inward, standardize variables, skolemize, con-
vert to prenix, distribute ∨ over ∧, flatten conjunctions and disjunctions, and convert
to clauses):

(a) (¬∃X.∀Y.p(X, Y)) → (∀Y.∃X.p(X, Y))

(b) ((∃X.p(X)) ∨ (∃X.q(X))) → (∃X.(p(X) ∨ q(X)))

6

7. [20 points] Consider the problem of finding a path in a grid using heuristic search. The
problem is to find a path from square S = s12 to square G = s13, given that you can
move only horizontally and vertically, one square at a time, and no step may be made
into a shaded square. Each step has cost one.

S G
S13

S1 S2 S3 S4

S5 S6

S7 S8 S9 S10

S11 S12

Suppose that we want to use A∗ search with cycle-checking and the Manhattan distance
as the heuristic function h to solve this problem. The Manhattan distance between
two cells is the sum of the horizontal and vertical distances (counting shaded squares
as well). Note that this heuristic is monotonic.

(a) Write down the h values of squares s1 through s13 in the grid below (the values
for the start node s12 and the goal node s13 have already been given):

GS
S13

h= h= h= h=

h= h=

h= h= h=

h=0h=2

h=

S5

h=

S6

S1 S2 S3 S4

S7 S8 S9 S10

S11 S12

7

(b) Now, apply the A∗ search: continue writing down the frontier for each step of
the algorithm in the format shown below (it must be sorted on f values, and f
written as f = g + h). In the case of equal f values, break ties as follows: the
square with the larger number comes first (e.g. s11 before s10 and s5). Underline
the node selected for expansion at each step. Remember to enforce cycle-checking.

1.
{
〈s12, 2 = 0 + 2〉

}
2.

{
〈s11, 4 = 1 + 3〉,

}

3.

...

8

8. [20 points] Consider the following constraint satisfaction problem. We have the graph
shown below with 6 nodes A,B,C,D,E, and F . We want to color each node such that
no two nodes connected by an edge get the same color. There are only three colors b, g
and r (i.e. blue, green, red) available for nodes C,D,E, F . Moreover, node A must be
colored red and node B must be colored blue.

E FB

A C D

(a) Write down the domain of each of the 6 variables (do not apply forward checking
yet).

Dom(A) = { }, Dom(B) = { }, Dom(C) = { },

Dom(D) = { }, Dom(E) = { }, Dom(F) = { }.

(b) Complete the search tree on the next page to show the tree that would be explored
by the backtracking search with forward checking algorithm. Remember that in
this algorithm, constraints are checked when all but one of their variables have
been assigned and values that violate the constraint are removed from the domain
of the unassigned variable. You are to use a static variable ordering whereby each
branch considers assignments to the variables in the sequence A, B, C, D, E, F .
The values are also tried in the sequence b, g, and r when applicable. Annotate
each edge with what variable is assigned what value and the updated domains
of the remaining variables. Use the symbol DWO to mark whenever a domain
wipe-out happens.

9

Q2b: Complete the search tree. Remember to try values in the order b, g,
and then r. The graph on the left is shown for your convenience.

E FB

A C D

A=r

10

9. [10 points] Consider the following dynamic domain example concerning a room with two
windows, window1 and window2, which is specified in the situation calculus. Suppose
that the following are all of the effect axioms about the fluents isOpen and roomHot
(describing all conditions under which these fluents change value):

∀S.∀Window.isOpen(Window, do(open(Window), S))

∀S.∀Window.¬isOpen(Window, do(close(Window), S))

∀S.(¬isOpen(window2, S) → roomHot(do(close(window1), S)))

∀S.(¬isOpen(window1, S) → roomHot(do(close(window2), S)))

∀S.¬roomHot(do(open(window1), S))

∀S.¬roomHot(do(open(window2), S))

a) Give a frame axiom for the action open and the fluent isOpen.

b) Give the successor state axiom for the fluent isOpen.

c) Give the successor state axiom for the fluent roomHot.

11

10. [10 points] Consider the following STRIPS actions:

Action Name Preconditions Add Effects Delete Effects
A p q r
B p r -
C - p -
D o - o

Suppose that the start state is S0 = {o} and the goal is G = {p, q, r, o}.

(a) Which actions are applicable in the start state S0? What is the new state for each
of the applicable actions?

(b) Suppose we want to do backward/regression planning. Which actions are consis-
tent with the goal G? What is the regressed goal for all the consistent actions?

(c) Give a sequence of actions that achieves the goal G when executed in the starting
state S0.

12

11. [10 points] Suppose that we have the following belief network (or Bayes net):

����
q2

����
q3

����
q4

XXXXXXXXXXz

��
���

���
��:����

q1 XXXXXXXXXz

���
���

���:

(a) True or false, given this belief network, is it the case that Pr(q4|q1, q2, q3) =
Pr(q4|q2, q3)?

(b) What are the conditional probabilities that need to be specified to fully determine
the joint probability distribution?

(c) Express Pr(q2|q3) in terms of the conditional probabilities given in your answer
to the previous question.

13

12. [10 points] Suppose that there are N men and N women who want to get married.
Each man has a list of all the women in his preferred order and similarly each woman
has a list of all the men in her preferred order. We want to find a set of marriages that
is stable.

A set of marriages is unstable if two people who are not married to each other both
prefer each other to their spouses. For example, suppose that we have two men m1 and
m2 and two women w1 and w2, such that m1 prefers w1 to w2, and w1 prefers m1 to m2.
Then the set of marriages m1-w2 and m2-w1 is unstable because m1 and w1 both prefer
each other to their spouses.

(a) Assume that the preferences of a person are represented by asserting a predicate
preferences(Person,[P1, P2,, Pn]), meaning that [P1, P2,, Pn]

is the list of Person’s preferred spouses from most preferred P1 to least preferred
Pn. Building on this, give a definition of a Prolog predicate prefers(Pa,Pb,Pc)

that holds if and only if Pa prefers Pb to Pc. If you use any other non-built-in
predicates, provide their definitions.

14

(b) Give a definition of a Prolog predicate stableMarriages(MenList, WomenList,

MarriagesList) that holds if MarriagesList is a set of marriages that is stable
for the given sets of men and women. Assume that sets are represented as list of
distinct items and that there is an equal number of men and women. A marriage
between a man m and a woman w should be represented by the term m-w. You
may use the predicate prefers defined in (a) in your definition. If you use any
other non-built-in predicates, provide their definitions. (It is a theorem of graph
theory that it is always possible to find a stable marriage set.)

15

