
First-order logic

Chapter 8

Chapter 8 1

Outline

♦ Why FOL?

♦ Syntax and semantics of FOL

♦ Fun with sentences

♦ Wumpus world in FOL

Chapter 8 2

Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to facts

Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square

Chapter 8 3

First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, . . .

• Functions: father of, best friend, third inning of, one more than, end of
. . .

Chapter 8 4

Logics in general

Language Ontological Epistemological
Commitment Commitment

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known interval value

Chapter 8 5

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .
Predicates Brother, >, . . .
Functions Sqrt, LeftLegOf, . . .
Variables x, y, a, b, . . .
Connectives ∧ ∨ ¬ ⇒ ⇔
Equality =
Quantifiers ∀ ∃

Chapter 8 6

Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)
> (Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJohn)))

Chapter 8 7

Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)
>(1, 2) ∨ ≤(1, 2)
>(1, 2) ∧ ¬>(1, 2)

Chapter 8 8

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn) is true
iff the objects referred to by term1, . . . , termn

are in the relation referred to by predicate

Chapter 8 9

Models for FOL: Example

Chapter 8 10

Truth example

Consider the interpretation in which
Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model

Chapter 8 11

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞
For each k-ary predicate Pk in the vocabulary

For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary

For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!

Chapter 8 12

Universal quantification

∀ 〈variables〉 〈sentence〉

Everyone at Berkeley is smart:
∀x At(x,Berkeley) ⇒ Smart(x)

∀x P is true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn,Berkeley) ⇒ Smart(KingJohn))
∧ (At(Richard,Berkeley) ⇒ Smart(Richard))
∧ (At(Berkeley, Berkeley) ⇒ Smart(Berkeley))
∧ . . .

Chapter 8 13

A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x,Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is smart”

Chapter 8 14

Existential quantification

∃ 〈variables〉 〈sentence〉

Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)

∃x P is true in a model m iff P is true with x being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stanford) ∧ Smart(KingJohn))
∨ (At(Richard, Stanford) ∧ Smart(Richard))
∨ (At(Stanford, Stanford) ∧ Smart(Stanford))
∨ . . .

Chapter 8 15

Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford) ⇒ Smart(x)

is true if there is anyone who is not at Stanford!

Chapter 8 16

Properties of quantifiers

∀x ∀ y is the same as ∀ y ∀x (why??)

∃x ∃ y is the same as ∃ y ∃x (why??)

∃x ∀ y is not the same as ∀ y ∃x

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”

∀ y ∃x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

Chapter 8 17

Fun with sentences

Brothers are siblings

Chapter 8 18

Fun with sentences

Brothers are siblings

∀x, y Brother(x, y) ⇒ Sibling(x, y).

“Sibling” is symmetric

Chapter 8 19

Fun with sentences

Brothers are siblings

∀x, y Brother(x, y) ⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y) ⇔ Sibling(y, x).

One’s mother is one’s female parent

Chapter 8 20

Fun with sentences

Brothers are siblings

∀x, y Brother(x, y) ⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y) ⇔ Sibling(y, x).

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y)).

A first cousin is a child of a parent’s sibling

Chapter 8 21

Fun with sentences

Brothers are siblings

∀x, y Brother(x, y) ⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y) ⇔ Sibling(y, x).

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y)).

A first cousin is a child of a parent’s sibling

∀x, y F irstCousin(x, y) ⇔ ∃ p, ps Parent(p, x) ∧ Sibling(ps, p) ∧
Parent(ps, y)

Chapter 8 22

Equality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀x ×(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:
∀x, y Sibling(x, y) ⇔ [¬(x= y) ∧ ∃m, f ¬(m= f) ∧

Parent(m,x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]

Chapter 8 23

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB,Percept([Smell, Breeze,None], 5))
Ask(KB, ∃ a Action(a, 5))

I.e., does KB entail any particular actions at t = 5?

Answer: Y es, {a/Shoot} ← substitution (binding list)

Given a sentence S and a substitution σ,
Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x, y)
σ = {x/Hillary, y/Bill}
Sσ = Smarter(Hillary, Bill)

Ask(KB,S) returns some/all σ such that KB |= Sσ

Chapter 8 24

Knowledge base for the wumpus world

“Perception”
∀ b, g, t Percept([Smell, b, g], t) ⇒ Smelt(t)
∀ s, b, t Percept([s, b, Glitter], t) ⇒ AtGold(t)

Reflex: ∀ t AtGold(t) ⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t AtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab, t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential

Chapter 8 25

Deducing hidden properties

Properties of locations:
∀x, t At(Agent, x, t) ∧ Smelt(t) ⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧Breeze(t) ⇒ Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
∀ y Breezy(y) ⇒ ∃x Pit(x) ∧ Adjacent(x, y)

Causal rule—infer effect from cause
∀x, y P it(x) ∧ Adjacent(x, y) ⇒ Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃x Pit(x) ∧ Adjacent(x, y)]

Chapter 8 26

Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold,Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s

Chapter 8 27

Describing actions I

“Effect” axiom—describe changes due to action
∀ s AtGold(s) ⇒ Holding(Gold,Result(Grab, s))

“Frame” axiom—describe non-changes due to action
∀ s HaveArrow(s) ⇒ HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . . .

Chapter 8 28

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):

P true afterwards ⇔ [an action made P true

∨ P true already and no action made P false]

For holding the gold:
∀ a, s Holding(Gold,Result(a, s)) ⇔

[(a=Grab ∧ AtGold(s))
∨ (Holding(Gold, s) ∧ a 6= Release)]

Chapter 8 29

Making plans

Initial condition in KB:
At(Agent, [1, 1], S0)
At(Gold, [1, 2], S0)

Query: Ask(KB, ∃ s Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab,Result(Forward, S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and that S0

is the only situation described in the KB

Chapter 8 30

Making plans: A better way

Represent plans as action sequences [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB, ∃ p Holding(Gold, P lanResult(p, S0)))
has the solution {p/[Forward,Grab]}

Definition of PlanResult in terms of Result:
∀ s P lanResult([], s) = s
∀ a, p, s P lanResult([a|p], s) = PlanResult(p,Result(a, s))

Planning systems are special-purpose reasoners designed to do this type of
inference more efficiently than a general-purpose reasoner

Chapter 8 31

Summary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation calculus KB

Chapter 8 32

