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Pros and cons of propositional logi

Propositional logic is declarative: pieces of syntax correspc

Propositional logic allows partial /disjunctive /negated inform:
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B 1 A P is derived from meaning of B and

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context

Propositional logic has very limited expressive power

(unlike natural language)

E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square



First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contai

e Objects: people, houses, numbers, theories, Ronald McDon
baseball games, wars, centuries . ..

e Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred :
comes between, . ..

e Functions: father of, best friend, third inning of, one more tl
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Syntax of FOL: Basic elements

Constants  KingJohn, 2, UCB, ...
Predicates Brother, >,...
Functions  Sqrt, LeftLegOf, ...
Variables x, Yy, a, b,...
Connectives A V =~ = &
Equality =

Quantifiers V 4



Atomic sentences

Atomic sentence = predicate(termy, ..., term,)
or termy = terms

Term = function(termy, ..., term,)
or constant or variable

E.g., Brother(KingJohn, RichardT heLionheart)
> (Length(LeftLegO f(Richard)), Length(Le ft Leg(



Complex sentences

Complex sentences are made from atomic sentences using conne
—IS, Sl A\ SQ, Sl V SQ, Sl — SQ, Sl <~ SQ

E.g. Sibling(KingJohn, Richard) = Sibling(Richard, K
>(1,2) V <(1,2)
>(1,2) A —=>(1,2)



Truth in first-order logic

Sentences are true with respect to a model and an interpretatior
Model contains > 1 objects (domain elements) and relations am

Interpretation specifies referents for
constant symbols — objects
predicate symbols — relations
function symbols — functional relations

An atomic sentence predicate(terms, . .., term,) is true
iff the objects referred to by term.,...,term,
are in the relation referred to by predicate



Models for FOL: Example




Truth example

Consider the interpretation in which
Richard — Richard the Lionheart
John — the evil King John
Brother — the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model



Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerati
We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to oo
For each k-ary predicate P in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol C' in the vocabulary
For each choice of referent for C' from n objects .

Computing entailment by enumerating FOL models is not easy!



Universal quantification

V (variables) (sentence)

Everyone at Berkeley is smart:
Vax At(x, Berkeley) = Smart(x)

Va P istrue in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiati

(At(KingJohn, Berkeley) = Smart(KingJohn))
(At(Richard, Berkeley) = Smart(Richard))
(At(Berkeley, Berkeley) = Smart(Berkeley))

> > >



A common mistake to avoid

Typically, = is the main connective with V
Common mistake: using A as the main connective with V:

Vx At(x, Berkeley) A Smart(x)

means "Everyone is at Berkeley and everyone is smart”



Existential quantification

1 (variables) (sentence)

Someone at Stanford is smart:

dx At(x, Stanford) A Smart(x)

dx P is true in a model m iff P is true with x being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiatic

(At(KingJohn, Stan ford) A Smart(KingJohn))
V (At(Richard, Stanford) A Smart(Richard))
V (At(Stanford Stan ford) A Smart(Stan ford))
Vo



Another common mistake to avoid

Typically, A is the main connective with
Common mistake: using =- as the main connective with d:

dx At(x, Stanford) = Smart(x)

is true if there is anyone who is not at Stanford!



Properties of quantifiers

Vo Vy isthesameasVy Va (why??)
Jdx Jy isthesame as 3y Jx (why??)
dx Vy is not thesameasVy dx

dx Vy Loves(x,y)
“There is a person who loves everyone in the world”

Vy dx Loves(x,y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other
Vx Likes(x, IceCream) -3z —Likes(x, [ceCream)
dx Likes(x, Broccolt) -V —Likes(x, Broccoli)



Fun with sentences

Brothers are siblings



Fun with sentences

Brothers are siblings
Vax,y Brother(x,y) = Sibling(z,y).

“Sibling” is symmetric
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Fun with sentences
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Fun with sentences

Brothers are siblings

Vax,y Brother(x,y) = Sibling(z,y).

“Sibling” is symmetric

Va,y Sibling(x,y) < Sibling(y, x).

One'’s mother is one's female parent

Va,y Mother(z,y) < (Female(x) N\ Parent(z,y)).
A first cousin is a child of a parent’s sibling

Va,y FirstCousin(z,y) < dp,ps Parent(p,x) N\ Sibli
Parent(ps,y)



Equality

term; = terms is true under a given interpretation
if and only if term, and terms refer to the same object

Eg, 1=2and Va x(Sqrt(z),Sqrt(x)) = x are satisfiable
2 =2 is valid

E.g., definition of (full) Sibling in terms of Parent:
Va,y Sibling(z,y) < [~(@=y)ANIm, f =(m=f)A
Parent(m,xz) A Parent(f,x) N\ Parent(m,y) A Pare



Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, Percept(|Smell, Breeze, Nonel,5))
Ask(KB,3a Action(a,b))

|.e., does K'B entail any particular actions at ¢ = 57
Answer: Yes, {a/Shoot} < substitution (binding list)

Given a sentence S and a substitution o,

So denotes the result of plugging o into S e.g.,
S = Smarter(z,y)

o = {x/Hillary,y/Bill}

So = Smarter(Hillary, Bill)

Ask(K B, S) returns some/all o such that KB |= So



Knowledge base for the wumpus wor

“Perception”

Vb,g,t Percept(|[Smell,b,qg|,t) = Smelt(t)
Vs, b,t Percept(|s,b, Glitter],t) = AtGold(t)

Reflex: Vt AtGold(t) = Action(Grab,t)

Reflex with internal state: do we have the gold already?

Vit AtGold(t) N —Holding(Gold,t) = Action(Grab,t)

Holding(Gold,t) cannot be observed
= keeping track of change is essential



Deducing hidden properties

Properties of locations:
Va,t At(Agent,z,t) A Smelt(t) = Smelly(x)
Va,t At(Agent,x,t) A Breeze(t) = Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
Vy Breezy(y) = dx Pit(x) N\ Adjacent(x,y)

Causal rule—infer effect from cause
Va,y Pit(z) A Adjacent(x,y) = Breezy(y)

Neither of these is complete—e.g., the causal rule doesn't s.
squares far away from pits can be breezy

Definition for the Breezy predicate:
Vy Breezy(y) < |[dx Pit(x) N Adjacent(x,y)]



Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL.:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s



Describing actions I

“Effect” axiom—describe changes due to action

Vs AtGold(s) = Holding(Gold, Result(Grab, s))

“Frame” axiom—describe non-changes due to action

Vs HaveArrow(s) = HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track

Qualification problem: true descriptions of real actions require end
what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary cons
what about the dust on the gold, wear and tear on gloves, ...



Describing actions 11

Successor-state axioms solve the representational frame problem
Each axiom is “about” a predicate (not an action per se):

P true afterwards < |an action made P true
V P true already and no action made |

For holding the gold:
Va,s Holding(Gold, Result(a,s)) <
[(a=Grab A\ AtGold(s))
V (Holding(Gold, s) \ a # Release)]



Making plans

Initial condition in KB:
At(Agenta [17 1]7 SO)
At(GOld, [1, 2], S())

Query: Ask(KB,ds Holding(Gold, s))
i.e., in what situation will | be holding the gold?

Answer: {s/Result(Grab, Result(Forward, Sy))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S :
is the only situation described in the KB



Making plans: A better way

Represent plans as action sequences |ay, as, . . ., ay)]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(K B,3p Holding(Gold, PlanResult(p,
has the solution {p/[Forward, Grab]}

Definition of PlanResult in terms of Result:
Vs PlanResult(|],s) = s
Va,p,s PlanResult(|a|p],s) = PlanResult(p, Result(a,

Planning systems are special-purpose reasoners designed to do 1
inference more efficiently than a general-purpose reasoner



Summary

First-order logic:
— objects and relations are semantic primitives
— syntax: constants, functions, predicates, equality, quantifiel

Increased expressive power: sufficient to define wumpus world

Situation calculus:
— conventions for describing actions and change in FOL
— can formulate planning as inference on a situation calculus



