
LE/EECS 3401 3.0 Intro. to Artificial Intelligence and Logic Programming Fall 2018
Department of Electrical Engineering & Computer Science York University

Midterm Test — October 24, 2018
Solutions and Grading Guide

Duration: 80 minutes
No aids allowed.
Total marks: 75.

Name:

Student Number:

1) /10

2) /10

3) /5

4) /10

5) /20

6) /10

7) /10

Total /75

1

1. [10 points 2 points each] For each of the following statements indicate whether it is
true or false:

(a) An agent is an entity that perceives its environment and acts upon it. True

(b) In the Turing Test, a judge must determine whether he/she is chatting with a
computer or a human. True

(c) A chess playing agent is operating in a fully observable environment. True

(d) A self-driving vehicle is operating in a discrete environment. False

(e) Resolution is sound, i.e., if a clause c can be derived by resolution from a set of
clauses S, then S entails c. True

(f) Resolution is complete, i.e., if a clause c is entailed by a set of clauses S,
then c can be derived from S in a forward chaining resolution proof. False

(g) (p, q,¬r) is a Horn clause. False

(h) In SLD-resolution, only negative clauses are derived. True

(i) An advantage of the forward chaining procedure for Horn clauses is that it is goal
directed. False

(j) In general, determining whether a sentence is entaiiled by a set of sentences in
first-order logic is undecidable. True

2

2. [10 points, 2 points each] Translate the following English sentences into first-order logic:

Give:
2 points for completely correct
1.5 points if minor problems, e.g. dropping outside ∀
1 point for partially correct
0.5 points if a few elements correct
0 points if completely wrong

(a) Every employee has a supervisor.

∀E.employee(E) ⊃ ∃S.supervises(S,E)

(b) No student likes a test that is hard.

¬∃S.∃T.student(S) ∧ test(T) ∧ hard(T) ∧ likes(S, T)
or ∀S.∀T.student(S) ∧ test(T) ∧ hard(T)→ ¬likes(S, T)

(c) There is no question such that no student knows the answer.

¬∃Q.question(Q) ∧ ¬∃S.student(S) ∧ knowAnswer(S,Q)
or ∀Q.question(Q)→ ∃S.student(S) ∧ knowAnswer(S,Q)

(d) All but one of the students are happy.

∃S.student(S) ∧ ∀T.student(T) ∧ T 6= S → happy(T)

(e) A professor is happy if he/she belongs to no committees.

∀P.professor(P) ∧ ¬∃C.committee(C) ∧ belongs(P,C)→ happy(P)

3

3. [5 points] Say whether or not the following pairs of expressions are unifiable, and show
the most general unifier for each unifiable pair:

Give:
For a) and c):
1 points for saying whether or not it is unifiable, plus
1 point if they have correct MGU
0.5 points if they are missing a part of the MGU or if substitutions need to be applied
in sequence
0 points if completely wrong

For b): 1 point for saying it is not unifiable

(a) p(X, b, b) and p(a, Y, Z)

yes, {X = a, Y = b, Z = b}
(b) p(f(X,X), a) and p(f(Y, f(Y, a)), a)

no

(c) p(g(f(V)), g(U)) and p(X,X)

yes, {X = g(f(V)), U = f(V)}

4. [10 points] Implement the following description of a grandfather relation using one or
more Prolog rules:

X is the father of Y and Y is the father of Z or X is the father of Y and Y
is the mother of Z implies X is the grandfather of Z .

grandfather(X, Z) :- father(X, Y), father(Y, Z).

grandfather(X, Z) :- father(X, Y), mother(Y, Z).

or

grandfather(X, Z) :- father(X, Y), father(Y, Z)

;

father(X, Y), mother(Y, Z).

10 marks minus number of individual errors (missing terms, wrong variable order,
wrong variable, etc.)

4

5. [20 points] Suppose that we have the following knowledge base (KB) represented as a
set of clauses about three elephants, Sam, Clyde, and Oscar:

(1) (pink(sam)) Sam is pink.

(2) (gray(clyde)) Clyde is gray.

(3) (likes(clyde, oscar)) Clyde likes Oscar.

(4) (pink(oscar), gray(oscar)) Oscar is either pink or gray.

(5) (¬pink(oscar),¬gray(oscar)) Oscar is not both pink and gray.

(6) likes(oscar, sam) Oscar likes Sam.

(a) Prove that the KB does not entail that Oscar is pink. That is, show that there
is an interpretation that satisfies the KB but does not satisfy this conclusion.

Let I = 〈D,φ, ψ, v〉 where
D = {sam, clyde, oscar}
φ(x) = x for all x ∈ D
ψ(pink) = {sam}
ψ(gray) = {clyde, oscar}
ψ(likes) = {〈clyde, oscar〉, 〈oscar, sam〉}
v can be any variable assignment.

I trivially satisfies (1), (2), (3), and (6).
I |= (4), since I |= gray(oscar).
I |= (5), since I |= ¬pink(oscar).
However, I 6|= pink(oscar), since ψ(pink)(φ(oscar)) = false.
QED

Mark out of 8. Give
8 if all correct
7 correct, but interpretation not given in full
6 correct, but interpretation not given in full, and no argument for satisfaction of
(4) and (5)
5 some incomplete argument based on interpretation
4 if they argue that resolution can’t produce the empty clause
3 resolution refutation but incomplete argument
2 buggy resolution or informal argument
0 if completely wrong.

5

(b) Use resolution refutation to prove that some grey elephant likes some pink ele-
phant. Give the representation of the query in first-order logic, and its translation
in clausal form. You can display the proof either in tree form or as a sequence of
statements. Clearly indicate the parents of each resolvent.

Query: ∃X.∃Y.grey(X) ∧ pink(Y) ∧ likes(X, Y).
Negated query in clausal form: (¬grey(X),¬pink(Y),¬likes(X, Y)) (7).

Proof:
(8) R[2, 7a]{X = clyde } (¬pink(Y),¬likes(clyde, Y))
(9) R[3, 8b]{Y = oscar} ¬pink(oscar)
(10) R[4a, 9] grey(oscar)
(11) R[1, 7b]{Y = sam } (¬grey(X),¬likes(X, sam))
(12) R[6, 11b]{X = oscar} ¬grey(oscar)
(13) R[10, 12] []

Mark out of 12. Give
12 if all correct
10 if minor errors in prrof or query
8 if correct query and clausal form, but incomplete or buggy proof
6 if buggy query and correct clausal form and some proof steps, or correct query
and clausal form but no proof
4 if buggy query and correct clausal form for it
2 if buggy query and incorrect clausal form for it
0 if completely wrong.

6

6. [10 points] Consider the following Prolog program:

p(a). p(b).

q(a). q(c).

r1(X):- p(X), q(X).

r2(X):- p(X).

r2(X):- q(X).

r3(X):- p(X), \+ q(X).

r4(X):- \+ q(X), p(X).

r5(X):- p(X), !, q(X).

r5(X):- X = b.

For each of the following queries, say whether it succeeds or fails; also if it succeeds
and contains the variable X, give all the values of X for which the query succeeds:

a) ?- r1(X).

X = a ;

false.

b) ?- r2(X).

X = a ;

X = b ;

X = a ;

X = c.

c) ?- r3(X).

X = b.

d) ?- r4(X).

false.

e) ?- r5(b).

false.

Mark each subquestion out of 2.
For a) , b), c), and d), subtract 1 for each extra or missing value.

7

7. [10 points]
(a) Give a definition of a Prolog predicate permutation(L1, L2) that holds if and

only if the list L2 is a permutation of the list L1. L2 is a permutation of L1 if the
two lists contain exactly the same components, but possibly in a different order.
Include definitions of all non-built-in predicates that you use.

permutation([],[]).

permutation(L, [H|T]):- append(PL,[H|SL],L), append(PL,SL,NL),

permutation(NL,T).

Another version uses an auxiliary predicate remove(L,X,R) which behaves like
append(PL,[X|SL],L), append(PL,SL,NL).

The definition should work when there are duplicates.

5 marks for a correct solution
4 marks for mostly correct solution, with minor errors
3 marks for partially correct solution with base case
2 marks for partially correct solution without base case
1 marks for having some minor elements of solution or only base case
0 otherwise

8

(b) Suppose that there are 5 people (John, Wally, Mary, Helen, and Ming) who work in
an office with 5 cubicles in a single row. We want to assign the workers to cubicles
in a way that satisfies their constraints. Let’s represent a cubicle assignment as
a list of 5 workers where the first component is the name of the worker who
will get the first cubicle, the second component is the name of the worker who
will get the second cubicle, and so on. The constraints are that Ming does not
want to be next to Wally and that John does not want to have the first cubicle.
Give a definition of a Prolog predicate cubicleAssignment(L) that holds if and
only if the list L is a cubicle assignment that satisfies all the constraints. Include
definitions of all non-built-in predicates that you use. In your answer, you may
use the permutation predicate specified in (a).

cubiculeAssignment(L) :- permutation([john, wally, mary, helen, ming],L),

\+ nextTo(ming,wally,L),

\+ L = [john|_].

nextTo(A,B,L):- append(_,[A,B|_],L); append(_,[B,A|_],L).

5 marks for a correct solution
4 marks for minor error
3 marks for buggy, but make a permutation/list of names with member plus some
other elements
2 marks for multiple serious bugs, but have some constraints
1 marks for having some minor elements of solution, e.g. using permutation
0 otherwise

9

