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1.

Introduction
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What is knowledge?

Easier question: how do we talk about it?

We say  “John knows that ...” and fill the blank with a proposition
– can be true / false,    right / wrong

Contrast:  “John fears that ...”
– same content,  different attitude 

Other forms of knowledge:
• know how, who, what, when, ...
• sensorimotor:  typing, riding a bicycle
• affective:  deep understanding

Belief:  not necessarily true and/or held for appropriate reasons
and weaker yet:   “John suspects that ...” 

Here: no distinction taking the world to be one
way and not another  the main idea
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What is representation?

Symbols standing for things in the world

"John"

"John loves Mary"

first aid

women

John

the proposition that 
John loves Mary

Knowledge representation:
symbolic encoding of propositions believed

(by some agent)
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What is reasoning?

Manipulation of symbols encoding propositions to produce 
representations of new propositions

Analogy:  arithmetic “1011”  +  “10”    →→→→   “1101”
    ⇓               ⇓                  ⇓

eleven       two          thirteen

“John is Mary's 
father”

⇓

“John is an adult 
male”

⇓

J

M

J
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Why knowledge?

For sufficiently complex systems, it is sometimes useful to 
describe systems in terms of beliefs, goals, fears, intentions 

e.g.  in a game-playing program
“because it believed its queen was in danger, but wanted to still 
control the center of the board.”

more useful than description about actual techniques used for
deciding how to move

“because evaluation procedure P using minimax returned a value 
of +7 for this position

=  taking an intentional stance  (Dan Dennett)

Is KR just a convenient way of talking about complex systems?
• sometimes anthropomorphizing is inappropriate

e.g.  thermostats

• can also be very misleading!
fooling users into thinking a system knows more than it does 
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Why representation?

Note: intentional stance says nothing about what is or is not 
represented symbolically 

e.g.  in game playing, perhaps the board position is represented, but the goal of 
getting a knight out early is not

KR Hypothesis:  (Brian Smith)
“Any mechanically embodied intelligent process will be comprised of structural 
ingredients that a) we as external observers naturally take to represent a 
propositional account of the knowledge that the overall process exhibits, and b) 
independent of such external semantic attribution, play a formal but causal and 
essential role in engendering the behaviour that manifests that knowledge.”

Two issues:  existence of structures that
• we can interpret propositionally
• determine how the system behaves

Knowledge-based system:  one designed this way!



KR & R              ©  Brachman & Levesque  2005   9

Two examples

Example 1
printColour(snow) :- !, write("It's white.").
printColour(grass) :- !, write("It's green.").
printColour(sky) :- !, write("It's yellow.").
printColour(X) :- write("Beats me.").

Example 2

printColour(X) :- colour(X,Y), !, 
write("It's "), write(Y), write(".").

printColour(X) :- write("Beats me.").

colour(snow,white).
colour(sky,yellow).
colour(X,Y) :- madeof(X,Z), colour(Z,Y).
madeof(grass,vegetation).
colour(vegetation,green).

Both systems can be described intentionally.
Only the 2nd has a separate collection of symbolic 
structures à la KR Hypothesis

its knowledge base  (or KB) 
∴   a small knowledge-based system 
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KR and AI

Much of AI involves building systems that are knowledge-based
ability derives in part from reasoning over explicitly represented knowledge

– language understanding, 
– planning, 
– diagnosis, 
– “expert systems”, etc.

Some, to a certain extent
game-playing, vision,    etc.

Some, to a much lesser extent
speech, motor control,  etc.

Current research question:
how much of intelligent behaviour is knowledge-based?

Challenges: connectionism, others 
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Why bother?

Why not “compile out” knowledge into specialized procedures?
• distribute KB to procedures that need it

(as in Example 1)

• almost always achieves better performance

No need to think.  Just do it!
– riding a bike
– driving a car   
– playing chess?
– doing math?        
– staying alive??

Skills (Hubert Dreyfus)
• novices think;  experts react
• compare to current “expert systems”:

knowledge-based !
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Advantage

Knowledge-based system most suitable for open-ended  tasks
can structurally isolate reasons for particular behaviour

Good for
• explanation and justification

– “Because grass is a form of vegetation.”

• informability: debugging the KB
– “No the sky is not yellow. It's blue.”

• extensibility: new relations
– “Canaries are yellow.” 

• extensibility: new applications
– returning a list of all the white things
– painting pictures
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Cognitive penetrability

Hallmark of knowledge-based system:
the ability to be told facts about the world and adjust our behaviour 
correspondingly

for example: read a book about canaries or rare coins

Cognitive penetrability  (Zenon Pylyshyn)
actions that are conditioned by what is currently believed 

an example:
we normally leave the room if we hear a fire alarm
we do not leave the room on hearing a fire alarm 
if we believe that the alarm is being tested / tampered

can come to this belief in very many ways

so this action is cognitively penetrable
a non-example:  

blinking reflex
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Why reasoning?

Want knowledge to affect action
not do action A if sentence P is in KB
but do action A if world believed in satisfies P 

Difference:
P may not be explicitly represented
Need to apply what is known in general 
to the particulars of a given situation 

Example:
“Patient x is allergic to medication m.”
“Anybody allergic to medication m is also
 allergic to m'.”
Is it OK to prescribe  m'  for x ?

Usually need more than just DB-style retrieval of facts in the KB
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Entailment

Sentences P1, P2, ..., Pn  entail  sentence P iff the truth of P is 
implicit  in the truth of P1, P2, ..., Pn.

If the world is such that it satisfies the Pi then it must also satisfy P.
Applies to a variety of languages (languages with truth theories) 

Inference: the process of calculating entailments
• sound: get only entailments
• complete: get all entailments

Sometimes want unsound / incomplete reasoning
for reasons to be discussed later

Logic: study of entailment relations
• languages
• truth conditions
• rules of inference 
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Using logic

No universal language / semantics
• Why not English?
• Different tasks / worlds
• Different ways to carve up the world

No universal reasoning scheme
• Geared to language
• Sometimes want “extralogical” reasoning

Start with first-order predicate calculus (FOL)
• invented by philosopher Frege for the formalization of mathematics
• but will consider subsets / supersets and very different looking 

representation languages
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Knowledge level

Allen Newell's analysis:
• Knowledge level:  deals with language, entailment
• Symbol level:  deals with representation, inference

Picking a logic has issues at each level
• Knowledge level: 

expressive adequacy,
theoretical complexity, ...

• Symbol level:
architectures,
data structures,
algorithmic complexity, ...

Next:  we begin with FOL at the knowledge level
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2.

The Language of
First-order Logic
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Declarative language

Before building system
before there can be learning, reasoning, planning,
explanation ...

need to be able to express knowledge

Want a precise declarative language
• declarative:  believe P  =  hold P to be true 

cannot believe P without some sense of 
what it would mean for the world to satisfy P

• precise: need to know exactly 
what strings of symbols count as sentences
what it means for a sentence to be true 

(but without having to specify which ones are true)

Here:  language of first-order logic
again:  not the only choice
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Alphabet

Logical symbols:
• Punctuation:  (, ), . 
• Connectives:  ¬, ∧, ∨, ∀, ∃, =

• Variables:  x, x1, x2, ..., x', x", ..., y, ..., z, ...
Fixed meaning and use
like keywords in a programming language

Non-logical symbols
• Predicate symbols  (like Dog) Note: not treating = as a predicate
• Function symbols   (like bestFriendOf)

Domain-dependent meaning and use
like identifiers in a programming language

Have arity:  number of arguments
arity 0 predicates: propositional symbols
arity 0 functions: constant symbols

Assume infinite supply of every arity
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Grammar

Terms
1. Every variable is a term.
2. If t1, t2, ..., tn are terms and f is a function of arity n, 

then f(t1, t2, ..., tn) is a term.

Atomic  wffs (well-formed formula)
1. If t1, t2, ..., tn are terms and P is a predicate of arity n, 

then P(t1, t2, ..., tn) is an atomic wff.
2. If t1 and t2  are terms, then (t1=t2) is an atomic wff.

Wffs 
1. Every atomic wff is a wff.
2. If α and β are wffs, and v is a variable, then ¬α, (α∧β), (α∨β), ∃v.α, ∀v.α  

are wffs.

The propositional subset:  no terms, no quantifiers
Atomic wffs:  only predicates of 0-arity:  (p ∧ ¬(q ∨r))



KR & R              ©  Brachman & Levesque  2005   22

Notation

Occasionally add or omit (,), .

Use [,] and {,}  also.

Abbreviations:
(α ⊃ β)  for  (¬α ∨ β)

safer to read as disjunction than as  “if ... then ...”

(α ≡ β)  for  ((α⊃β) ∧ (β⊃α))

Non-logical symbols:
• Predicates:   mixed case capitalized

Person, Happy, OlderThan
• Functions (and constants): mixed case uncapitalized

fatherOf, successor, 
johnSmith
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Variable scope

Like variables in programming languages, the variables in FOL 
have a scope determined by the quantifiers

Lexical scope for variables
P(x) ∧ ∃x[P(x) ∨ Q(x)]

free            bound    occurrences of variables

A sentence: wff with no free variables (closed)

Substitution:
α[v/t]  means α with all free occurrences of the v replaced by term t

Note:  written α   elsewhere  (and in book)

Also:  α[t1,...,tn]  means   α[v1/t1,...,vn/tn]

v
t
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Semantics

How to interpret sentences?
• what do sentences claim about the world?
• what does believing one amount to?

Without answers, cannot use sentences to represent knowledge

Problem:
cannot fully specify interpretation of sentences because non-logical 
symbols reach outside the language

So:
make clear dependence of interpretation on non-logical symbols

Logical interpretation:
specification of how to understand predicate and function symbols

Can be complex!
DemocraticCountry, IsABetterJudgeOfCharacterThan,
favouriteIceCreamFlavourOf, puddleOfWater27
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The simple case

There are objects.
some satisfy predicate P;  some do not

Each interpretation settles extension of P.
borderline cases ruled in separate interpretations

Each interpretation assigns to function f  a mapping from objects 
to objects.

functions always well-defined and single-valued

The FOL assumption:
this is all you need to know about the non-logical symbols 
to understand which sentences of FOL are true or false

In other words, given a specification of
» what objects there are

» which of them satisfy P
» what mapping is denoted by f

it will be possible to say which sentences of FOL are true 
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Interpretations

Two parts:   ℑ    = 〈 D, I 〉

D is the domain of discourse
can be any  non-empty set 

not just formal / mathematical objects
e.g. people, tables, numbers, sentences, unicorns, chunks of peanut butter, 

situations, the universe

I  is an interpretation mapping 
If P is a predicate symbol of arity n,

I[P]  ⊆  D×D×...×D
an n-ary relation over D

for propositional symbols, 
I[p] = {}  or  I[p] = {〈〉}

In propositional case, convenient to assume
ℑ            =        I  ∈  [prop. symbols  →  {true, false}]

If f  is a function symbol of arity n,
I[f]  ∈  [D×D×...×D  →  D]

an n-ary function over D

for constants,   I[c]  ∈  D
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Denotation

In terms of interpretation ℑ, terms will denote elements of the 
domain D.

will write element as ||t||ℑ

For terms with variables, the denotation depends on the values of 
variables

will write as  ||t||ℑ,µ
where µ ∈  [Variables  →  D],

called a variable assignment 

Rules of interpretation:
1. ||v||ℑ,µ  =  µ(v).
2. || f(t1, t2, ..., tn) ||ℑ,µ  =  H(d1, d2, ..., dn)

where H  =  I[f] 

    and  di   =   ||ti||ℑ,µ,  recursively



KR & R              ©  Brachman & Levesque  2005   28

Satisfaction

In terms of an interpretation ℑ, sentences of FOL will be either 
true or false.

Formulas with free variables will be true for some values of the 
free variables and false for others.

Notation:
will write as  ℑ,µ = α       “α is satisfied by ℑ and µ”

where µ ∈  [Variables  →  D], as before

or   ℑ = α,   when α  is a sentence
     “α is true under interpretation ℑ”

or   ℑ = S,   when S  is a set of sentences
     “the elements of S are true under interpretation ℑ”

And now the definition...
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Rules of interpretation

1. ℑ,µ =  P(t1, t2, ..., tn)   iff  〈d1, d2, ..., dn〉  ∈  R
where  R  =  I[P] 

and  di  =  || ti ||ℑ,µ,  as on denotation slide

2. ℑ,µ =  (t1 = t2)   iff   || t1 ||ℑ,µ  is the same as || t2 ||ℑ,µ
3. ℑ,µ = ¬α   iff   ℑ,µ ≠ α  

4. ℑ,µ =  (α∧β)   iff   ℑ,µ = α  and  ℑ,µ = β
5. ℑ,µ =  (α∨β)   iff   ℑ,µ = α  or  ℑ,µ = β
6. ℑ,µ =  ∃vα   iff   for some d ∈ D,  ℑ,µ{d;v}= α
7. ℑ,µ =  ∀vα   iff   for all d ∈ D,  ℑ,µ{d;v}= α

where µ{d;v} is just like µ, except that µ(v)=d.

For propositional subset:
ℑ = p     iff   I[p]  ≠  {}      and the rest as above 
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Entailment defined

Semantic rules of interpretation tell us how to understand all wffs 
in terms of specification for non-logical symbols.

But some connections among sentences are independent of the 
non-logical symbols involved.

e.g. If α is true under ℑ ,  then so is ¬(β∧¬α),
no matter what ℑ  is, why α  is true,  what β is, ...

S  |= α  iff  for every ℑ ,  if ℑ  |= S  then ℑ  |= α.

Say that S  entails  α  or α is a logical consequence of S:
In other words:  for no  ℑ ,  ℑ  |= S ∪ {¬α}.    S ∪ {¬α} is unsatisfiable

Special case when S  is empty:  |= α  iff  for every  ℑ ,  ℑ  |= α.    
Say that α is valid.

Note: {α1, α2, ..., αn} |= α    iff    |=  (α1 ∧ α2 ∧ ... ∧ αn) ⊃ α
finite entailment reduces to validity
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Why do we care?

We do not have access to user-intended interpretation of non-
logical symbols

But, with entailment, we know that if S is true in the intended 
interpretation, then so is α.

If the user's view has the world satisfying S, then it must also satisfy α.

There may be other sentences true also; but α is logically guaranteed.

So what about ordinary reasoning?
Dog(fido)  ➠  Mammal(fido)  ??
Not entailment!

There are logical interpretations where  I[Dog]  ⊄  I[Mammal]

include such connections explicitly in S
∀x[Dog(x) ⊃ Mammal(x)]

Get:  S  ∪ {Dog(fido)}  |=  Mammal(fido)

Key idea
of KR: the rest is just

details...
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Knowledge bases

KB is set of sentences
explicit statement of sentences believed (including any assumed 
connections among non-logical symbols)

KB  |= α α  is a further consequence of what is believed
• explicit knowledge:   KB
• implicit knowledge:  { α |  KB |= α }

Often non trivial:   explicit  ➠ implicit

Example:
Three blocks stacked.
Top one is green.
Bottom one is not green.

Is there a green block directly on top of a non-green block?

A
B
C

green

non-green
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A formalization

S  =  {On(a,b),  On(b,c),  Green(a),  ¬Green(c)}
all that is required

α  =  ∃x∃y[Green(x) ∧ ¬Green(y) ∧ On(x,y)]

Claim:   S |= α

Proof:   
Let ℑ be any interpretation such that ℑ |= S. 

Case 1:  ℑ |= Green(b). Case 2:  ℑ |≠  Green(b).
∴  ℑ |= Green(b) ∧ ¬Green(c) ∧ On(b,c). ∴  ℑ |= ¬Green(b)

∴  ℑ |= α ∴  ℑ |= Green(a) ∧ ¬Green(b) ∧ On(a,b).
∴  ℑ |= α

Either way,  for any ℑ,  if  ℑ |= S   then  ℑ |= α.  

So  S |= α.         QED     
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Knowledge-based system

Start with (large) KB representing what is explicitly known
e.g.  what the system has been told or has learned

Want to influence behaviour based on what is implicit in the KB  
(or as close as possible)

Requires reasoning
deductive inference:  

process of calculating entailments of KB
i.e given KB and any α, determine if KB |= α

Process is sound if whenever it produces α, then KB |= α
does not allow for plausible assumptions that may be true
in the intended interpretation

Process is complete if whenever KB |= α, it produces α 
does not allow for process to miss some α or be unable to 
determine the status of α 
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3.

Expressing
Knowledge
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Knowledge engineering

KR is first and foremost about knowledge 
meaning and entailment
find individuals and properties,  then encode facts sufficient for entailments

Before implementing, need to understand clearly
• what is to be computed?
• why and where inference is necessary?

Example domain:  soap-opera world
people, places, companies, marriages, divorces, hanky-panky, deaths, 
kidnappings, crimes, ...

Task:  KB with appropriate entailments
• what vocabulary?
• what facts to represent?
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Vocabulary

Domain-dependent predicates and functions
main question: what are the individuals? 

here:  people, places, companies, ...

named individuals 
john, sleezyTown, faultyInsuranceCorp, fic, johnQsmith, ...

basic types
Person, Place, Man, Woman, ...

attributes
Rich, Beautiful, Unscrupulous, ...

relationships
LivesAt,  MarriedTo,  DaughterOf,  HadAnAffairWith,  Blackmails, ... 

functions
fatherOf, ceoOf, bestFriendOf, ...
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Basic facts

Usually atomic sentences and negations
type facts

Man(john),  
Woman(jane), 
Company(faultyInsuranceCorp)

property facts
Rich(john),  
¬HappilyMarried(jim),  
WorksFor(jim,fic)

equality facts
john = ceoOf(fic),
fic = faultyInsuranceCorp,
bestFriendOf(jim) = john

Like a simple database (can store in a table)
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Complex facts

Universal abbreviations
∀y[Woman(y) ∧ y ≠ jane  ⊃  Loves(y,john)]
∀y[Rich(y) ∧ Man(y)  ⊃  Loves(y,jane)]
∀x∀y[Loves(x,y) ⊃ ¬Blackmails(x,y)]

Incomplete knowledge
Loves(jane,john) ∨ Loves(jane,jim)

which?

∃x[Adult(x) ∧ Blackmails(x,john)]
who?

Closure axioms
∀x[Person(x)  ⊃  x=jane ∨ x=john ∨ x=jim ...]
∀x∀y[MarriedTo(x,y)  ⊃  ... ]

∀x[ x=fic ∨ x=jane ∨ x=john ∨ x=jim ...]
also useful to have  jane ≠ john   ...

possible to express 
without quantifiers

cannot write down
a more complete
version

limit the domain
of discourse
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Terminological facts

General relationships among predicates.  For example:

disjoint ∀x[Man(x)  ⊃  ¬Woman(x)]

subtype ∀x[Senator(x)  ⊃  Legislator(x)]

exhaustive ∀x[Adult(x)  ⊃  Man(x) ∨ Woman(x)]

symmetry ∀x∀y [MarriedTo(x,y)  ⊃  MarriedTo(y,x)]

inverse ∀x∀y [ChildOf(x,y)  ⊃  ParentOf(y,x)]

type restriction ∀x∀y [MarriedTo(x,y)  ⊃ 
     Person(x)  ∧  Person(y)  ∧  OppSex(x,y)]

Usually universally quantified conditionals or biconditionals

sometimes
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Entailments: 1

Is there a company whose CEO loves Jane?
∃x [Company(x) ∧  Loves(ceoOf(x),jane)]  ??

Suppose  ℑ   |= KB.
Then ℑ   |= Rich(john),  Man(john),

and  ℑ   |= ∀y[Rich(y) ∧ Man(y)  ⊃  Loves(y,jane)]
so  ℑ   |= Loves(john,jane).

Also  ℑ   |=  john = ceoOf(fic),
so  ℑ   |= Loves( ceoOf(fic),jane).

Finally  ℑ   |=  Company(faultyInsuranceCorp),
and  ℑ   |= fic = faultyInsuranceCorp,
so  ℑ   |= Company(fic).

Thus,  ℑ   |= Company(fic) ∧ Loves( ceoOf(fic),jane),
and so 

ℑ   |= ∃x [Company(x) ∧ Loves(ceoOf(x),jane)].

Can extract identity of company from this proof 
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Entailments: 2

If no man is blackmailing John, then is he being blackmailed by 
somebody he loves?

∀x[Man(x) ⊃ ¬Blackmails(x,john)]  ⊃
∃y[Loves(john,y) ∧ Blackmails(y,john)]   ??

Note:    KB |= (α ⊃ β)    iff   KB ∪ {α} |= β

Let:  ℑ    |= KB ∪ {∀x[Man(x) ⊃ ¬Blackmails(x,john)]}
Show:    ℑ   |=  ∃y[Loves(john,y) ∧ Blackmails(y,john)

Have: ∃x[Adult(x)  ∧  Blackmails(x,john)]     and   ∀x[Adult(x)  ⊃  Man(x) ∨ Woman(x)]
so ∃x[Woman(x)  ∧  Blackmails(x,john)].

Then: ∀y[Rich(y)  ∧  Man(y)  ⊃  Loves(y,jane)]    and   Rich(john)  ∧  Man(john)
so Loves(john,jane)!

But: ∀y[Woman(y)  ∧  y ≠ jane ⊃ Loves(y,john)]
and  ∀x∀y[Loves(x,y)  ⊃  ¬Blackmails(x,y)]
so ∀y[Woman(y)  ∧  y ≠ jane  ⊃ ¬Blackmails(y,john)]  and   Blackmails(jane,john)!!

Finally: Loves(john,jane)  ∧  Blackmails(jane,john)
so: ∃y[Loves(john,y) ∧ Blackmails(y,john)]
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What individuals?

Sometimes useful to reduce n-ary predicates to 1-place 
predicates and 1-place functions

• involves reifying properties: new individuals
• typical of description logics / frame languages     (later)

Flexibility in terms of arity:
Purchases(john,sears,bike)     or
Purchases(john,sears,bike,feb14)   or
Purchases(john,sears,bike,feb14,$100)

Instead: introduce purchase objects

Purchase(p)  ∧  agent(p)=john  ∧  obj(p)=bike  ∧  source(p)=sears ∧  ...

allows purchase to be described at various levels of detail

Complex relationships:  MarriedTo(x,y)  vs. ReMarriedTo(x,y)  vs. ...
Instead  define marital status in terms of existence of
marriage and divorce events.

Marriage(m)  ∧  husband(m)=x  ∧  wife(m)=y  ∧  date(m)=...  ∧...
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Abstract individuals

Also need individuals for numbers, dates, times, addresses, etc.
objects about which we ask wh-questions

Quantities as individuals
age(suzy) = 14
age-in-years(suzy) = 14
age-in-months(suzy) = 168

perhaps better to have an object for “the age of Suzy”, whose value in years is 14
years(age(suzy)) = 14
months(x) = 12*years(x)
centimeters(x) = 100*meters(x)

Similarly with locations and times
instead of 

time(m)="Jan 5 2006 4:47:03EST"
can use

time(m)=t  ∧  year(t)=2006  ∧ ...
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Other sorts of facts

Statistical / probabilistic facts
• Half of the companies are located on the East Side.
• Most of the employees are restless.
• Almost none of the employees are completely trustworthy,

Default / prototypical facts
• Company presidents typically have secretaries intercepting their phone 

calls.  
• Cars have four wheels.
• Companies generally do not allow employees that work together to be 

married.

Intentional facts
• John believes that Henry is trying to blackmail him.
• Jane does not want Jim to think that she loves John. 

Others ...
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4.

Resolution
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Goal

Deductive reasoning in language as close as possible to full FOL
¬,  ∧,  ∨,  ∃, ∀

Knowledge Level:
given KB, α,   determine if KB |= α.

or given an open α[x1,x2,...xn],  find t1,t2,...tn  such that KB |= α[t1,t2,...tn]

When KB is finite {α1, α2, ..., αk}

KB |= α   
iff  |= [(α1 ∧ α2 ∧ ... ∧ αk)  ⊃  α]
iff  KB ∪ {¬α}  is unsatisfiable
iff  KB ∪ {¬α}  |=  FALSE

where FALSE is something like ∃x.(x≠x)

So want a procedure to test for validity, or satisfiability, or 
for entailing FALSE. 

Will now consider such a procedure (first without quantifiers)
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Clausal representation

Formula  =  set of clauses
Clause  =  set of literals
Literal  =  atomic sentence or its negation

positive literal  and negative literal

Notation:
If ρ is a literal, then ρ  is its complement

p  ⇒  ¬p ¬p  ⇒  p

To distinguish clauses from formulas:
[ and ] for clauses:   [p, r, s] { and } for formulas:  { [p, r, s], [p, r, s], [ p ] }

[]  is the empty clause       {} is the empty formula
So {} is different from  {[]}!

Interpretation:
Formula  understood as conjunction of clauses  
Clause understood as disjunction of literals 
Literals understood normally

{[p,¬q], [r], [s]}
represents

((p ∨ ¬q)  ∧  r  ∧ s)

[ ]
represents

FALSE
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CNF and DNF

Every propositional wff α can be converted into a formula α′ in 
Conjunctive Normal Form  (CNF) in such a way that  |= α ≡ α′.

1. eliminate ⊃ and ≡  using  (α ⊃ β) ➟  (¬α ∨ β)  etc.
2. push ¬  inward  using  ¬(α ∧ β) ➟  (¬α ∨ ¬β)  etc.
3. distribute ∨ over ∧  using  ((α ∧ β) ∨ γ) ➟  ((α ∨ γ) ∧ (β ∨ γ))
4. collect terms  using  (α ∨ α) ➟ α  etc.

Result is a conjunction of disjunction of literals.
an analogous procedure produces DNF, 
a disjunction of conjunction of literals

 We can identify CNF wffs with clausal formulas
(p ∨ ¬q ∨ r) ∧ (s ∨ ¬r)  ➟  { [p, ¬q, r], [s, ¬r] }

So:  given a finite KB, to find out if KB |= α,  it will be sufficient to
1. put  (KB ∧ ¬α) into CNF, as above 
2. determine the satisfiability of the clauses
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Resolution rule of inference

Given two clauses, infer a new clause:
From clause  { p } ∪  C1,           

and    {¬p } ∪  C2,           
infer clause    C1  ∪  C2.  

C1 ∪ C2  is called a resolvent of input clauses with respect to p.
Example:  

clauses [w, r, q]  and  [w, s, ¬r]  have  [w, q, s]  as resolvent wrt r.
Special Case:

[p]  and  [¬p]  resolve to []   (the C1 and C2  are empty)

A derivation of a clause c  from a set S of clauses is a sequence  
c1, c2, ..., cn  of clauses, where cn = c, and for each ci,  either 

1.   ci  ∈  S, or   

2.   ci  is a resolvent of two earlier clauses  in the derivation

Write:  S → c  if there is a derivation
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Rationale

Resolution is a symbol-level rule of inference, but has a 
connection to knowledge-level logical interpretations

Claim: Resolvent is entailed by input clauses.
Suppose  ℑ  |= (p ∨ α)  and ℑ  |= (¬p ∨ β)

Case 1:    ℑ    |=  p
then   ℑ    | = β,   so   ℑ    |= (α ∨ β).

Case 2:    ℑ    |≠  p
then   ℑ    | = α,   so   ℑ    | = (α ∨ β).

Either way,     ℑ    |= (α ∨ β).
So:    {(p ∨ α),  (¬p ∨ β)}  |=  (α ∨ β).

Special case:
[p]  and  [¬p]  resolve to [ ],
so   {[p], [¬p]}  |=  FALSE
that is:   {[p], [¬p]}  is unsatisfiable



KR & R              ©  Brachman & Levesque  2005   52

Derivations and entailment

Can extend the previous argument to derivations:
If  S → c   then   S  |= c

Proof:   by induction on the length of the derivation.   
Show (by looking at the two cases) that S  |= ci.

But the converse does not hold in general
Can have S |= c  without having  S → c.

Example:   {[¬p]}  |=  [¬p, ¬q]     i.e.  ¬p  |=  (¬p ∨ ¬q) 
but no derivation

However....    Resolution is  refutation complete!
Theorem:  S → []   iff    S |= []

Result will carry over to quantified clauses (later)

So for any set S of clauses: S is unsatisfiable  iff  S → [].
Provides method for determining satisfiability:  search all derivations for [].
So provides a method for determining all entailments

sound and complete
when restricted to [ ] 
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A procedure for entailment

To determine if KB |= α,  
• put KB, ¬α into CNF to get S,  as before
• check if S → [].

Non-deterministic procedure
1. Check if [] is in S.

If yes, then return UNSATISFIABLE
2. Check if there are two clauses in S such that they 

resolve to produce a clause that is not already in S.
If no, then return SATISFIABLE

3. Add the new clause to S and go to 1.

Note: need only convert KB to CNF once
• can handle multiple queries with same KB
• after addition of new fact α, can simply add new clauses α′ to KB

So:  good idea to keep KB in CNF

If KB = {}, then we are 
testing the validity of α
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Example 1

Show  that   KB |= Girl

[FirstGrade]

[¬FirstGrade, Child]

[¬Child, ¬Female, Girl]

[¬Child, ¬Male, Boy]

[¬Kindergarten, Child]

[Female]

[¬Girl]

[Child]

[Girl, ¬Female]

[Girl]

[]

negation of 
query

Derivation has
9 clauses, 4 new

FirstGrade
FirstGrade  ⊃  Child

Child ∧ Male ⊃ Boy
Kindergarten  ⊃  Child

Child ∧ Female ⊃  Girl
Female

KB
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Example 2

[Rain , Sun]  [¬Sun, Mail]  [¬Rain, Mail]  [¬Mail]
[¬Sleet, Mail]

[¬Rain]

[¬Sun]

[Rain]

[]
Note: every clause 
not in S has 2 parents

Show  KB |= Mail
(Rain ∨ Sun)
(Sun ⊃ Mail)
((Rain ∨ Sleet)  ⊃  Mail)

KB 

Similarly   KB |≠ Rain
Can enumerate all resolvents given ¬Rain, 
and [] will not be generated           
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Quantifiers

Clausal form as before, but atom is  P(t1, t2, ..., tn),  where  ti  may 
contain variables

Interpretation as before, but variables are understood universally 
Example:  { [P(x), ¬R(a,f(b,x))], [Q(x,y)] }  

interpreted as
∀x∀y{[R(a,f(b,x)) ⊃ P(x)]  ∧  Q(x,y)}

Substitutions:   θ = {v1/t1,  v2/t2, ..., vn/tn}

Notation:  If ρ is a literal and θ is a substitution, then  ρθ  is the 
result of the substitution (and similarly, cθ where c is a clause)

Example:   θ = {x/a, y/g(x,b,z)}
P(x,z,f(x,y)) θ   =   P(a,z,f(a,g(x,b,z)))

A literal is ground if it contains no variables.     
A literal ρ is an instance  of ρ′, if  for some θ,  ρ = ρ′θ. 
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Generalizing CNF

Resolution will generalize to handling variables 
But to convert wffs to CNF, we need three additional steps:

1. eliminate ⊃ and ≡

2. push ¬  inward  using  also ¬∀x.α ➟  ∃x.¬α  etc.

3. standardize variables: each quantifier gets its own variable
e.g.  ∃x[P(x)]  ∧ Q(x)  ➟  ∃z[P(z)]  ∧ Q(x) where z is a new variable

4. eliminate all existentials   (discussed later)

5. move universals to the front  using  (∀xα) ∧ β ➟  ∀x(α∧ β)
where β does not use x

6. distribute ∨ over ∧

7. collect terms

Get universally quantified conjunction of disjunction of literals
then drop all the quantifiers...

Ignore = for now
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First-order resolution

Main idea: a literal (with variables) stands for all its instances;  so 
allow all such inferences  

So given [P(x,a), ¬Q(x)]  and  [¬P(b,y), ¬R(b,f(y))],
want to infer  [¬Q(b), ¬R(b,f(a))]   among others

since [P(x,a), ¬Q(x)]     has    [P(b,a), ¬Q(b)]        and
[¬P(b,y),¬R(b,f(y ))]   has    [¬P(b,a), ¬R(b,f(a))]

Resolution:
Given  clauses:  {ρ1} ∪ C1  and   {ρ2} ∪ C2. 
Rename variables, so that distinct in two clauses.
For any θ such that ρ1θ = ρ2θ, can infer (C1 ∪ C2)θ.

We say that ρ1 unifies with ρ2 and that θ is a unifier  of the two literals

Resolution derivation:  as before

Theorem:  S → []   iff    S |= []     iff   S is unsatisfiable
Note:  There are pathological examples  where a slightly more general 
definition of Resolution is required.  We ignore them for now...
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Example 3

[¬HardWorker(sue)]

[¬Student(sue)]

[¬GradStudent(sue)]

[]

x/sue

x/sue

[¬Student(x), HardWorker(x)]

[¬GradStudent(x), Student(x)]

[GradStudent(sue)]

Label each step
with the unifier

Point to relevant
literals in clauses

∀x GradStudent(x)  ⊃  Student(x)

∀x Student(x)  ⊃  HardWorker(x)

GradStudent(sue)

KB

KB |= HardWorker(sue)
?
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The 3 block example

[On(b,c)]

[On(a,b)]

[¬On(x,y), ¬Green(x), Green(y)]

[Green(a)]

[¬Green(c)] [¬Green(a), Green(b)]

[¬Green(b), Green(c)]

[¬Green(b)] 
[Green(b)]

[]Note:  Need to use 
On(x,y) twice, for 2 cases

{x/b, y/c}

{x/a, y/b}

KB = {On(a,b),  On(b,c),  Green(a),  ¬Green(c)}
Query  =  ∃x∃y[On(x,y)  ∧  Green(x)  ∧  ¬Green(y)]

Note:  ¬Q  has no existentials, so yields    

already in CNF
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Arithmetic

[¬Plus(2,3,u)]

[¬Plus(1,3,v)]

[¬Plus(0,3,w)]

[]

x/3, w/3

x/0, y/3, v/succ(w), z/w

x/1, y/3, u/succ(v), z/v

Can find the answer in the derivation
         u/succ(succ(3))
that is:  u/5

Can also derive Plus(2,3,5)
Rename variables 
to keep them distinct

[¬Plus(x,y,z), Plus(succ(x),y,succ(z))]

[Plus(0,x,x)]

KB: Plus(zero,x,x)
Plus(x,y,z)  ⊃  Plus(succ(x),y,succ(z))

Q: ∃u Plus(2,3,u)

For readability, 
we use   

0  for  zero,  
1  for  succ(zero),  
2  for  succ(succ(zero))

etc.
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Answer predicates

In full FOL, we have the possibility of deriving  ∃xP(x) without 
being able to derive P(t) for any t.

e.g. the three-blocks problem
     ∃x∃y[On(x,y) ∧ Green(x) ∧ ¬Green(y)]
but cannot derive which block is which 

Solution:  answer-extraction process
• replace query  ∃xP(x) by ∃x[P(x) ∧ ¬A(x)]

where A is a new predicate symbol called the answer predicate

• instead of deriving  [], derive any clause containing just the answer predicate
• can always convert to and from a derivation of  [] 

Student(john)

[¬Student(x), ¬Happy(x), A(x)]Happy(john)

[¬Student(john), A(john)]

[A(john)]

{x/john}

⇓

An answer is: John

KB: Student(john)
Student(jane)
Happy(john)

Q: ∃x[Student(x) ∧ Happy(x)]
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Disjunctive answers

[¬Happy(john), A(john)]

[A(jane), A(john)]

{x/john}

⇓
[¬Student(x), ¬Happy(x), A(x)]

Student(jane)

[¬Happy(jane), A(jane)]

{x/jane}

[Happy(john), Happy(jane)]

[Happy(john), A(jane)]

Student(john)

An answer is:  either Jane or John

KB:
Student(john)
Student(jane)
Happy(john) ∨ Happy(jane)

Query:
∃x[Student(x) ∧ Happy(x)]

Note:
• can have variables in answer
• need to watch for Skolem symbols...   (next) 
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Skolemization

So far, converting wff to CNF ignored existentials
e.g.  ∃x∀y∃zP(x,y,z)

Idea:  names for individuals claimed to exist, called Skolem 
constant and function symbols 

there exists an x, call it a 
for each y,  there is a z,  call it f(y)

get  ∀yP(a,y,f(y))

So replace ∀x1(...∀x2(...∀xn(...∃y[...  y  ...] ...)...)...)
by ∀x1(...∀x2(...∀xn( ...   [... f(x1,x2,...,xn) ...] ...)...)...)

f is a new function symbol that appears nowhere else

Skolemization does not preserve equivalence
e.g.  |≠  ∃xP(x) ≡ P(a)

But it does preserve satisfiability
α is satisfiable  iff  α′ is satisfiable   (where α′ is the result of Skolemization)

sufficient for resolution!
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Variable dependence

Show that  ∃x∀yR(x,y) |= ∀y∃xR(x,y)
show {∃x∀yR(x,y),  ¬∀y∃xR(x,y)}  unsatisfiable

∃x∀yR(x,y)  ➟  ∀yR(a,y)
¬∀y∃xR(x,y)  ➟  ∃y∀x¬R(x,y)  ➟  ∀x¬R(x,b)

 then { [R(a,y)],  [¬R(x,b)] }  → []  with  {x/a, y/b}.

Show that  ∀y∃xR(x,y) |≠  ∃x∀yR(x,y) 
show {∀y∃xR(x,y),  ¬∃x∀yR(x,y)}  satisfiable

∀y∃xR(x,y)  ➟  ∀yR(f(y),y)
¬∃x∀yR(x,y)  ➟  ∀x∃y¬R(x,y)  ➟  ∀x¬R(x,g(x))

then  get { [R(f(y),y)],  [¬R(x,g(x)] }
where the two literals do not unify 

Note: important to get dependence of variables correct 
R(f(y),y)  vs.  R(a,y)  in the above
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A problem

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

[LessThan(x,y), ¬LessThan(succ(x),y)]

...

Infinite branch of resolvents
cannot use a simple depth-first 
procedure to search for []

KB:
LessThan(succ(x),y) ⊃  LessThan(x,y)

Query:
LessThan(zero,zero)

Should fail since KB |≠ Q
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Undecidability

Is there a way to detect when this happens?

No!  FOL is very powerful
can be used as a full programming language
just as there is no way to detect in general when 
a program is looping

There can be no procedure that does this:
Proc[Clauses] =

If Clauses  are unsatisfiable
then return YES
else return NO

However:  Resolution is complete
some branch will contain [], for unsatisfiable clauses

So breadth-first search guaranteed to find []
search may not terminate on satisfiable clauses 

[]
...

...
...

infinite
branches
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Overly specific unifiers

In general, no way to guarantee efficiency, or even termination
later: put control into users' hands

One thing that can be done:
reduce redundancy in search, by keeping search as general as possible

Example
..., P(g(x),f(x),z)]    [¬P(y,f(w),a), ...

unified by
θ1 = {x/b, y/g(b), z/a, w/b}  gives  P(g(b),f(b),a)

and by
θ2 = {x/f(z), y/g(f(z)), z/a, w/f(z)} gives  P(g(f(z)),f(f(z)),a).

Might not be able to derive the empty clause from clauses having 
overly specific substitutions

wastes time in search! 
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Most general unifiers

θ is a most general unifier (MGU) of literals ρ1 and ρ2  iff
1. θ unifies ρ1 and ρ2

2. for any other unifier θ′,  there is a another substitution θ* 
such that θ′ = θθ*

Note: composition θθ* requires applying θ* to terms in θ

for previous example, an MGU is
   θ = {x/w,  y/g(w), z/a}

for which
   θ1  =  θ{w/b}

   θ2  =  θ{w/f(z)}

Theorem:  Can limit search to most general unifiers only without 
loss of completeness  (with certain caveats)
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Computing MGUs

Computing an MGU,  given a set of literals {ρi}
usually only have two literals

1. Start with θ := {}. 

2. If all the ρiθ are identical, then done; 
otherwise, get disagreement set, DS

e.g   P(a,f(a,g(z),...  P(a,f(a,u,...
disagreement set,  DS = {u, g(z)}

3. Find a variable v ∈ DS, and a term t ∈ DS not containing v.  
If not, fail.

4. θ := θ{v/ t }
5. Go to 2

Note: there is a better linear algorithm
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Herbrand Theorem

Some 1st-order cases can be handled by converting them to a 
propositional form

Given a set of clauses S
• the Herbrand universe of S is the set of all terms formed using only the function 

symbols in S  (at least one)
e.g., if S  uses (unary)  f, and c, d,  U = {c, d, f(c), f(d), f(f(c)),  f(f(d)), f(f(f(c))), ...}

• the Herbrand base of S  is the set of all cθ such that  c ∈ S  and θ replaces the 
variables in c by terms from the Herbrand universe

Theorem:  S is satisfiable  iff  Herbrand base is
(applies to Horn clauses also)

Herbrand base has no variables, and so is essentially 
propositional, though usually infinite 

• finite, when Herbrand universe is finite
can use propositional methods (guaranteed to terminate)

• sometimes other “type” restrictions can be used to keep the Herbrand base finite
include f(t)  only if t is the correct type
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Resolution is difficult!

First-order resolution is not guaranteed to terminate.
What can be said about the propositional case?

Shown by Haken in 1985 that there are unsatisfiable clauses {c1, c2, ..., cn} 
such that the shortest derivation of [] contains on the order of 2n  clauses

Even if we could always find a derivation immediately, the most clever search 
procedure will still require exponential time on some problems

Problem just with resolution?
Probably not.
Determining if a set of clauses is satisfiable was shown by Cook in 1972
to be NP-complete

No easier than an extremely large variety of computational tasks
Roughly: any search task where what is searched for can be verified in 
polynomial time can be recast as a satisfiability problem

» satisfiability
» does graph of cities allow for a full tour of size ≤ k miles?
» can N queens be put on an N×N chessboard all safely?     and many, many more....

Satisfiability is believed by most people to be unsolvable in polynomial time
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SAT solvers

In the propositional case, procedures have been proposed for 
determining the satisfiability of a set of clauses that appear to 
work much better in practice than Resolution.

The most popular is called DP (or DPLL) based on ideas by 
Davis, Putnam, Loveland and Logemann.  (See book for details.) 

These procedures are called SAT solvers as they are mostly used 
to find a satisfying interpretation for clauses that are satisfiable.

related to constraint satisfaction programs (CSP)

Typically they have the property that if they fail to find a satisfying 
interpretation, a Resolution derivation of [ ] can be reconstructed 
from a trace of their execution.

so worst-case exponential behaviour, via Haken’s theorem!

One interesting counter-example to this is the procedure GSAT, 
which has different limitations.  (Again, see the book.)
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Implications for KR

Problem: want to produce entailments of KB as needed for 
immediate action

full theorem-proving may be too difficult for  KR!
need to consider other options ...

– giving control to user  e.g. procedural representations (later)
– less expressive languages  e.g. Horn clauses (and a major theme later)

In some applications, it is reasonable to wait
e.g. mathematical theorem proving, where we care about specific formulas

Best to hope for in general:  reduce redundancy
main example:  MGU, as before

but many other strategies (as we will see)
ATP:  automated theorem proving

– area of AI that studies strategies for automatically proving difficult theorems 
– main application: mathematics,but relevance also to KR
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Strategies

1. Clause elimination
• pure clause

contains literal ρ such that ρ does not appear in any other clause
clause cannot lead to []

• tautology
clause with a literal and its negation

any path to [] can bypass tautology

• subsumed clause
a clause such that one with a subset of its literals is already present

path to [] need only pass through short clause

can be generalized to allow substitutions

2. Ordering strategies
many possible ways to order search, but best and simplest is

• unit preference
prefer to resolve unit clauses first

Why?   Given unit clause and another clause,  resolvent is a smaller one  ➟  [] 
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Strategies 2

3. Set of support
KB is usually satisfiable, so not very useful to resolve among clauses 
with only ancestors in KB
contradiction arises from interaction with ¬Q

always resolve with at least one clause that has an ancestor in ¬Q
preserves completeness (sometimes)

4. Connection graph
pre-compute all possible unifications

build a graph with edges between any two unifiable literals of opposite 
polarity

label edge with MGU

Resolution procedure:
repeatedly: select link

compute resolvent
inherit links from parents after substitution

Resolution as search:  find  sequence of links  L1, L2, ... producing [] 
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Strategies 3

5. Special treatment for equality
instead of using axioms for = 

relexitivity, symmetry, transitivity,  substitution of equals for equals

use new inference rule:   paramodulation

from {(t=s)} ∪ C1   and {P(... t′...)} ∪ C2 
where  tθ = t′θ

infer {P(... s ...)}θ  ∪  C1θ  ∪  C2θ.

collapses many resolution steps into one
see also: theory resolution (later)

6. Sorted logic
terms get sorts:

x: Male   mother:[Person → Female]
keep taxonomy of sorts

only unify P(s) with P(t) when sorts are compatible
assumes only “meaningful” paths will lead to []
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Finally...

7. Directional connectives
given [¬p, q], can interpret as either

from p,  infer q (forward)
to prove q,  prove p (backward)

procedural reading of ⊃

In 1st case:  would  only resolve [¬p, q] with [p, ...]  producing [q, ...]

In 2nd case: would only resolve [¬p, q] with [¬q, ...]  producing [¬p, ...]

Intended application:
forward:   Battleship(x)  ⊃  Gray(x)

do not want to try to prove something is gray
by trying to prove that it is a battleship

backward:  Person(x)  ⊃  Has(x,spleen)
do not want to conclude the spleen property for 
each individual inferred to be a person

This is the starting point for the procedural representations  (later)
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5.

Reasoning with Horn 
Clauses
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Horn clauses

Clauses are used two ways:
• as disjunctions: (rain ∨ sleet)
• as implications:  (¬child ∨ ¬male ∨ boy)

Here focus on 2nd use

Horn clause = at most one +ve literal in clause
• positive / definite clause  =  exactly one +ve literal

e.g. [¬p1, ¬p2, ..., ¬pn, q]

• negative clause  =  no +ve literals 
e.g. [¬p1, ¬p2, ..., ¬pn]  and also [ ]

Note: [¬p1, ¬p2, ..., ¬pn, q]   is a representation for
(¬p1 ∨ ¬p2 ∨ ... ∨ ¬pn ∨ q)   or     [(p1 ∧ p2 ∧ ... ∧ pn)  ⊃  q]

so can read as: If  p1 and  p2 and  ... and  pn  then q

and write as:   p1 ∧ p2 ∧ ... ∧ pn  ⇒  q    or    q  ⇐  p1 ∧ p2 ∧ ... ∧ pn
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Resolution with Horn clauses

Only two possibilities:

It is possible to rearrange derivations of negative clauses so that 
all new derived clauses are negative

Neg Pos

Neg

Pos Pos

Pos

[¬a, ¬q, p] [¬b, q]

[ p, ¬a, ¬b][¬c, ¬p]

[¬a, ¬b, ¬c]

[¬a, ¬q, p]

[¬b, q][¬a,¬c, ¬q]

[¬c, ¬p]

[¬a, ¬b, ¬c]
derived positive
clause to eliminate
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Further restricting resolution

Can also change derivations such that each derived clause is a 
resolvent of the previous derived one (negative) and some 
positive clause in the original set of clauses

• Since each derived clause is negative, one parent must be positive (and so 
from original set) and one parent must be negative.

• Chain backwards from the final negative clause until both parents are from 
the original set of clauses

• Eliminate all other clauses not on this direct path

This is a recurring pattern in derivations
• See previously:

– example 1, example 3, arithmetic example

• But not:
– example 2, the 3 block example

c1

c2

c3

cn

cn-1

new
old



KR & R              ©  Brachman & Levesque  2005   83

SLD Resolution

An SLD-derivation of a clause c from a set of clauses S is a 
sequence of clause c1, c2, ... cn such that cn = c, and

1. c1 ∈ S
2. ci+1 is a resolvent of ci and a clause in S

Write:   S  →  c

Note: SLD derivation is just a special form of derivation 
and where we leave out the elements of S  (except c1)

In general, cannot restrict ourselves to just using SLD-Resolution  
Proof:  S = {[p, q], [p, ¬q], [¬p, q] [¬p, ¬q]}. Then  S → [].

Need to resolve some [ ρ ] and [ ρ ] to get [].
But S does not contain any unit clauses.
So will need to derive both [ ρ ] and [ ρ ]  and then resolve them together.

SLD
SLD  meansS(elected) literals

L(inear) form
D(efinite) clauses
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Completeness of SLD

However, for Horn clauses, we can restrict ourselves to SLD-
Resolution

Theorem: SLD-Resolution is refutation complete for Horn
clauses:   H → []   iff  H → []

So:    H is unsatisfiable iff  H  →  []

This will considerably simplify the search for derivations

Note:  in Horn version of SLD-Resolution, each clause in the 
c1, c2, ..., cn, will be negative

So clauses H  must contain at least one negative clause, c1 
and this will be the only negative clause of H used.
Typical case:  

– KB is a collection of positive Horn clauses
– Negation of query is the negative clause 

SLD

 SLD
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Example 1 (again)

[¬Girl]

[¬Child, ¬Female]

[¬Child]

[¬FirstGrade]

[]

Girl

Child     Female

FirstGrade

goal

solved

solved

FirstGrade

FirstGrade  ⊃  Child

Child ∧ Male ⊃ Boy
Kindergarten  ⊃  Child

Child ∧ Female ⊃  Girl
Female

KB

Show  KB ∪ {¬Girl}  unsatisfiable

SLD derivation alternate representation

A goal tree whose nodes are atoms, 
whose root is the atom to prove, and 
whose leaves are in the KB
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Prolog

Append(cons(a,cons(b,nil)), cons(c,nil), u)

Append(cons(b,nil), cons(c,nil), u′)

Append(nil, cons(c,nil), u′′)

solved:

u / cons(a,u′)

u′ / cons(b,u′′)

u′′ /  cons(c,nil)

So goal succeeds with u = cons(a,cons(b,cons(c,nil)))
that is:  Append([a b],[c],[a b c])

goal

What is the result of appending [c] to the list [a,b] ?

Horn clauses form the basis of Prolog
Append(nil,y,y)
Append(x,y,z)  ⇒  Append(cons(w,x),y,cons(w,z))

With SLD derivation, can 
always extract answer from proof 

H  |=  ∃x α(x)    

iff   
for some term t,  H  |=  α(t)

Different answers can be found 
by finding other derivations 
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Back-chaining procedure

Solve[q1, q2, ..., qn] = /*  to establish conjunction of qi   */

If n=0  then return YES;    /*  empty clause detected  */
For each d  ∈  KB  do

If  d = [q1, ¬p1, ¬p2, ..., ¬pm] /* match first q */
and             /* replace q by -ve lits */

    Solve[p1, p2, ..., pm, q2, ..., qn] /* recursively */
then return YES

end for;                     /* can't find a clause to eliminate q */
Return NO

Depth-first, left-right, back-chaining
• depth-first because attempt pi before trying qi

• left-right because try qi in order, 1,2, 3, ...
• back-chaining because search from goal q to facts in KB p

This is the execution strategy of Prolog
First-order case requires unification etc.
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Problems with back-chaining

Can go into infinite loop
tautologous clause:  [p , ¬p]  (corresponds to Prolog program with  p :- p).

Previous back-chaining algorithm is inefficient
Example: Consider 2n atoms,  p0, ..., pn-1, q0, ..., qn-1   and 4n-4 clauses

(pi-1  ⇒  pi),  (qi-1  ⇒  pi),  (pi-1  ⇒  qi),  (qi-1  ⇒  qi).
With goal pk    the execution tree is like this

Is this problem inherent in Horn clauses?

pk

pk-1 qk-1

pk-2 qk-2 pk-2 qk-2

... ... ... ...

Solve[pk] eventually 
fails after 2k steps!
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Forward-chaining

Simple procedure to determine if Horn KB |= q.
main idea:  mark atoms as solved

FirstGrade example:
Marks:  FirstGrade,  Child,  Female, Girl  then done!

Observe:
• only letters in KB can be marked, so at most a linear number of iterations
• not  goal-directed, so not always desirable
• a similar procedure with better data structures will run in linear time overall

1. If q is marked as solved, then return YES
2. Is there a {p1,¬p2, ...,¬pn} ∈ KB such that

p2, ..., pn are marked as solved, but the 
positive lit p1 is not marked as solved?

no: return NO
yes: mark p1  as solved, and go to 1.

Note: FirstGrade gets marked since 
all the negative atoms in the 
clause (none) are marked
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First-order undecidability

Even with just Horn clauses, in the first-order case we still have 
the possibility of generating an infinite branch of resolvents.

As with non-Horn clauses, the best that we can do is to give 
control of the deduction to the user

to some extent this is what is done in Prolog, 
but we will see more in “Procedural Control”

KB:
LessThan(succ(x),y)  ⇒  LessThan(x,y)

Query:
LessThan(zero,zero)

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

As with full Resolution,
there is no way to detect
when this will happen

There is no procedure that will test for the
satisfiability of first-order Horn clauses

the question is undecidable
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6.

Procedural Control of 
Reasoning
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Declarative / procedural

Theorem proving (like resolution) is a general domain-
independent method of reasoning

Does not require the user to know how knowledge will be used
will try all logically permissible uses

Sometimes we have ideas about how to use knowledge, how to 
search for derivations

do not want to use arbitrary or stupid order

Want to communicate to theorem-proving  procedure some 
guidance  based on properties of the domain

• perhaps specific method to use
• perhaps merely method to avoid

Example: directional connectives
In general:  control of reasoning
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DB + rules

Can often separate (Horn) clauses into two components:

Both retrieved by unification matching

Control issue: how to use the rules

Example:
MotherOf(jane,billy)
FatherOf(john,billy)
FatherOf(sam, john)
...
ParentOf(x,y)  ⇐  MotherOf(x,y)
ParentOf(x,y)  ⇐  FatherOf(x,y)
ChildOf(x,y)  ⇐  ParentOf(y,x)
AncestorOf(x,y)  ⇐  ...
...

a database of facts
• basic facts of the domain
• usually ground atomic wffs

collection of rules
• extends the predicate vocabulary  
• usually universally quantified 

conditionals
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Rule formulation

Consider AncestorOf in terms of ParentOf

Back-chaining goal of AncestorOf(sam,sue) will ultimately reduce to set of 
ParentOf(–,–) goals

1. get  ParentOf(sam,z): find child of Sam searching downwards
2. get  ParentOf(z,sue): find parent of Sue searching upwards
3. get  ParentOf(–,–): find parent relations searching in both directions

Search strategies are not equivalent
if more than 2 children per parent, (2) is best

3. AncestorOf(x,y)  ⇐   ParentOf(x,y)
AncestorOf(x,y)  ⇐   AncestorOf(x,z)  ∧  AncestorOf(z,y)

2. AncestorOf(x,y)  ⇐   ParentOf(x,y)
AncestorOf(x,y)  ⇐   ParentOf(z,y)  ∧ AncestorOf(x,z)

1. AncestorOf(x,y)  ⇐   ParentOf(x,y)
AncestorOf(x,y)  ⇐   ParentOf(x,z)  ∧ AncestorOf(z,y)

Three logically equivalent versions:



KR & R              ©  Brachman & Levesque  2005   95

Algorithm design

Example: Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, ...

Version 1:
Fibo(0, 1)
Fibo(1, 1)
Fibo(s(s(n)), x)  ⇐  Fibo(n, y) ∧  Fibo(s(n), z)   ∧  Plus(y, z, x)

Requires exponential number of Plus subgoals

Version 2:
Fibo(n, x)  ⇐  F(n, 1, 0, x)
F(0, c, p, c)
F(s(n), c, p, x)  ⇐  Plus(p, c, s)  ∧  F(n, s, c, x)

Requires only linear number of Plus subgoals
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Ordering goals

Example:
AmericanCousinOf(x,y)  ⇐  American(x)  ∧  CousinOf(x,y)

In back-chaining, can try to solve either subgoal first

Not much difference for AmericanCousinOf(fred, sally), but big 
difference for AmericanCousinOf(x, sally)

1. find an American and then check to see if she is a cousin of Sally
2. find a cousin of Sally and then check to see if she is an American

So want to be able to order goals
better to generate cousins and test for American

In Prolog:  order clauses, and literals in them
Notation:  G  :-  G1, G2, ..., Gn    stands for 
                G  ⇐  G1 ∧ G2 ∧ ... ∧ Gn
but goals are attempted in presented order
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Commit

Need to allow for backtracking in goals
AmericanCousinOf(x,y)  :-  CousinOf(x,y),  American(x) 
for goal AmericanCousinOf(x,sally), may need to try to solve 
the goal American(x)  for many values of x

But sometimes, given clause of the form
G  :-  T,  S 

goal T is needed only as a test for the applicability of subgoal S
• if T succeeds, commit to S as the only way of achieving goal G.
• if S fails, then G is considered to have failed

– do not look for other ways of solving T
– do not look for other clauses with G as head

In Prolog:  use of cut symbol
Notation:   G  :-  T1, T2, ..., Tm, !, G1, G2, ..., Gn 

attempt goals in order, but if all Ti succeed, then commit to Gi
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If-then-else

Sometimes inconvenient to separate clauses  in terms of unification:
G(zero, – )  :-  method 1                  
G(succ(n), – )  :-  method 2

For example, may split based on computed property:
Expt(a, n, x)  :- Even(n),  ... (what to do when  n is even)
Expt(a, n, x)  :- Even(s(n)),  ... (what to do when  n is odd)

want:  check for even numbers only once

Solution:  use ! to do if-then-else
G  :-  P, !, Q.
G  :-  R.

To achieve G:  if P  then use Q else use R

Example:
Expt(a, n, x)  :-  n = 0, !, x = 1.
Expt(a, n, x)  :-  Even(n),  !,  (for even  n)
Expt(a, n, x)  :-  (for odd  n )

Note:   it would be correct to write
Expt(a, 0, x)  :-  !, x = 1.

but not
Expt(a, 0, 1)  :-  !.
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Controlling backtracking

AncestorOf(jane,billy),  Male(jane)

ParentOf(jane,billy),  Male(jane)

Male(jane)

FAILS

ParentOf(z, billy),  AncestorOf(jane, z), Male(jane)

Eventually FAILS

1

2

3 4

Consider solving a goal like

So goal should really be:  AncestorOf(jane,billy), !,  Male(jane)

Similarly:
Member(x,l)  ⇐  FirstElement(x,l)
Member(x,l)  ⇐  Rest(l,l′)  ∧  Member(x,l′)

If only to be used for testing, want
Member(x,l)  :-  FirstElement(x,l), !, .

On failure, do not try 
to find another x later 
in the rest of the list
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Negation as failure

Procedurally: we can distinguish between the following:
can solve goal  ¬G     vs.    cannot solve goal G

Use not(G) to mean the goal that succeeds if G fails, and fails if G 
succeeds

Roughly:  not(G)  :-  G, !, fail. /*  fail if G succeeds  */
not(G). /*  otherwise succeed  */

Only terminates when failure is finite  (no more resolvents)

Useful when DB + rules is complete
NoChildren(x)  :-  not(ParentOf(x,y))

or when method already exists for complement 
Composite(n)  :-  n > 1, not(PrimeNum(n))

Declaratively:  same reading as ¬¬¬¬,  but not when new variables in G
[not(ParentOf(x,y))  ⊃  NoChildren(x)] ✔

vs. [¬ParentOf(x,y)  ⊃  NoChildren(x)] ✘
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Dynamic DB

Sometimes useful to think of DB as a snapshot of the world that 
can be changed dynamically

assertions and deletions to the DB

then useful to consider 3 procedural interpretations for rules like
ParentOf(x,y)  ⇐  MotherOf(x,y)

1. If-needed: Whenever have a goal matching ParentOf(x,y), can solve it by 
solving MotherOf(x,y)

ordinary back-chaining, as in Prolog

2. If-added: Whenever something matching MotherOf(x,y) is added to the DB, 
also add ParentOf(x,y)

forward-chaining

3. If-removed: Whenever something matching ParentOf(x,y) is removed from  
the DB, also remove MotherOf(x,y), if this was the reason

keeping track of dependencies in DB 

Interpretations (2) and (3) suggest demons
procedures that monitor DB and fire when certain conditions are met
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The Planner language

Main ideas:
1. DB of facts  

(Mother susan john)    (Person john)

2. If-needed, if-added, if-removed procedures consisting of
– body:   program to execute
– pattern for invocation  (Mother x  y)

3. Each program statement can succeed or fail
– (goal p), (assert p), (erase p),
– (and s ... s),  statements with backtracking
– (not s), negation as failure
– (for p  s),  do s  for every way p succeeds
– (finalize s), like cut
– a lot more, including all of Lisp

examples: (proc if-needed (cleartable)
(for (on x  table) 

(and (erase (on x  table)) (goal (putaway x)))))
(proc if-removed (on x  y)  (print x  " is no longer on " y))

Shift from proving conditions 
to making conditions hold!
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7.

Rules in Production 
Systems
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Direction of reasoning

A conditional like  P  ⇒  Q  can be understood as transforming 
• assertions of P to assertions of Q
• goals of Q  to goals of P

Can represent the two cases explicitly:

and then distinguish between 
1. goal vs. data directed reasoning 2. forward vs. backward-chaining

– goal:  from Q towards P – forward:  along the  ⇒
– data:  from P towards Q – backward: against the  ⇒

Possible to have
• (proc if-added (mygoal Q) ... (mygoal P))
• (proc if-needed (myassert P)... (myassert Q))

How to do data-directed reasoning in Prolog

Now:  a formalism with forward-chaining  

(assert P)  ⇒  (assert Q)
(goal Q)  ⇒  (goal P)
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Production systems

Idea:  working memory  +  production rule set

Working memory:  like DB,  but volatile

Production rule:  IF conditions THEN actions
condition:   tests on WM
action:  changes  to WM

Basic operation:   cycle of
1. recognize

find conflict set:  rules whose conditions are satisfied by current WM 

2. resolve
determine which of the rules will fire

3. act
perform required changes to WM

Stop when no rules fire
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Working memory

Set of working memory elements (WME)

Each WME is of the form  (type  attr1 val1  attr2 val2   ...  attrn  valn)
where type, attri, vali are all atoms

Examples:  (person  age 27   home Toronto)
(goal  task openDoor  importance 5)
(student   name JohnSmith   dept CS)

Understood as   ∃x[type(x) ∧ attr1(x)=val1  ∧ ... ∧ attrn(x)=valn]
– individual is not explicitly named
– order of attributes is not significant

Can handle n-ary relations as usual
(myAssertion relation  OlderThan   firstArg  John   secondArg  Mary)



KR & R              ©  Brachman & Levesque  2005   107

Rule conditions

Conditions:  tested conjunctively
a condition is p or -p, where p is a pattern of the form

(type  attr1 spec1  ...  attrk  speck)

where each specification must be one of

Examples:
   (person   age [n+4]   occupation x)
- (person   age {< 23 ∧  > 6})

A rule is applicable if there are values of the variables to satisfy
all the conditions 

• for a pattern, need WME of the correct type and for each attr in pattern,
val  must match spec

• for -p, there must be no WME that matches p

• an atom
• an expression within [ ]
• a variable
• a test, within {}
• the ∧, ∨, ¬ of a specification

∴ negation as failure
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Rule actions

Actions:  performed sequentially
An action is of the form

• ADD pattern
• REMOVE index
• MODIFY index  (attr spec)

where 
– index i refers to the WME that matched i-th pattern  (inapplicable to -p)
– variables and expressions refer to values obtained in the matching

Examples:
IF (Student  name x)
THEN ADD  (Person name x)

ordinary forward chaining

IF (Person  age x)  (Birthday)
THEN REMOVE 2

MODIFY 1 (age [x+1])
database update

IF (starting)
THEN REMOVE 1

ADD (phase val 1)   control information
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Example 1

Placing bricks in order of size
largest in place 1, next in place 2,  etc.

Initial working memory

Production rules:
IF (brick  place heap  name n  size s)

-(brick  place heap  size {> s})
-(brick  place hand)

THEN MODIFY 1  (place hand)

IF  (brick  place hand)   (counter index i)
THEN MODIFY 1  (place i)

MODIFY 2  (index [i+1])

(counter  index 1)
(brick  name A  size 10  place heap)
(brick  name B  size 30  place heap)
(brick  name C  size 20  place heap)

put the largest
brick in your hand

put a brick in your
hand at the next spot
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Trace

Only one rule can fire at a time, so no conflict resolution is 
required

The following modifications to WM
1. (brick name B size 30 place hand)

2. (brick name B size 30 place 1)
(counter index 2)

3. (brick name C size 20 place hand)

4. (brick name C size 20 place 2)
(counter index 3)

5. (brick name A size 10 place hand)

6. (brick name A size 10 place 3)
(counter index 4)

So the final working memory is 

(counter  index 4)
(brick  name A  size 10  place 3)
(brick  name B  size 30  place 1)
(brick  name C  size 20  place 2)
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Example 2

How many days are there in a year?
Start with: (want-days year n)
End with: (has-days days m)

1. IF (want-days year n)
THEN REMOVE 1

ADD   (year mod4  [n mod 4]  
mod100  [n mod 100] 
mod400  [n mod 400])

2. IF (year  mod400 0)
THEN REMOVE 1 ADD  (has-days days 366)

3. IF (year  mod100 0  mod400 {≠ 0})
THEN REMOVE 1 ADD  (has-days days 365)

4. IF (year  mod4 0  mod100 {≠ 0})
THEN REMOVE 1 ADD  (has-days days 366)

5. IF (year  mod4  {≠ 0})
THEN REMOVE 1 ADD  (has-days days 365)
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Applications

1. Psychological modeling
IF (goal is get-unit-digit)

(minuend unit d)
(subtrahend unit {> d})

THEN REMOVE 1
ADD  (goal is borrow-from-tens)

2. Expert systems
rules used by experts in a problem area to perform complex tasks

(examples  later)

Claimed advantages:
• modularity:  each rule acts independently of the others
• fine-grained control:  no complex goal or control stack
• transparency:  can recast rules in English to provide explanation of

behaviour 

fine-grained modeling of symbol
manipulation performed by people 
during problem solving
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MYCIN

System developed at Stanford to aid physicians in treating 
bacterial infections

Approximately 500 rules for recognizing about 100 causes of 
infection

Certainty factors
numbers from 0 to 1 attached to conclusions to rank order alternatives

AND  –  take min OR  –  take max

IF

the type of x is primary bacteremia
the suspected entry point of x is the 
gastrointestinal tract
the site of the culture of x is one of 
the sterile sites

THEN

there is evidence that x is bacteroides

other more static data
structures (not in WM)

• lists of organisms
• clinical parameters

+
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XCON

System developed at CMU (as R1) and used extensively at DEC 
(now owned by Compaq) to configure early Vax computers

Nearly 10,000 rules for several hundred component types 
Major stimulus for commercial interest in rule-based expert systems

IF

the context is doing layout and assigning a power supply
an sbi module of any type has been put in a cabinet
the position of the sbi module is known
there is space available for the power supply
there is no available power supply
the voltage and the frequency of the components are known

THEN

add an appropriate power supply
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Context switching

XCON and others use rules of the form
IF   the current context is x
THEN deactivate x

            activate context y
organized to fire when no other rules apply

Useful for grouping rules
IF (control phase 1)  AND ...    
THEN ...
...
IF (control phase 1)  AND ... 
THEN ...  MODIFY 1  (phase 2) ...

IF (control phase 2)  AND ...    
THEN ...
...
IF (control phase 2)  AND ... 
THEN ...  MODIFY 1  (phase 3) ...

Allows emulation of 
control structures.
But still difficult for 
complex  control 
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Conflict resolution

Sometimes with data-directed reasoning, we want to fire all 
applicable rules

With goal-directed reasoning, we may want a single rule to fire
• arbitrary
• first rule in order of presentation  (as in Prolog)
• specificity,  as in

IF (bird)  THEN ADD (can-fly) 
IF (bird  weight {> 100})  THEN ADD (cannot-fly)
IF (bird) (penguin)  THEN ADD (cannot-fly)

• recency
– fire on rule that uses most recent WME
– fire on least recently used rule

• refractoriness
– never use same rule for same value of variables  (called rule instance)
– only use a rule/WME pair once  (will need a “refresh” otherwise)
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Conflict combinations

OPS5:
1. discard rule instances that have already been used 
2. order remaining instances in terms of recency of WME matching 1st 

condition (and then of 2nd condition, etc.)
3. if still no single rule, order rules by number of conditions
4. select arbitrarily among those remaining

SOAR:
system that attempts to find a way to move from a start state to a goal 
state by applying productions

selecting what rule to fire 
≡ 

deciding what to do next
if unable to decide, SOAR sets up the selection as a new (meta-)goal to 
solve, and the process iterates 
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Rete procedure

Early systems spent 90% of their time matching, even with 
indexing and hashing.  

But:

So:

• WM is modified only slightly on each cycle
• many rules share conditions

• incrementally pass WME through network of tests
• tokens that make it through satisfy all conditions and produce conflict set
• can calculate new conflict set in terms of old one and change to WM

category: Person

age < 14 occupation = doctor

father:name

RULE 1

...

...
α nodes:
self-contained tests                 β nodes:

multi-input for vars

IF  (Person  father y  age {< 14}  name x)
       (Person  name y  occupation doctor)
THEN   ...
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8.

Object-Oriented 
Representation
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Organizing procedures

With the move to put control of inference into the user’s hands, 
we’re focusing on more procedural representations

knowing facts by executing code

Even production systems are essentially programming languages.

Note also that everything so far is flat, i.e., sentence-like 
representations

• information about an object is scattered in axioms
• procedure fragments and rules have a similar problem

With enough procedures / sentences in a KB, it could be critical to 
organize them

• production systems might have rule sets, organized by context of 
application

• but this is not a natural, representational motivation for grouping
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Object-centered representation

Most obvious organizational technique depends on our ability to 
see the world in terms of objects

• physical objects:
– a desk has a surface-material, # of drawers, width, length, height, color, 

procedure for unlocking, etc.
– some variations: no drawers, multi-level surface, built-in walls (carrel)

• also, situations can be object-like:
– a class: room, participants, teacher, day, time, seating arrangement, lighting, 

procedures for registering, grading, etc.
– leg of a trip: destination, origin, conveyance, procedures for buying ticket, 

getting through customs, reserving hotel room, locating a car rental etc.

Suggests clustering procedures for determining properties, 
identifying parts, interacting with parts, as well as constraints 
between parts, all of objects

• legs of desk connect to and support surface
• beginning of a travel leg and destination of prior one

object-centered 
constraints
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Situation recognition

Focus on objects as an organizational / chunking mechanism to 
make some things easier to find

Suggests a different kind of reasoning than that covered so far
basic idea originally proposed by Marvin Minsky

• recognize (guess) situation; activate relevant object representations
• use those object representations to set up expectations

some for verification; some make it easier to interpret new details

• flesh out situation once you’ve recognized

Wide applicability, but typical applications include
• relationship recognition  e.g., story understanding
• data monitoring
• propagation and enforcement of constraints for planning tasks

this latter is most doable and understandable, 
so we will concentrate on it
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IS-A and inheritance

Specialization relationships imply that procedures and fillers of 
more general frame are applicable to more specific frame: 
inheritance.

(Elephant
<:IS-A Mammal>
<:Colour  gray> ...)

(RoyalElephant
<:IS-A Elephant>
<:Colour  white>)

(clyde
<:INSTANCE-OF  RoyalElephant>)

(CoffeeTable
<:IS-A Table> ...)

(MahoganyCoffeeTable
<:IS-A CoffeeTable> ...)

For example, instances of 
MahoganyCoffeeTable 
will inherit the procedure from 
Table (via CoffeeTable)

Similarly, default values are
inheritable, so that Clyde
inherits a colour from
RoyalElephant, not Elephant
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Basic frame language

Let’s call our object structures frames
note wide variety of interpretations in literature

Two types:  
• individual frames

represent a single object like a person, part of a trip

• generic frames
represent categories of objects, like students

An individual frame is a named list of buckets called slots.  What 
goes in the bucket is called a filler of the slot.  It looks like this:

where frame names and slot names are atomic, 
and fillers are either numbers, strings or the 
names of other individual frames.

(frame-name
<slot-name1  filler1>
<slot-name2  filler2 > …)

Notation: individual frames: toronto
slot names: :Population   (note “:” at start)
generic frames:  CanadianCity



KR & R              ©  Brachman & Levesque  2005   124

Instances and specializations

Individual frames have a special slot called :INSTANCE-OF 
whose filler is the name of a generic frame:

(toronto
<:INSTANCE-OF CanadianCity>
<:Province ontario>
<:Population 4.5M>…)

(tripLeg123-1
<:INSTANCE-OF TripLeg>
<:Destination toronto>…)

Generic frames have a syntax that is similar to that of individual 
frames, except that they have a slot called :IS-A whose filler is the 
name of another generic frame

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

We say that the frame toronto is an
instance of the frame CanadianCity 
and that the frame CanadianCity is a 
specialization of the frame City
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Procedures and defaults

Slots in generic frames can have associated procedures 
1. computing a filler (when no slot filler is given)

(Table 
   <:Clearance  [IF-NEEDED computeClearanceFromLegs]>  …)

2. propagating constraints (when a slot filler is given)
(Lecture

    <:DayOfWeek  WeekDay>
    <:Date  [IF-ADDED computeDayOfWeek]> …)

If we create an instance of Table, the :Clearance will be 
calculated as needed.  Similarly, the filler for :DayOfWeek will be 
calculated when :Date is filled. 
For instances of CanadianCity, the :Country slot will be filled 
automatically.  But we can also have

(city135
<:INSTANCE-OF CanadianCity>
<:Country holland>)

The filler canada in CanadianCity
is considered a default value.
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Reasoning with frames

Basic (local) reasoning goes like this:
1. user instantiates a frame, i.e., declares that an object or situation exists
2. slot fillers are inherited where possible
3. inherited IF-ADDED procedures are run, causing more frames to be 

instantiated and slots to be filled.

If the user or any procedure requires the filler of a slot then:
1. if there is a filler, it is used
2. otherwise, an inherited IF-NEEDED procedure is run, potentially causing 

additional actions

Globally:
• make frames be major situations or object-types you need to flesh out
• express constraints between slots as IF-NEEDED and IF-ADDED 

procedures
• fill in default values when known

⇒     like a fancy, semi-symbolic spreadsheet
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Planning a trip

A simple example: a frame system to assist in travel planning 
(and possibly documentation – automatically generate forms)

Basic structure (main frame types):
• a Trip will be a sequence of TravelSteps

these will be linked together by slots
• a TravelStep will usually terminate in a LodgingStay (except the last, or one 

with two travels on one day) 
– a LodgingStay will point to its arriving TravelStep and departing 

TravelStep
– TravelSteps will indicate the LodgingStays of their origin and destination

travelStep17a travelStep17b travelStep17c
lodgingStay17a lodgingStay17b

trip17

(trip17
<:INSTANCE-OF  Trip>
<:FirstStep travelStep17a>
<:Traveler   ronB> ...)
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Parts of a trip

TravelSteps and LodgingStays share some properties (e.g., 
:BeginDate, :EndDate, :Cost, :PaymentMethod), so we might create a 
more general category as the parent frame for both of them:

(TripPart
<:BeginDate>   
<:EndDate>
<:Cost>   
<:PaymentMethod> …)

(LodgingStay
<:IS-A  TripPart>
<:ArrivingTravelStep>
<:DepartingTravelStep> 
<:City>   
<:LodgingPlace> …)

(Trip
<:FirstStep TravelStep>
<:Traveler  Person>
<:BeginDate  Date>
<:TotalCost Price> ...)

(TravelStep
<:IS-A  TripPart> 
<:Means> 
<:Origin>   <:Destination> 
<:NextStep>   <:PreviousStep> 
<:DepartureTime>   <:ArrivalTime>
<:OriginLodgingStay>
<:DestinationLodgingStay> …)
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Travel defaults and procedures

Embellish frames with defaults and procedures
(TravelStep 

<:Means  airplane> ...)
(TripPart

<:PaymentMethod  visaCard> ...)
(TravelStep  

<:Origin [IF-NEEDED {if no SELF:PreviousStep then newark}]>)
(Trip 

<:TotalCost 
    [IF-NEEDED

{ x←SELF:FirstStep;
  result←0;
  repeat
   { if  exists x:NextStep

then 
{ result←result + x:Cost +
   x:DestinationLodgingStay:Cost;
   x←x:NextStep }

 else  return  result+x:Cost }}]>)

Program notation (for an imaginary language):
• SELF is the current frame being processed
• if x refers to an individual frame, and y to a slot, 

then xy refers to the filler of the slot

assume this
is 0 if there is
no LodgingStay
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More attached procedures

(TravelStep
<:NextStep
     [IF-ADDED
   {if  SELF:EndDate ≠ SELF:NextStep:BeginDate 

  then 
              SELF:DestinationLodgingStay ←

     SELF:NextStep:OriginLodgingStay ←
                create new LodgingStay
                  with :BeginDate = SELF:EndDate

    and with :EndDate = SELF:NextStep:BeginDate 
    and with :ArrivingTravelStep = SELF

        and with :DepartingTravelStep = SELF:NextStep
   …}]>

   …)

(LodgingStay
<:City [IF-NEEDED  {SELF:ArrivingTravelStep:Destination}]…>   ...)

Note: default :City of LodgingStay, etc. can also be calculated: 
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Frames in action

Propose a trip to Toronto on Dec. 21, returning Dec. 22
(trip18       

<:INSTANCE-OF  Trip>
<:FirstStep travelStep18a>)

(travelStep18a
<:INSTANCE-OF  TravelStep> 
<:BeginDate 12/21/98>   
<:EndDate 12/21/98> 
<:Means> 
<:Origin> 
<:Destination toronto> 
<:NextStep> <:PreviousStep> 
<:DepartureTime>  <:ArrivalTime>)

(travelStep18b
<:INSTANCE-OF  TravelStep> 
<:BeginDate 12/22/98>   
<:EndDate 12/22/98> 
<:Means> 
<:Origin toronto>  
<:Destination> 
<:NextStep> 
<:PreviousStep travelStep18a> 
<:DepartureTime>  <:ArrivalTime>)

(travelStep18a
<:NextStep travelStep18b>)

the first thing to do is to create
the trip and the first step

the next thing to do is to create
the second step and link it to the first
by changing the :NextStep 
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Triggering procedures

IF-ADDED on :NextStep then creates a LodgingStay:

(lodgingStay18a   
<:INSTANCE-OF  LodgingStay>
<:BeginDate 12/21/98> 
<:EndDate 12/22/98> 
<:ArrivingTravelStep travelStep18a> 
<:DepartingTravelStep travelStep18b>
<:City> 
<:LodgingPlace>)

travelStep18a
  :BeginDate 12/21/98
  :EndDate 12/21/98
  :Means 
  :Origin 
  :Destination  toronto
  :NextStep
  :PreviousStep
  :DepartureTime 
  :ArrivalTime 
  :DestinationLodgingStay
  :Cost 

travelStep18b
  :BeginDate 12/22/98
  :EndDate 12/22/98
  :Means 
  :Origin toronto
  :Destination 
  :NextStep
  :PreviousStep
  :DepartureTime 
  :ArrivalTime 
  :OriginLodgingStay
  :Cost 

trip18
   :FirstStep

lodgingStay18a
  :BeginDate 12/21/98
  :EndDate 12/22/98
  :ArrivingTravelStep
  :DepartingTravelStep
  :City 
  :LodgingPlace 
  :Cost 

If requested, IF-NEEDED can provide :City for lodgingStay18a (toronto)
which could then be overridden by hand, if necessary 
(e.g. usually stay in North York, not Toronto)

Similarly, apply default for :Means and default calc for :Origin
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Finding the cost of the trip

Finally, we can use :TotalCost IF-NEEDED procedure (see above)
to calculate the total cost of the trip:

• result← 0, x←travelStep18a, x:NextStep=travelStep18b

• result←0+$321.00+$124.75; x← travelStep18b, x:NextStep=NIL
• return: result=$445.75+$321.00 = $766.75

travelStep18a
  :BeginDate 12/21/98
  :EndDate 12/21/98
  :Means airplane 
  :Origin newark
  :Destination toronto
  :NextStep
  :PreviousStep
  :DepartureTime 0900
  :ArrivalTime 1024
  :DestinationLodgingStay
  :Cost $321.00

travelStep18b
  :BeginDate 12/22/98
  :EndDate 12/22/98
  :Means airplane 
  :Origin toronto
  :Destination newark
  :NextStep
  :PreviousStep
  :DepartureTime 1750
  :ArrivalTime 1915
  :OriginLodgingStay
  :Cost $321.00

trip18
   :FirstStep

lodgingStay18a
  :BeginDate 12/21/98
  :EndDate 12/22/98
  :ArrivingTravelStep
  :DepartingTravelStep
  :City northYork
  :LodgingPlace novotel
  :Cost $124.75

So far...
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Using the formalism

Main purpose of the above: embellish a sketchy description with 
defaults, implied values

• maintain consistency
• use computed values to

1. allow derived properties to look explicit
2. avoid up front, potentially unneeded computation

Monitoring
• hook to a DB, watch for changes in values
• like an ES somewhat, but monitors are more object-centered, inherited

Scripts for story understanding
generate expectations (e.g., restaurant)

Real, Minsky-like commonsense reasoning
• local cues ⇒ potentially relevant frames ⇒ further expectations
• look to match expectations ; mismatch ⇒ “differential diagnosis”
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Extensions

1. Types of procedures
• IF-REMOVED

e.g., remove TravelStep ⇒ remove LodgingStay

• “servants” and “demons”
flexible “pushing” and “pulling” of data

2. Slots
• multiple fillers
• “facets” – more than just defaults and fillers

– [REQUIRE <class>] (or procedure)
– PREFER – useful if conflicting fillers

3. Metaframes
(CanadianCity   <:INSTANCE-OF GeographicalCityType>  …)
(GeographicalCityType   <:IS-A CityType>

<:AveragePopulation  NonNegativeNumber> …)

4. Frames as actions (“scripts”)
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Object-oriented programming

Somewhat in the manner of production systems, specifying 
problems with frames can easily slide into a style of programming, 
rather than a declarative object-oriented modeling of the world

• note that direction of procedures (pushing/pulling) is explicitly specified 
not declarative

This drifts close to conventional object-oriented programming 
(developed concurrently).

• same advantages:
– definition by specialization
– localization of control
– encapsulation
– etc.

• main difference:
– frames: centralized, conventional control regime (instantiate/ inherit/trigger)
– object-oriented programming: objects acting as small, independent agents 

sending each other messages
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9.

Structured Descriptions
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From sentences to objects

As we saw with frames, it useful to shift the focus away from the 
true sentences of an application towards the categories of objects 
in the application and their properties.
In frame systems, this was done procedurally, and we 
concentrated on hierarchies of frames as a way of organizing 
collections of procedures.
In this section, we look at the categories of objects themselves:

• objects are members of multiple categories
e.g. a doctor, a wife, a mother of two 

• categories of objects can be more or less specific than others
e.g. a doctor, a professional, a surgeon

• categories of objects can have parts, sometimes in multiples
e.g. books have titles, tables have legs

• the relation among the parts of an object can be critical in its being a 
member of a category

e.g. a stack vs. a pile of bricks
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Noun phrases

In FOL, all categories and properties of objects are represented 
by atomic predicates.

• In some cases, these correspond to simple nouns in English such as 
Person or City.

• In other cases, the predicates seem to be more like noun phrases  such as 
MarriedPerson or CanadianCity or AnimalWithFourLegs.

Intuitively, these predicates have an internal structure and 
connections to other predicates.

e.g.  A married person must be a person.
These connections hold by definition (by virtue of what the predicates themselves 
mean), not by virtue of the facts we believe about the world.

In FOL, there is no way to break apart a predicate to see how it is 
formed from other predicates.
Here we will examine a logic that allows us to have both atomic 
and non-atomic predicates: a description logic 
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Concepts, roles, constants

In a description logic, there are sentences that will be true or false 
(as in FOL).

In addition, there are three sorts of expressions that act like nouns 
and noun phrases in English: 

• concepts are like category nouns Dog, Teenager, GraduateStudent

• roles are like relational nouns :Age, :Parent, :AreaOfStudy

• constants are like proper nouns johnSmith, chair128

These correspond to unary predicates, binary predicates and 
constants (respectively) in FOL.

See also:  generic frames, slots, and individual frames.
However: roles can have multiple fillers.

However, unlike in FOL, concepts need not be atomic and can 
have semantic relationships to each other.

roles will remain atomic (for now)
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The symbols of DL

Three types of non-logical symbols:
• atomic concepts:  

Dog, Teenager, GraduateStudent
We include a distinguished concept: Thing

• roles:  (all are atomic)

:Age, :Parent, :AreaOfStudy

• constants:  
johnSmith, chair128

Four types of logical symbols:
• punctuation: [, ], (, )
• positive integers: 1, 2, 3, ...
• concept-forming operators:  ALL,  EXISTS,  FILLS,  AND
• connectives:   =, =, and →
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The syntax of DL

The set of concepts is the least set satisfying:
• Every atomic concept is a concept.

• If r is a role and d is a concept, then [ALL r d] is a concept.

• If r is a role and n is an integer, then [EXISTS n r] is a concept.

• If r is a role and c is a constant, then [FILLS r c] is a concept.

• If d1, ..., dk are concepts, then so is [AND d1, ..., dk].

Three types of sentences in DL:
• If d and e are concepts, then (d  = e) is a sentence. 

• if d and e are concepts, then (d  = e) is a sentence. 

• If d is a concept and c is a constant, then (c → d) is a sentence. 
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The meaning of concepts

Constants stand for individuals, concepts for sets of individuals, 
and roles for binary relations.
The meaning of a complex concept is derived from the meaning 
of its parts the same way a noun phrases is:

• [EXISTS n r] describes those individuals that stand in relation r to at least 
n other individuals

• [FILLS r c] describes those individuals that stand in the relation r to the 
individual denoted by c

• [ALL r d] describes those individuals that stand in relation r only to 
individuals that are described by d

• [AND d1 ... dk] describes those individuals that are described by all of the di.  

[AND Company
[EXISTS 7 :Director]
[ALL :Manager [ANDWoman

[FILLS :Degree phD]]]
[FILLS :MinSalary $24.00/hour]]

For example:
“a company with at least 7 directors,
whose managers are all women with 
PhDs, and whose min salary is $24/hr”
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A DL knowledge base

A DL knowledge base is a set of DL sentences serving mainly to
• give names to definitions

e.g. (FatherOfDaughters  =
[AND Male [EXISTS 1 :Child]
        [ALL :Child Female]] )

• give names to partial definitions
e.g. (Dog  =  [AND Mammal  Pet  

  CarnivorousAnimal
        [FILLS :VoiceCall barking]])

gives necessary but not sufficient conditions

• assert properties of individuals
e.g. (joe  →  

[AND FatherOfDaughters Surgeon]])

Other types of DL sentences are typically not used in a KB.
e.g.   ([AND Rational Animal]  = [AND Featherless Biped])

“A FatherOfDaughters is precisely 
a male with at least one child and 
all of whose children are female”

“A dog is among other things a 
mammal that is a pet and a 
carnivorous animal whose voice 
call includes barking”

“Joe is a FatherOfDaughters and 
a Surgeon”
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Formal semantics

Interpretation ℑ  = 〈 D, I 〉  as in FOL, where
• for every constant c,  I[c] ∈ D

• for every atomic concept a,  I[a] ⊆ D
• for every role r,  I[r] ⊆ D × D  

We then extend the interpretation to all concepts as subsets of 
the domain as follows:

• I[Thing] = D
• I[[ALL r d]] = {x ∈ D | for any y, if <x,y> ∈ I[r] then y ∈ I[d]}
• I[[EXISTS n r]] =  {x ∈ D | there are at least n y such that <x,y> ∈ I[r]}
• I[[FILLS r c]]  = {x ∈ D |  <x,I[c]> ∈ I[r]}
• I[[AND d1 ... dk]] = I[d1] ∩ ... ∩ I[dk]

A sentence of DL will then be true or false as follows: 
• ℑ = (d  = e)  iff  I[d] ⊆ I[e]
• ℑ = (d  = e)  iff  I[d] = I[e]
• ℑ = (c → e)  iff  I[c] ∈  I[e]
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Entailment and reasoning

Entailment in DL is defined as in FOL:
A set of DL sentences S entails a  sentence α  (which we write S |= α)  iff

  for every ℑ , if ℑ = S  then ℑ = α
A sentence is valid iff it is entailed by the empty set.

Given a KB consisting of DL sentences, there are two basic sorts 
of reasoning we consider:

1. determining if KB = (c → e) 
whether a named individual satisfies a certain description

2. determining if KB = (d  = e)
whether one description is subsumed by another

the other case,  KB = (d  = e)  reduces to
KB = (d  = e)  and  KB = (d  = e)
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Entailment vs. validity

In some cases, an entailment will hold because the sentence in 
question is valid.

• ([AND Doctor Female]   =  Doctor)
• ([FILLS :Child sue]   =  [EXISTS 1 :Child])
• (john → [ALL :Hobby Thing])

But in most other cases, the entailment depends on the 
sentences in the KB.

For example,

([AND Surgeon Female]   =  Doctor)  

is not valid.

But it is entailed by a KB that contains
(Surgeon  =  [AND  Specialist  [FILLS :Specialty surgery]])

(Specialist  = Doctor)
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Computing subsumption

We begin with computing subsumption, that is, determining 
whether or not KB = (d  = e). 

Some simplifications to the KB:
• we can remove the (c → d) assertions from the KB
• we can replace (d  = e) in KB by (d  = [AND e a]), where a is a new atomic 

concept
• we assume that in the KB for each (d  = e), the d is atomic and appears 

only once on the LHS
• we assume that the definitions in the KB are acyclic

vs. cyclic  (d  = [AND e f]), (e  = [AND d g])

Under these assumptions, it is sufficient to do the following:
• normalization: using the definitions in the KB, put d and e into a special 

normal form, d′ and e′
• structure matching: determine if each part of e′ is matched by a part of d′.

and therefore
whether d = e 
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Normalization

Repeatedly apply the following operations to the two concepts:
• expand a definition:  replace an atomic concept by its KB definition
• flatten an AND concept: 

[AND ... [AND d e f]  ...]   ⇒  [AND ... d e f  ...]

• combine the ALL operations with the same role:
[AND ... [ALL r d] ... [ALL r e] ...]  ⇒    [AND ... [ALL r [AND d e]] ...]

• combine the EXISTS operations with the same role:
[AND ... [EXISTS n1 r] ... [EXISTS n2 r] ...]   ⇒ 

[AND ... [EXISTS n r] ...]   (where n =Max(n1,n2))

• remove a vacuous concept: Thing, [ALL r Thing], [AND]
• remove a duplicate expression

In the end, we end up with
a normalized concept of 
the following form

[AND a1 ... ai
[FILLS r1 c1] ... [FILLS rj cj]
[EXISTS n1 s1] ... [EXISTS nk sk]
[ALL t1 e1] ... [ALL tm em] ]

normalized

atomic

unique
roles
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Normalization example

[AND Person
[ALL  :Friend  Doctor]
[EXISTS 1  :Accountant]
[ALL  :Accountant  [EXISTS 1  :Degree]]
[ALL  :Friend  Rich] 
[ALL  :Accountant  [AND Lawyer [EXISTS 2  :Degree]]]] 

[AND Person
[EXISTS 1  :Accountant]
[ALL  :Friend   [AND Rich Doctor]] 
[ALL  :Accountant  [AND Lawyer [EXISTS 1  :Degree] [EXISTS 2  :Degree]]]] 

[AND Person
[EXISTS 1  :Accountant]
[ALL  :Friend  [AND Rich Doctor]] 
[ALL  :Accountant  [AND Lawyer [EXISTS 2  :Degree]]]] 
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Structure matching

Once we have replaced atomic concepts by their definitions, we 
no longer need to use the KB.
To see if a normalized concept  [AND e1 .... em]  subsumes a 
normalized concept [AND d1 ... dn], we do the following:

For each component ej, check that there is a matching component di, where
– if ej is atomic or [FILLS r c], then di must be identical to it;
– if ej = [EXISTS 1 r], then di must be [EXISTS n r] or [FILLS r c];
– if ej = [EXISTS n r] where n >1, then di must be of the form

[EXISTS m r]  where m ≥ n;
– if ej = [ALL r e′], then di must be [ALL r d′], where recursively

e′ subsumes d′.
In other words, for every part of the more general concept,
there must be a corresponding part in the more specific one. 

It can be shown that this procedure is sound and complete:
it returns YES  iff  KB = (d  = e).
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Structure matching example

[AND Person 
   [FILLS :Age 27] 

        [EXISTS 2 :Child]
[EXISTS 1 :Spouse]

[ALL :Friend  [AND Doctor Rich]] ]

[AND Person
   Female
       [FILLS :Age 27] 

[EXISTS 3 :Child]
[FILLS :Spouse jack]

[FILLS :Mother sue]
[ALL :Friend  [AND Doctor 

[FILLS :Specialty  surgery]
Rich]] ]not needed
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Computing satisfaction

To determine if KB = (c → e), we use the following procedure:
1. find the most specific concept d  such that KB = (c → d)
2. determine whether or not  KB = (d  = e), as before.

To a first approximation, the d  we need is the AND of every di 
such that (c → di) ∈  KB.

To find the d, a more complex procedure is used that propagates 
constraints from one individual (canCorp) to another (joe).

The individuals we need to consider need not be named by constants;
they can be individuals that arise from EXISTS (like Skolem constants).

Suppose the KB contains
(joe  → Person)
(canCorp → [AND Company

[ALL :Manager Canadian]
[FILLS :Manager joe]]

then the KB = (joe  → Canadian).

However, this can 
miss some inferences!
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Taxonomies

Two common sorts of queries in a DL system:
• given a query concept q, find all constants c such that KB = (c → q)

e.g. q  is [AND Stock FallingPrice MyHolding]
• given a query constant c, find all atomic concepts a such that KB = (c → a)

We can exploit the fact that concepts tend to be structured 
hierarchically to answer queries like these more efficiently.

Taxonomies arise naturally out of a DL KB:
• the nodes are the atomic concepts that appear on the LHS of a sentence 

(a  = d) or (a  = d) in the KB
• there is an edge from ai to aj if (ai  = aj) is entailed and there is no distinct ak 

such that (ai  = ak) and (ak = aj).
can link every constant c to the most specific atomic concepts a in the 
taxonomy such that KB = (c → a)

Positioning a new atom in a taxonomy is called classification

might want to trigger a 
procedure for each such c
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Computing classification

 Consider adding (anew = d) to the KB.
• find S, the most specific subsumers of d: the atoms a such that 

KB = (d  = a), but nothing below a

• find G, the most general subsumees of d: the atoms a such that 
KB = (a  = d), but nothing above a

if S ∩ G is not empty, then anew is not new

• remove any links from atoms in G to atoms in S 

• add links from all the atoms in G to anew and from  anew to all the atoms in S 

• reorganize the constants: 
for each constant c such that KB = (c → a) for all a ∈ S, 
but KB = (c → a) for no a ∈ G, and where KB = (c → d), 
remove links from c to S and put a single link from c to anew.

Adding (anew = d) is similar, but with no subsumees.

see below
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Subsumers and subsumees

Calculating the most specific subsumers of a concept d:
• Start with S = {Thing}.

• Repeatedly do the following:  
– Suppose that some a ∈ S has at least one child a′ just below it in the 

taxonomy such that KB = (d  = a′).  
– Then remove a from S and replace it by all such children a′. 

Calculating the most general subsumees of a concept d:
• Start with G  = the most specific subsumers.

• Repeatedly do the following: 
– Suppose that for some a ∈ G,  KB = (a  = d). 
– Then remove a from G and replace it by all of its children (or delete it, 

if there are none). 

• Repeatedly delete any element of G  that has a parent subsumed by d.
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An example of classification

WINE

RED-
WINE

WHITE-
WINE

BORDEAUX-
WINE

DRY-
BORDEAUX-
WINE

SWEET-
BORDEAUX-
WINE

VERY-DRY-
BORDEAUX-
WINE

EXPENSIVE-
WHITE-
VERY-DRY-
BORDEAUX-
WINE

WHITE-
VERY-DRY-
BORDEAUX-
WINE

new
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Using the taxonomic structure

Note that classification uses the structure of the taxonomy:
If there is an a′ just below a in the taxonomy such that KB = (d  = a′), we 
never look below this a′.  If this concept is sufficiently high in the taxonomy  
(e.g. just below Thing), an entire subtree will be ignored.

Queries can also exploit the structure:
For example, to find the constants described by a concept q, we simply 
classify q and then look for constants in the part of the taxonomy 
subtended by q.  The rest of the taxonomy not below q is ignored.

This natural structure allows us to build and use very large 
knowledge bases.

• the time taken will grow linearly with the depth of the taxonomy
• we would expect the depth of the taxonomy to grow logarithmically  with 

the size of the KB
• under these assumptions, we can handle a KB with thousands or even 

millions of concepts and constants.
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Taxonomies vs. frame hierarchies

The taxonomies in DL look like the IS-A hierarchies with frames.

There is a big difference, however:
• in frame systems, the KB designer gets to decide what the fillers of 

the :IS-A slot will be;  the :IS-A hierarchy is constructed manually
• in DL, the taxonomy is completely determined by the meaning of the 

concepts and the subsumption relation over concepts

For example, a concept such as
[AND Fish  [FILLS :Size large]]

must appear in the taxonomy below Fish even if it was first 
constructed to be given the name Whale. It cannot simply be 
positioned below Mammal.

To correct our mistake, we need to associate the name with a 
different concept:

[AND Mammal  [FILLS :Size large] ...]
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Inheritance and propagation

As in frame hierarchies, atomic concepts in DL inherit properties 
from concepts higher up in the taxonomy.

For example, if a Doctor has a medical degree, and Surgeon is below 
Doctor, then a Surgeon must have a medical degree. 
This follows from the logic of concepts:
    If  KB = (Doctor  =  [EXISTS 1 :MedicalDegree])

and  KB = (Surgeon   =  Doctor )
    then KB = (Surgeon  =  [EXISTS 1  :MedicalDegree])

This is a simple form of strict inheritance  (cf. next chapter)

Also, as noted in computing satisfaction (e.g. with joe and 
canCorp), adding an assertion like (c → e) to a KB can cause other 
assertions (c′ → e′) to be entailed for other individuals.

This type of propagation is most interesting in applications where 
membership in classes is monitored and changes are significant.
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Extensions to the language

A number of extensions to the DL language have been 
considered in the literature:

• upper bounds on the number of fillers
[AND [EXISTS 2  :Child] [AT-MOST 3  :Child]]

opens the possibility of inconsistent concepts

• sets of individuals:  [ALL :Child [ONE-OF wally theodore]]

• relating the role fillers:  [SAME-AS :President :CEO]

• qualified number restriction:   [EXISTS 2  :Child  Female]      vs.
[AND [EXISTS 2  :Child] [ALL :Child Female]]

• complex (non-atomic) roles:  [EXISTS 2  [RESTR :Child Female]]
[ALL  [RESTR :Child Female]  Married]      vs.
[ALL :Child  [AND Female Married]]

Each of these extensions adds extra complexity to the problem of 
calculating subsumption.

This topic will be explored for RESTR in Chapter 16. 
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Some applications

Like production systems, description logics have been used in a 
number of sorts of applications:

• interface to a DB
relational DB, but DL can provide a nice higher level view of the data 
based on objects

• working memory for a production system
instead of a having rules to reason about a taxonomy and inheritance 
of properties, this part of the reasoning can come from a DL system

• assertion and classification for monitoring
incremental change to KB can be monitored with certain atomic 
concepts declared “critical”

• contradiction detection in configuration
for a DL that allows contradictory concepts, can alert the user when 
these are detected.  This works well for incremental construction of a 
concept representing e.g. a configuration of a computer. 
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10.

Inheritance
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Hierarchy and inheritance

As we noticed with both frames and description logics, hierarchy 
or taxonomy is a natural way to view the world

importance of abstraction in remembering and reasoning
– groups of things share properties in the world 
– do not have to repeat representations 

   e.g. sufficient to say that “elephants are mammals” to know 
a lot about them

Inheritance is the result of transitivity reasoning over paths in a 
network

• for strict networks, modus ponens  (if-then reasoning) in graphical form
• “does a inherit from b?” is the same as “is b in the transitive closure of :IS-A 

(or subsumption) from a?”

a

b
. ..

graphically, is there a
path of :IS-A connections
from a to b?
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Path-based reasoning

Focus just on inheritance and transitivity
• many interesting considerations in looking just at where information comes 

from in a network representation
• abstract frames/descriptions, and properties into nodes in graphs, and just 

look at reasoning with paths and the conclusions they lead us to

• edges in the network: Clyde⋅⋅⋅⋅Elephant, Elephant⋅⋅⋅⋅Gray
• paths included in this network: edges plus {Clyde⋅⋅⋅⋅Elephant⋅⋅⋅⋅Gray}

in general, a path is a sequence of 1 or more edges

• conclusions supported by the paths: 
Clyde → Elephant;   Elephant → Gray;   Clyde → Gray

Gray

Elephant

Clyde

note the translation of 
property, Gray, and the 
constant Clyde into a node



KR & R              ©  Brachman & Levesque  2005   167

Inheritance networks

(1) Strict inheritance in trees
• as in description logics
• conclusions produced by complete 

transitive closure on all paths 
(any traversal procedure will do); 
all reachable nodes are implied

(2) Strict inheritance in DAGs
• as in DL’s with multiple AND parents  (= multiple inheritance)
• same as above: all conclusions you can reach by any paths are supported

Gray

Elephant

Clyde

Rat

Ben

Taxpayer

Employee

Ernest

Student

Illiterate Salaried
Academic

Note: negative
edge from Student:
     “is not a”
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Inheritance with defeasibility

(3) Defeasible inheritance
• as in frame systems
• inherited properties do not always 

hold, and can be overridden (defeated)
• conclusions determined by searching 

upward from “focus node” and selecting 
first version of property you want

A key problem: ambiguity
• credulous accounts choose arbitrarily 
• skeptical accounts are more conservative

Gray

Elephant

Clyde

while elephants in general
are gray, Clyde is not

Nixon

RepublicanQuaker

Pacifist

Is  Nixon a 
pacifist or not?
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Shortest path heuristic

Defeasible inheritance in DAGs
• links have polarity (positive or negative)
• use shortest path heuristic 

to determine which 
polarity counts

• as a result, not all paths count
in generating conclusions

– some are “preempted”
– but some are “admissible”

think of paths as arguments in support of conclusions

⇒   the inheritance problem  =  what are the admissible conclusions?

Intuition: inherit from 
the most specific 
subsuming class

Fat royal elephant

Gray

Elephant

Royal elephant

Clyde

Mammal

Whale

White whale

Baby Beluga

Aquatic creature
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Problems with shortest path

1. Shortest path heuristic produces 
incorrect answers in the presence 
of redundant edges (which are 
already implied!)

2. Anomalous behavior with ambiguity

Gray

Elephant

Royal elephant

Fat royal elephant

Clyde

q

the redundant edge q, 
expressing that Clyde is an 
Elephant changes polarity of 
conclusion about color

...

...
856 edges

857 edges
adding 2 edges to the
left side changes the
conclusion!

Why should length be a factor?
This network should be ambiguous…
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Specificity criteria

Shortest path is a specificity criterion (sometimes called a 
preemption strategy) which allows us to make admissibility 
choices among competing paths

• It’s not the only possible one

• Consider “inferential distance”: 
not linear distance, but topologically based

– a node a is nearer to node b than to node c 
if there is a path from a to c  through b

– idea: conclusions from b preempt those from c

This handles Clyde → ¬Gray just fine, 
as well as redundant links

• But what if path from b to c has some of its
edges preempted? what if some are redundant? 

•
•
• c

b

a

x

• • • 
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A formalization (Stein)

An inheritance hierarchy  Γ = <V,E>  is a directed, acyclic graph 
(DAG) with positive and negative edges, intended to denote 
“(normally) is-a” and “(normally) is-not-a”, respectively.

– positive edges are written a⋅⋅⋅⋅    x
– negative edges are written a⋅⋅⋅⋅    ¬¬¬¬x

A sequence of edges is a path:
– a positive path is a sequence of one or more positive edges a ⋅⋅⋅⋅…⋅⋅⋅⋅    x
– a negative path is a sequence of positive edges followed by a single negative 

edge a ⋅⋅⋅⋅…⋅⋅⋅⋅    v ⋅⋅⋅⋅    ¬¬¬¬x
Note: there are no paths with more than 1 negative edge.
Also:  there might be 0 positive edges.

A path (or argument) supports a conclusion:
– a ⋅⋅⋅⋅…⋅⋅⋅⋅    x supports the conclusion a → x (a is an x)
– a ⋅⋅⋅⋅…⋅⋅⋅⋅    ¬¬¬¬x supports  a → x (a is not an x)

Note: a conclusion may be supported by many arguments

However:  not all arguments are equally believable...
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Support and admissibility

Γ supports a path a⋅⋅⋅⋅    s1⋅⋅⋅⋅ …⋅⋅⋅⋅ sn ⋅⋅⋅⋅    (¬)x if the corresponding set of 
edges {a⋅⋅⋅⋅    s1,  …, sn ⋅⋅⋅⋅    (¬)x} is in E, and the path is admissible 
according to specificity (see below).

the hierarchy supports a conclusion a → x (or a → x)
if it supports some corresponding path

A path is admissible if every edge in it is admissible.

An edge v ⋅⋅⋅⋅    x is admissible 
in Γ wrt a if there is a positive 
path a ⋅⋅⋅⋅    s1…sn ⋅⋅⋅⋅    v (n ≥ 0) in E   and

1. each edge in a⋅⋅⋅⋅    s1…sn⋅⋅⋅⋅    v is admissible 
in Γ wrt a (recursively);

2. no edge in a⋅⋅⋅⋅    s1…sn⋅⋅⋅⋅    v is redundant in Γ wrt a (see below);
3. no intermediate node a,s1,…,sn is a preemptor of v ⋅⋅⋅⋅    x wrt a (see below).

A negative edge v ⋅⋅⋅⋅    ¬¬¬¬x  is handled analogously.

... ...a v xsi

the edge under
consideration
do we believe it? 
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Preemption and redundancy

A node y along path a ⋅⋅⋅⋅...y...⋅⋅⋅⋅    v is a preemptor of the edge v ⋅⋅⋅⋅    x wrt a 
if y ⋅⋅⋅⋅¬¬¬¬x ∈    E (and analogously for v ⋅⋅⋅⋅    ¬¬¬¬x)

A positive edge b ⋅⋅⋅⋅    w is redundant in Γ wrt node a if there is some 
positive path b⋅⋅⋅⋅    t1…tm⋅⋅⋅⋅    w ∈    E (m ≥ 1), for which

1. each edge in b ⋅⋅⋅⋅    t1…⋅⋅⋅⋅    tm is admissible in Γ wrt a;
2. there are no c and i such that c ⋅⋅⋅⋅    ¬¬¬¬ti is admissible in Γ wrt a; 
3. there is no c such that c ⋅⋅⋅⋅    ¬¬¬¬w is admissible in Γ wrt a.

The edge labelled q above is redundant

The definition for a negative edge b ⋅⋅⋅⋅    ¬¬¬¬w is analogous

for example, in this figure 
the node Whale preempts 
the negative edge from 
Mammal to Aquatic creature 
wrt both Whale and Blue whale

Aquatic creature (= x)

Mammal (= v)

(= y) Whale

Blue whale

q
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Credulous extensions

Γ is a-connected iff for every node x in Γ, there is a path from a to x, and 
for every edge v⋅⋅⋅⋅(¬¬¬¬)x in Γ, there is a positive path from a to v.

In other words, every node and edge is reachable from a

Γ is (potentially) ambiguous wrt a node a if there is some node x ∈ V 
such that both a ⋅⋅⋅⋅    s1…sn ⋅⋅⋅⋅    x  and  a ⋅⋅⋅⋅    t1…tm⋅⋅⋅⋅    ¬¬¬¬x are paths in Γ

A credulous extension of Γ wrt node a is a maximal unambiguous 
a-connected subhierarchy of Γ wrt a

If X is a credulous extension of Γ, then adding an edge of Γ to X makes X
either ambiguous or not a-connected  

Milk-producer

Mammal

Furry
animal

Egg
Layer

Platypus

Mammal

Furry
animal

Egg
Layer

Platypus

Extension 1

Milk-producer

Mammal

Furry
animal

Egg
Layer

Platypus

Extension 2
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Preferred extensions

Credulous extensions do not 
incorporate any notion of 
admissibility or preemption.
Let X and Y be credulous extensions 
of Γ wrt node a.  X is preferred to Y 
iff there are nodes v and x such that:

• X and Y agree on all edges whose endpoints precede v  topologically, 
• there is an edge v⋅⋅⋅⋅x (or v⋅⋅⋅⋅¬¬¬¬x) 

that is inadmissible in Γ, 
• this edge is in Y, 

but not in X.

A credulous extension is 
a preferred extension if there is no other extension that is preferred to it.

Aquatic creature (= x)

Mammal (= v)

Whale (= a)

Aquatic creature

Mammal

Whale

Aquatic creature

Mammal

Whale

is preferred to

this network has two
credulous extensions
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Subtleties

What to believe?
• “credulous” reasoning: choose a preferred extension and believe all the 

conclusions supported
• “skeptical” reasoning:  believe the conclusions from any path that is 

supported by all preferred extensions
• “ideally skeptical” reasoning: believe the conclusions that are supported by 

all preferred extensions
note: ideally skeptical reasoning cannot be computed in a path-based way 
(conclusions may be supported by different paths in each extension)

We’ve been doing “upwards” reasoning
• start at a node and see what can be inherited from its ancestor nodes
• there are many variations on this definition; none has emerged as the 

agreed upon, or “correct” one
• an alternative looks from the top and sees what propagates down

upwards is more efficient
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11.

Defaults
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Strictness of FOL

To reason from P(a) to Q(a), need either
• facts about a itself
• universals, e.g. ∀x(P(x) ⊃ Q(x))

– something that applies to all instances
– all or nothing!

But most of what we learn about the world is in terms of generics
e.g.,  encyclopedia entries for ferris wheels, violins, turtles, wildflowers 

Properties are not strict for all instances, because
• genetic / manufacturing varieties • borderline cases

– early ferris wheels – toy violins

• cases in exceptional circumstances • imagined cases
– dried wildflowers – flying turtles

               etc.
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Generics vs. universals

Similarly, for general properties of individuals 
• Alexander the great: ruthlessness
• Ecuador:  exports
• pneumonia:  treatment

Goal:  be able to say a P is a Q in general, but not necessarily 
It is reasonable to conclude Q(a) given P(a), 
unless there is a good reason not to

Here: qualitative version (no numbers)

✔ Violins have four strings.
vs.

✕ All violins have four strings.
vs.

? All violins that are not E1 or E2 or ... have four strings.
(exceptions usually cannot be enumerated)
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Varieties of defaults (I)

General statements
• prototypical:  The prototypical P is a Q.

Owls hunt at night.

• normal: Under typical circumstances, P's are Q's.
People work close to where they live.

• statistical:   Most P's are Q's.
The people in the waiting room are growing impatient.

Lack of information to the contrary
• group confidence:  All known P's are Q's.

Natural languages are easy for children to learn.

• familiarity:  If a P was not a Q, you would know it.
– an older brother
– very unusual individual, situation or event
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Varieties of defaults (II)

Conventional
• conversational: Unless I tell you otherwise, a P is a Q

“There is a gas station two blocks east.”
 the default:  the gas station is open.

• representational:  Unless otherwise indicated, a P is a Q
the speed limit in a city

Persistence
• inertia:  A P is a Q if it used to be a Q.

– colours of objects
– locations of parked cars (for a while!)

Here: we will use “Birds fly” as a  typical default.
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Closed-world assumption

Reiter's observation: 
There are usually many more -ve facts than +ve facts!

Example:  airline flight guide provides
DirectConnect(cleveland,toronto) DirectConnect(toronto,northBay) 
DirectConnect(toronto,winnipeg)  ...

but not:  ¬DirectConnect(cleveland,northBay)

Conversational default, called CWA:
only +ve facts will be given, relative to some vocabulary

But note:   KB ≠  -ve facts     (would have to answer:  “I don't know”)

Proposal:  a new version of entailment:  KB =c α    iff   KB ∪ Negs = α
where   Negs = {¬p | p atomic and KB≠ p}

Note: relation to negation as failure

Gives:  KB =c  +ve facts and -ve facts

a common pattern:
KB´ =  KB  ∪  ∆
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Properties of CWA

For every α  (without quantifiers), KB =c α   or  KB =c ¬α
Why?   Inductive argument:

– immediately true for atomic sentences
– push ¬ in,  e.g.  KB = ¬¬α  iff  KB = α
– KB =  (α ∧ β)    iff   KB = α  and  KB = β
– Say  KB ≠c (α ∨ β). Then KB ≠c α and  KB ≠c β.

So by induction, KB =c ¬α and KB =c ¬β.  Thus,  KB =c ¬(α ∨ β).

CWA is an assumption about complete knowledge
never any unknowns, relative to vocabulary

In general, a KB has incomplete knowledge,
e.g. Let KB be (p ∨ q).  Then KB = (p ∨ q),  

but KB≠ p,   KB≠ ¬p,  KB≠ q,  KB≠ ¬q

With CWA, have:  If  KB =c (α ∨ β),  then  KB =c α  or  KB =c β.

similar argument to above
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Query evaluation

With CWA can reduce queries (without quantifiers) to the atomic case:
KB =c (α ∧ β)   iff  KB =c α   and  KB =c β
KB =c (α ∨ β)   iff  KB =c α   or   KB =c β
KB =c ¬(α ∧ β)   iff  KB =c ¬α   or   KB =c ¬β
KB =c ¬(α ∨ β)   iff  KB =c ¬α   and   KB =c ¬β

KB =c ¬¬α    iff  KB =c α
reduces to:    KB =c  ρ,   where ρ  is a literal

If   KB ∪ Negs   is consistent,  get  KB =c ¬α   iff  KB ≠c α
reduces to:    KB =c  p,   where p is atomic

If atoms stored as a table, deciding if KB =c α  is like DB-retrieval:
• reduce query to set of atomic queries
• solve atomic queries by table lookup

Different  from ordinary logic reasoning (e.g. no reasoning by cases)
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Consistency of CWA

If KB is a set of atoms, then KB ∪ Negs  is always consistent

Also works if KB has conjunctions and if KB has only negative 
disjunctions

If KB contains (¬p ∨ ¬q).  Add both ¬p, ¬q.

Problem when KB = (α ∨ β),  but KB≠ α   and  KB≠ β
e.g.  KB = (p ∨ q)    Negs = {¬p, ¬q}  

 KB ∪ Negs  is inconsistent and so for every α,  KB =c α !

Solution:  only apply CWA to atoms that are “uncontroversial”
One approach:  GCWA

Negs  = {¬p  |  If  KB = (p ∨ q1 ∨ ... ∨ qn)  then KB =  (q1 ∨ ... ∨ qn) }
When KB is consistent, get:

– KB ∪ Negs  consistent
– everything derivable is also derivable by CWA   
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Quantifiers and equality

So far, results do not extend to wffs with quantifiers
can have KB ≠c ∀x.α  and KB ≠c ¬∀x.α

e.g.  just because for every t, we have KB =c ¬DirectConnect(myHome, t) 
does not mean that KB =c ∀x[¬DirectConnect(myHome, x)]

But may want to treat KB as providing complete information about what 
individuals exist

Define:  KB =cd  α   iff   KB ∪ Negs ∪ Dc  = α
where Dc  is domain closure: ∀x[x=c1 ∨ ... ∨ x=cn], 

Get: KB =cd ∃x.α  iff  KB =cd  α[x/c],  for some c appearing in the KB
KB =cd ∀x.α  iff  KB =cd  α[x/c],  for all c appearing in the KB

Then add:  Un  is unique names:  (ci ≠ cj),  for i ≠ j

Get: KB =cdu (c = d) iff c and d  are the same constant

  full recursive query evaluation

where the ci are all the constants
appearing in KB (assumed finite)
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Non-monotonicity

Ordinary entailment is monotonic
If KB = α, then KB*= α,  for any KB ⊆ KB* 

But CWA entailment is not monotonic
Can have KB =c α,  KB ⊆ KB',  but KB' ≠c α

e.g. {p} =c ¬q,  but  {p, q} ≠c ¬q

Suggests study of non-monotonic reasoning
• start with explicit beliefs
• generate implicit beliefs non-monotonically, taking defaults into account
• implicit beliefs may not be uniquely determined (vs. monotonic case)

Will consider three approaches:
• minimal entailment:  interpretations that minimize abnormality
• default logic:  KB as facts + default rules of inference
• autoepistemic logic:  facts that refer to what is/is not believed
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Minimizing abnormality

CWA makes the extension of all predicates as small as possible
by adding negated literals

Generalize:  do this only for selected predicates
Ab predicates used to talk about typical cases

Example KB:

Would like to conclude by default Flies(tweety),  but  KB |≠ Flies(tweety)
because there is an interpretation ℑ   where   I[tweety]  ∈  I [Ab]

Solution: consider only interpretations where
I[Ab] is as small as possible, relative to KB

for example:  KB requires that  I[chilly]  ∈  I[Ab]

Generalizes to many Abi predicates

Bird(chilly),  ¬Flies(chilly),
Bird(tweety),  (chilly ≠ tweety),
∀x[Bird(x) ∧ ¬Ab(x) ⊃ Flies(x)] All birds that 

are normal fly

this is sometimes 
called “circumscription”
since we circumscribe
the Ab predicate
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Minimal entailment

Given two interps over the same domain, ℑ1 and ℑ2

ℑ1 ≤ ℑ2  iff  I1[Ab] ⊆ I2[Ab]    for every Ab predicate

ℑ1 < ℑ2  iff  ℑ1 ≤ ℑ2  but not ℑ2 ≤ ℑ1

Define a new version of entailment, |=≤  by
KB |=≤ α    iff  for every ℑ,  if  ℑ |= KB  and  no ℑ*< ℑ  s.t. ℑ* |= KB

   then  ℑ |= α.

So α must be true in all interps satisfying KB that are minimal in abnormalities

Get:   KB |=≤ Flies(tweety)
because if interp satisfies KB and is minimal, only I[chilly] will be in I[Ab]

Minimization need not produce a unique interpretation:
Bird(a),  Bird(b),  [¬Flies(a) ∨ ¬Flies(b)]            yields two minimal interpretations

KB |≠≤ Flies(a), KB |≠≤ Flies(b),  KB |=≤ Flies(a) ∨ Flies(b)
Different from the CWA:  no inconsistency!
But stronger than GCWA:  conclude a or b flies

read:  ℑ1 is more normal than ℑ2
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Fixed and variable predicates

Imagine KB as before + ∀x[Penguin(x)  ⊃  Bird(x) ∧ ¬Flies(x)]
Get:   KB |= ∀x[Penguin(x) ⊃ Ab(x)]
So minimizing Ab also minimizes penguins:   KB |=≤ ∀x¬Penguin(x)

McCarthy's definition:  Let P and Q be sets of predicates
ℑ1 ≤ ℑ2  iff  same domain and  

1. I1[P] ⊆ I2[P], for every P ∈ P   Ab predicates

2. I1[Q] = I2[Q], for every Q ∉ Q   fixed predicates

so only predicates in Q are allowed to vary

Get definition of  |=≤  that is parameterized by what is minimized and 
what is allowed to vary
Previous example: minimize Ab, but allow only Flies to vary. 
Problems: • need to decide what to allow to vary

• cannot conclude ¬Penguin(tweety) by default!
only get default (¬Penguin(tweety) ⊃ Flies(tweety))
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Default logic

Beliefs as deductive theory
explicit beliefs  = axioms 
implicit beliefs  = theorems  =  least set closed under inference rules

e.g.  If we can prove α and (α ⊃ β),  then infer β

Would like to generalize to default rules:
If can prove Bird(x), but cannot prove ¬Flies(x), then infer Flies(x).

Problem: how to characterize theorems
cannot write a derivation, since do not know when to apply default rules
no guarantee of unique set of theorems

If cannot infer p, infer q   +  If cannot infer q, infer p    ??

Solution:  default logic 
no notion of theorem
instead, have extensions:  sets of sentences that are “reasonable” beliefs,

      given explicit facts and default rules
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Extensions

Default logic KB uses two components: KB = ‹F,D›
• F  is a set of sentences (facts)
• D is a set of default rules:   triples  ‹ α : β ////    γ ›  read as

If you can infer α, and β is consistent, then infer γ
  α:  the prerequisite,  β:  the justification,   γ:   the conclusion

e.g.  ‹Bird(tweety) : Flies(tweety)  /  Flies(tweety)› 
treat  ‹Bird(x) : Flies(x) / Flies(x)›  as set of rules

Default rules where β = γ are called normal  and  write as  ‹α ⇒ β› 
will see later a reason for wanting non-normal ones

A set of sentences E is an extension of ‹F,D›  iff for every sentence π,
E satisfies the following:

π ∈ E  iff  F ∪ ∆  |= π,    where  ∆  =  {γ  |  ‹ α : β //// γ › ∈ D,  α ∈ E, ¬β ∉ E}

So, an extension E is the set of entailments of F ∪ {γ}, where the γ are 
assumptions from D.

to check if E is an extension, guess at ∆ and show that it satisfies the above constraint 
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Example

Suppose KB has
F = Bird(chilly),  ¬Flies(chilly),   Bird(tweety)
D = ‹Bird(x) ⇒ Flies(x)›

then there is a unique extension,  where  ∆  =  Flies(tweety)
• This is an extension since tweety is the only t for this ∆  such that Bird(t) ∈ E and ¬Flies(t) ∉ E.

• No other extension, since this applies no matter what Flies(t) assumptions are in ∆.

But in general can have multiple extensions:
F = {Republican(dick), Quaker(dick)}      D = { ‹Republican(x) ⇒ ¬Pacifist(x)›,

    ‹Quaker(x) ⇒ Pacifist(x)› }
Two extensions:  E1  has ∆ = ¬Pacifist(dick);     E2  has ∆ = Pacifist(dick)

Which to believe?
credulous:  choose an extension arbitrarily
skeptical:  believe what is common to all extensions

Can sometimes use non-normal defaults to avoid conflicts in defaults
‹ Quaker(x) : Pacifist(x) ∧¬Republican(x) / Pacifist(x) ›

but then need to consider all possible interactions in defaults!
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Unsupported conclusions

Extension tries to eliminate facts that do not result from either F or D.
e.g., we do not want Yellow(tweety) and its entailments in the extension

But the definition has a problem:
Suppose F = {}  and D = ‹ p : True / p ›.
Then E = entailments of {p} is an extension

since  p ∈ E  and ¬True ∉ E, for above default

However, no good reason to believe p!
Only support for p is default rule, which requires  p itself as a prerequisite
So default should have no effect.  Want one extension:  E = entailments of {}

Reiter's definition:
For any set S, let Γ(S) be the least set containing F, closed under 
entailment, and satisfying

if ‹α : β //// γ› ∈ D,  α ∈ Γ(S),  and ¬β ∉ S,  then γ ∈ Γ(S).

A set E is an extension of ‹F, D›  iff  E = Γ(E).
called a fixed point of the Γ operator

note: not Γ(S)
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Autoepistemic logic

One disadvantage of default logic is that rules cannot be 
combined or reasoned about

‹α : β //// γ›  ➟  ‹α : β //// (γ ∨ δ)›

Solution: express defaults as sentences in an extended language 
that talks about belief explicitly

for any sentence α, we have another sentence Bα 

Bα says "I believe α":  autoepistemic logic
e.g.  ∀x[Bird(x) ∧ ¬B¬Flies(x)  ⊃ Flies(x)]

All birds fly except those that I believe to not fly  =
Any bird not believed to be flightless flies.

No longer expressing defaults using formulas of FOL.
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Semantics of belief

These are not sentences of FOL, so what semantics and 
entailment?

• modal logic of belief provide semantics
• for here:  treat Bα as if it were an new atomic wff
• still get entailment: ∀x[Bird(x) ∧ ¬B¬Flies(x)  ⊃  Flies(x) ∨ Run(x)]

Main property for set of implicit beliefs, E:
1. If E |= α  then α ∈ E. (closed under entailment)
2. If α ∈ E  then Bα ∈ E. (positive introspection)
3. If α ∉ E  then ¬Bα ∈ E. (negative introspection)

Any such set of sentences is called stable
Note:  if E contains p but does not contain q, it will contain

Bp, BBp, BBBp, ¬Bq,  B¬Bq,  B(Bp ∧¬Bq),  etc.
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Stable expansions

Given KB, possibly containing B operators, our implicit beliefs should be 
a stable set that is minimal.

Moore's definition: A set of sentences E is called a stable expansion of 
KB iff it satisfies the following:

π ∈ E   iff   KB ∪ ∆  |= π,    where  ∆ = {Bα | α ∈ E} ∪ {¬Bα | α ∉ E}

fixed point of another operator

analogous to the extensions of default logic

Example:  for KB = { Bird(chilly),  ¬Flies(chilly),   Bird(tweety),
  ∀x[Bird(x) ∧ ¬B¬Flies(x)  ⊃  Flies(x)] }

get a unique stable expansion containing Flies(tweety)

As in default logic, stable expansions are not uniquely determined
KB = {(¬Bp ⊃ q), (¬Bq ⊃ p)} KB = {(¬Bp ⊃ p)}     (self-defeating default)

2 stable expansions       no stable expansions!
(one with p, one with q)     so what to believe?
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Enumerating stable expansions

Define: A wff is objective if it has no B operators

When a KB is propositional, and B operators only dominate 
objective wffs, we can enumerate all stable expansions using the 
following:

1. Suppose Bα1, Bα2, ... Bαn are all the B wffs in KB.

2. Replace some of these by True and the rest by ¬True in KB and simplify.  
Call the result KB° (it’s objective).

at most 2n  possible replacements

3. Check that for each αi, 
– if Bαi was replaced by True, then KB° |= αi

– if Bαi was replaced by ¬True, then KB° |≠ αi

4. If yes, then KB° determines a stable expansion.
entailments of KB° are the objective part
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Example enumeration

For KB = { Bird(chilly),  ¬Flies(chilly),   Bird(tweety),
     [Bird(tweety) ∧ ¬B¬Flies(tweety)  ⊃  Flies(tweety)],
     [Bird(chilly) ∧ ¬B¬Flies(chilly)  ⊃  Flies(chilly)] }

Two B wffs:  B¬Flies(tweety) and B¬Flies(chilly), 
so four replacements to try.

Only one satisfies the required constraint:  
B¬Flies(tweety) → ¬True, 
B¬Flies(chilly) → True

Resulting KB° has 
(Bird(tweety) ⊃  Flies(tweety)) 

and so entails
 Flies(tweety)

as desired.
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More ungroundedness

Definition of stable expansion may not be strong enough
KB = {(Bp ⊃ p)} has 2 stable expansions:

– one without p and with ¬Bp
corresponds to KB° = {}

– one with p and Bp.
corresponds to KB° = {p}

But why should p be believed?
only justification for having p is having Bp!

similar to problem with default logic extension

Konolige's definition:
A grounded stable expansion is a stable expansion that is minimal wrt to 
the set of sentences without B operators.

rules out second stable expansion

Other examples suggest that an even stronger definition is required!
can get an equivalence with Reiter's definition of extension in default logic
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12.

Vagueness, Uncertainty 
and Degrees of Belief
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Noncategorical statements

Ordinary commonsense knowledge quickly moves away from 
categorical statements like “a P is always (unequivocably) a Q”

There are many ways in which we can come to less than 
categorical information

• things are usually  (almost never, occasionally, seldomly, rarely, almost 
always) a certain way

• judgments about how good an example something is
e.g., barely rich, a poor example of a chair, not very tall

• imprecision of sensors
e.g., the best you can do is to get within +/-10%

• reliability of sources of information
e.g., “most of the time he’s right on the money”

• strength/confidence/trust in generic information or deductive rules

Conclusions will not “follow” in the usual sense
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Weakening a universal

There are at least 3 ways a universal like ∀x P(x) can be made ro 
be less categorical: 

∀x P(x)

strength of quantifier 
(“95% of birds fly”)
statistical interpretation/ 
probabilistic sentences

applicability of predicate/
degree of membership 
(“fairly tall”)
flexible membership 
vague predicates

degree of belief in whole 
sentence (“80% 
confidence in this fact”)
uncertain knowledge/ 
subjective probability
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Objective probability

Statistical (frequency) view of sentences
objective: does not depend on who is assessing the probability

Always applied to collections
can not assign probabilities to (random) events that are not members of 
any obvious repeatable sequence:

– ok for  “the probability that I will pick a red face card from the deck”
– not ok for  “the probability that the Blue Jays will win the World Series this Fall”
– “the probability that Tweety flies is between .9 and .95” is always false 

(either Tweety flies or not)

Can use probabilities to correspond to English words like “rarely,” 
“likely,” “usually”

generalized quantifiers: “most,” “many,” “few”
For most x, Q(x)    vs.   For all x, Q(x)
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The basic postulates

Numbers between 0 and 1 representing frequency of an event in 
a (large enough) random sample

extremes:  0 = never happens;   1 = always happens

Start with set U of all possible occurrences.  An event a is any subset of U.  
A probability measure is any function Pr  from events to [0,1] satisfying:

• Pr(U) = 1.
• If a1, ..., an are disjoint events, then  Pr(∪ai) = Σ Pr(ai)

Conditioning: the probability of one event may depend on its 
interaction with others

Pr(a|b)  =  probability of a, given b  =  Pr(a∩b) / Pr(b)

Conditional independence: 
event a is judged independent of event b conditional on background 
knowledge s if knowing that b happened does not affect the probability of a

Pr(a|s) = Pr(a|b,s)           (note: CI is symmetric)

Note: without independence, Pr(a|s) and Pr(a|b,s) can be very different. 
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Some useful consequences

Conjunction:  
Pr(ab)  =  Pr(a|b) ⋅ Pr(b)

conditionally independent:  Pr(ab)  =  Pr(a) ⋅ Pr(b)

Negation:  

Pr(¬s) = 1 – Pr(s)
Pr(¬s|d) = 1 – Pr(s|d)

If b1, b2, ..., bn are pairwise disjoint and exhaust all possibilities, then 
Pr(a)  =  ∑ Pr(abi)  =  ∑ Pr(a | bi) ⋅ Pr(bi)  
Pr(a | c)  =  ∑ Pr(abi | c) 

Bayes’ rule: 
Pr(a|b)  =  Pr(a) ⋅ Pr(b|a) / Pr(b)

if a is a disease and b is a symptom, it is usually easier to estimate  
numbers on RHS of equation  (see below, for subjective probabilities)
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Subjective probability

It is reasonable to have non-categorical beliefs even in categorical 
sentences

• confidence/certainty in a sentence
• “your” probability = subjective

Similar to defaults
• move from statistical/group observations to belief about individuals
• but not categorical: how certain am I that Tweety flies?

“Prior probability”   Pr(x|s)  (s = prior state of information or 
background knowledge)

“Posterior probability”   Pr(x|E,s)  (E = new evidence)

Need to combine evidence  from various sources
how to derive new beliefs from prior beliefs and new evidence?

want explanations;   probability is just a summary
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From statistics to belief

Would like to go from statistical information (e.g., the probability that a 
bird chosen at random will fly) to a degree of belief (e.g., how certain are 
we that this particular bird, Tweety, flies)
Traditional approach is to find a reference class for which we have 
statistical information and use the statistics for that class to compute an 
appropriate degree of belief for an individual
Imagine trying to assign a degree 
of belief to the proposition 
“Eric (an American male) is tall” 
given facts like these
This is called direct inference
Problem: individuals belong to many classes

• with just A → .2
• A,B,C - prefer more specific → .25
• A,C - no statistics for more specific class → .2?
• B - are Californians a representative sample?

A) 20% of American males are tall
B) 25% of Californian males are tall
C) Eric is from California
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Basic Bayesian approach

Would like a more principled way of calculating subjective 
probabilities

Assume we have n atomic propositions p1,..., pn we care about. 
A logical interpretation I can be thought of as a specification of 
which pi are true and which are false.

Notation:  for n=4, we use 〈¬p1,p2,p3,¬p4〉 to mean the interpretation 
where only p2 and  p3 are true.

A joint probability distribution J, is a function from interpretations 
to [0,1] satisfying Σ J(I) = 1 (where J(I) is the degree of belief in the 
world being as per I).

The degree of belief in any sentence α:  Pr(α)  =  Σ J(I)
Example:  Pr(p2 ∧¬p4)   = J(〈¬p1, p2,   p3,¬p4〉) +

J(〈¬p1, p2,¬p3,¬p4〉) +
J(〈   p1, p2,   p3,¬p4〉) +
J(〈   p1, p2,¬p3,¬p4〉).

=I   α

= Pr(p_2) * (1-Pr(p_4)
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Problem with the approach

To calculate the probabilities of arbitrary sentences involving the 
pi, we would need to know the full joint distribution function. 

For n atomic sentences, this requires knowing 2n numbers 
impractical for all but very small problems

Would like to make plausible assumptions to cut down on what 
needs to be known.

In the simplest case, all the atomic sentences are independent.  
This gives us that

J(〈P1,...,Pn〉) =  Pr(P1 ∧ ... ∧ Pn) = ∏ Pr(Pi)  (where Pi is either pi or ¬pi)

and so only n numbers are needed.

Bu this assumption is too strong.  A better assumption:
the probability of each Pi only depends on a small number of Pj, 
and the dependence is acyclic.
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Belief networks

Represent all the atoms in a belief network (or Bayes’ network).

Assume:     J(〈P1,...,Pn〉)  =  ∏ Pr(Pi | c(Pi))

Example:

So:  J(p1,p2,p3,p4)  = Pr(p1) ⋅ Pr(p2 | p1) ⋅ Pr(p3 | p1) ⋅ Pr(p4 | p2,p3)
=  Pr(p1) ⋅ [1 − Pr(p2 | p1)] ⋅ Pr(p3 | p1) ⋅ [ 1 − Pr(p4 | p2,p3)]

To fully specify the joint distribution (and therefore probabilities over any 
subset of the variables), we only need  Pr(P | c(P)) for every node P.

If node P  has parents Q1, ..., Qm, then we need to know the values of
Pr(p | q1,q2,... qm), Pr(p | q1,q2 ... qm), Pr(p | q1,q2,... qm), ..., Pr(p | q1,q2,... qm).

         n ⋅ 2m numbers  <<  2n numbers !

c(P) = parents of node P
where Pr(c(Pi)) > 0

P1
P2

P3

P4

J(〈P1,P2,P3,P4〉)  = 
Pr(P1) ⋅ Pr(P2 | P1) ⋅
    Pr(P3 | P1) ⋅    Pr(P4 | P2,P3).

How many probabilities?
for p_1? 1
for p_2? 2 Pr(p_2|p_1) and Pr(p_2|~p_1)
for p_3? 2
for p_4? 4 Pr(p_4|p_2,p_3), Pr(p_4|p_2,~p_3)…
total = 9
Without BN need 2^4 = 16
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Using belief networks

Assign a node to each variable in the domain and draw arrows 
toward each node P from a select set c(P) of nodes perceived to be 
“direct causes” of P.

From the DAG, we get that
J(〈FO, LO, BP, DO, HB〉)   = 

Pr(FO)  ×   Pr(LO | FO)  ×  Pr(BP)  ×  Pr(DO | FO, BP)  ×  Pr(HB | DO)

Using this formula and the 10 numbers above, we can calculate the 
full joint distribution

family-out bowel-problem

light-on dog-out

hear-bark

Pr(fo)=.15 Pr(bp)=.01

Pr(lo|fo)=.6
Pr(lo|¬fo)=.05

Pr(hb|do)=.7
Pr(hb|¬do)=.01

Pr(do|fo,bp)=.99
Pr(do|fo,¬bp)=.9
Pr(do|¬fo,bp)=.97
Pr(do|¬fo,¬bp)=.3

arcs can often be 
interpreted as 
causal connections

Yves Lesperance
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Example calculation

Suppose we want to calculate Pr(fo | lo, ¬hb)
Pr(fo | lo, ¬hb)  =  Pr(fo, lo, ¬hb)  /  Pr(lo, ¬hb)     where

  Pr(fo, lo, ¬hb)  =  ∑ J(〈fo, lo, BP, DO, ¬hb〉)  first 4 values below

  Pr(lo, ¬hb)  =  ∑ J(〈FO, lo, BP, DO, ¬hb〉)      all 8 values below

J(〈fo,lo,bp,do,¬hb〉) = .15 ⋅ .6 ⋅ .01 ⋅ .99 ⋅ .3 = .0002673 +
J(〈fo,lo,bp,¬do,¬hb〉) = .15 ⋅ .6 ⋅ .01 ⋅ .01 ⋅ .99 = .00000891 +
J(〈fo,lo,¬bp,do,¬hb〉) = .15 ⋅ .6 ⋅ .99 ⋅ .9 ⋅ .3 = .024057 +
J(〈fo,lo,¬bp,¬do,¬hb〉) = .15 ⋅ .6 ⋅ .99 ⋅ .1 ⋅ .99 = .0088209 +
J(〈¬fo,lo,bp,do,¬hb〉) = .85 ⋅ .05 ⋅ .01 ⋅ .97 ⋅ .3 = .000123675
J(〈¬fo,lo,bp,¬do,¬hb〉) = .85 ⋅ .05 ⋅ .01 ⋅ .03 ⋅ .99 = .0000126225 +
J(〈¬fo,lo,¬bp,do,¬hb〉) = .85 ⋅ .05 ⋅ .99 ⋅ .3 ⋅ .3 = .00378675
J(〈¬fo,lo,¬bp,¬do,¬hb〉) = .85 ⋅ .05 ⋅ .99 ⋅ .7 ⋅ .99 = .029157975

Pr(fo | lo, ¬hb)  =  .03316 / .06624  = .5
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Bypassing the full calculation 

Often it is possible to calculate some probability values without 
first calculating the full joint distribution

Example:  what is  Pr(fo | lo)?

by Bayes rule:   Pr(fo | lo) = Pr(lo | fo) ⋅Pr(fo) / Pr(lo)

but:  Pr(lo)  =  Pr(lo | fo) ⋅ Pr(fo)  +  Pr(lo | fo) ⋅ Pr(fo)

But in general, the problem is NP-hard
• the problem is even hard to approximate in general

• much of the attention on belief networks involves special-purpose 
procedures that work well for restricted topologies

✔ ✔ ?

✔ ✔ ✔ ✔
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Influence diagrams

Graphical knowledge representation for decision problems
• nodes represent propositions or quantities of interest, including decision 

variables, states of the world, and preference values
• arcs represent influence or relevance (probabilistic or deterministic 

relationships between the variables)
coronary
artery disease

value

life
quality

future
chest pain

life
years

heart
attack

test
results

chest
pain

angiogram
test

heart
surgery

cost

chance nodes (circles)
value nodes (diamonds)
decision nodes (rectangles)
deterministic nodes (double circles)

Node types
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Dempster-Shafer theory

Another attempt at evidence-pooling
for cases where there is uncertainty about probability

Uses two-part measure: belief and plausibility
these are lower and upper bounds on probabilities of a proposition

Set membership questions like Age(x)∈Q cease to be applicable; more 
natural to ask about the possibility of Q given the table above of Age(x)

if Q=[20,25],  it is possible  that Age(a)∈Q,   not possible that Age(c)∈Q, 
certain that Age(d)∈Q

What is the probability that the age of someone is in the range [20,25]? 
    belief=2/5; plausibility=3/5.  So answer is [.4,.6].

DS combination rule → multiple sources

Name    Age
a  [ 22,26]
b  [ 20,22]
c  [ 30,35]
d  [ 20,22]
e  [ 28,30]

{20,21,22} is the set of 
possibilities of Age(d), 
or the possibility 
distribution of Age(d)

Relational
DB example
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Vague predicates

Not every predicate fits every object exactly (nor fails completely)
• Categories with degrees of membership

e.g., fast, old, distant
• Problem: reference sets

– big fly vs. big elephant

We call predicates that are thought of a holding to a degree 
vague predicates (or fuzzy predicates).

For each vague predicate, there is a precise base function in 
terms of which it is understood.

• tall: height
• rich: net worth
• bald: percent hair cover

30 60

middle-aged

age in years (the base function)

1

.5

0

young old

A degree curve maps 
the base function to [0,1].
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Conjunction and disjunction

As with probabilities, we need boolean combinations of properties
Negation is as with probability:

degree of membership in ¬P  =  1 –  degree of membership in P

But handle conjunction with MIN and disjunction with MAX!
Example:

Suppose an individual has very high (.95) degree of membership in 
predicates Tall, Coordinated, Strong, ... for 20 predicates.
Then want to say very high (.95) degree of membership in 
(Tall ∧ Coordinated ∧ Strong ∧ ...)

as opposed to
Suppose there is a very high (.95) probability of being Tall, of being 
Coordinated, of being Strong, ... for 20 predicates.
The probability of being all of them at the same time 
(Tall ∧ Coordinated ∧ Strong ∧ ...) can be low.

Other operators: “very”  =  square;    “somewhat” = square root
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Rules with vague predicates

Imagine degrees of fraud = {high, somewhat high, medium, 
somewhat low, low}, based on a numeric universe of discourse (to 
some maximum amount)

Construct a set of rules that indicate degrees of fraud based on 
authorizations and difference in amount of recorded accountability 
and actual stock:

1) If  number of authorizations is often 
then fraud is somewhat high

2) If amount is larger than usual 
then high fraud

Want to estimate the amount of fraud given inputs

10 authorizations,
amount of $60K
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Applying rules

Use degree curves for “somewhat high”, “larger than usual” etc.
Can combine with rules in a way that allows conclusion of rule to 
apply to the degree that the condition of the rule applied.

1 1

7 10 70k40k

1 1

70k40k

often

60k

high
fraud

somewhat
high
fraud

conclusion:
g =center 
of gravity

g

larger
than
usual

1

70k40k

1

70k40k

Given: 10 authorizations
amount of 60k
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13.

Explanation and 
Diagnosis
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Abductive reasoning

So far: reasoning has been primarily deductive:
• given KB,  is α an implicit belief?
• given KB,  for what x is α[x]  an implicit belief?

Even default / probabilistic reasoning has a similar form

Now consider a new type of question:
Given KB, and an α that I do not believe, 

what would be sufficient to make me believe that α was true?
or what else would I have to believe for α to become an implicit belief?
or what would explain  α being true?

Deduction:  given (p ⊃ q), from p, deduce q 
Abduction:  given (p ⊃ q), from q, abduce p 

p   is sufficient for q     or    one way for q to be true is for p to be true

Also induction:  given p(t1), q(t1), ..., p(tn), q(tn),  induce  ∀x (p(x) ⊃ q(x))

Can be used for causal reasoning: (cause ⊃ effect)
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Diagnosis

One simple version of diagnosis uses abductive reasoning
KB has facts about symptoms and diseases

including:   (Disease  ∧  Hedges  ⊃ Symptoms)
Goal:  find disease(s) that best explain observed symptoms

Observe:  we typically do not have knowledge of the form
(Symptom  ∧ ...  ⊃  Disease)

so reasoning is not deductive
Example:

Non-uniqueness:  multiple equally good explanations  
+  logical equivalences:  (untreated ∧ ¬¬arthritis)

(tennis-elbow ⊃ sore-elbow)
(tennis-elbow ⊃ tennis-player)
(arthritis ∧ untreated  ⊃ sore-joints)
(sore-joints ⊃ sore-elbow ∧ sore-hip)

Explain:  sore-elbow

Want: tennis-elbow,  
(arthritis ∧ untreated),
...  
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Adequacy criteria

Given KB, and β to be explained, we want an α  such that 
1. α is sufficient to account for β

KB ∪ {α} |= β     or    KB |= (α ⊃ β)

2. α is not ruled out by KB
KB ∪ {α} is consistent    or    KB  |≠ ¬α

3. α is as simple as possible
parsimonious :  as few terms  as possible

explanations should not unnecessarily
strong or unnecessarily weak

4. α is in the appropriate vocabulary
atomic sentences of α should be drawn 
from H, possible hypotheses in terms of 
which explanations are to be phrased

e.g. diseases, original causes

Call such α an explanation of β wrt KB

otherwise (p ∧ ¬p) would count
as an explanation

e.g. KB = {(p⊃q), ¬r}  and  β = q
α = (p ∧ s ∧ ¬t)  is too strong
α = (p ∨ r)  is too weak

e.g. sore-elbow   explains   sore-elbow
trivial explanation

sore-joints  explains  sore-elbow
may or may not be suitable
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Some simplifications

From criteria of previous slide, we can simplify explanations  in 
the propositional case, as follows:

• To explain an arbitrary wff β,  it is sufficient to choose a new letter p,  add  
(p ≡ β)  to KB, and then explain p.

KB  |= (E ⊃ β)   iff   KB ∪ {(p ≡ β)} |= (E ⊃ p)
• Any explanation will be (equivalent to) a conjunction of literals 

(that is, the negation of a clause)
Why?  If α is a purported explanation, and DNF[α] = (d1 ∨ d2 ∨ ... ∨ dn)
then each di  is also an explanation that is no less simple than α

A simplest explanation is then the negation of a clause with a 
minimal set of literals

So:  to explain a literal ρ, it will be sufficient to find the minimal 
clauses C (in the desired vocabulary) such that  

1. KB |= (¬C ⊃ ρ)   or   KB |= (C ∪ {ρ}) sufficient

2. KB |≠ C consistent
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Prime implicates

A clause C is a prime implicate of a KB iff
1. KB |= C
2. For no C* ⊂ C,  KB |= C*

Example:   KB = {(p∧q∧r ⊃ g), (¬p∧q ⊃ g), (¬q∧r ⊃ g)}
Prime implicates:  

(p ∨¬q ∨g),  
(¬r ∨ g),       and 
(p ∨ ¬p), (g ∨ ¬g), ...

For explanations:
• want minimal C such that KB |= (C ∪ {ρ}) and KB |≠ C
• so: find prime implicates C such that ρ ∈ C;

then ¬(C – ρ)  must be an explanation for ρ 

Example:  explanations for g in example above
• 3 prime implicates contain g, so get 3 explanations:  (¬p∧q),  r,  and  g 

Note:  tautology (a∨¬a) is always a prime 
implicate unless  KB |= a  or  KB |= ¬a

Note:  For any clause C,  if KB |= C, then 
some subset of C  is a prime implicate
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Computing explanations

Given KB, to compute explanations of literal ρ in vocabulary H:
calculate the set {¬(C – ρ) |  C  is a prime implicate and ρ ∈ C} 

                                  prime implicates containing  ρ

But how to compute prime implicates?
Can prove: Resolution is complete for non-tautologous prime implicates

KB |= C  iff  KB → C         completeness for [] is a special case!

So:  assuming KB is in CNF, generate all resolvents in language H, and 
retain those containing ρ that are minimal

Could pre-compute all prime implicates, but there may be 
exponentially many, even for a Horn KB

Example: atoms:  pi,  qi,  Ei,  Oi,  0 ≤ i < n  +  En, On

wffs: Ei ∧ pi  ⊃  Oi+1, Ei ∧ qi  ⊃  Ei+1,
Oi ∧ pi  ⊃  Ei+1, Oi ∧ qi  ⊃  Oi+1,

  E0,  ¬O0

explain: En



KR & R              ©  Brachman & Levesque  2005   229

Circuit example

Components
Gate(x)  ≡  Andgate(x)  ∨  Orgate(x)  ∨  Xorgate(x)

Andgate(a1),   Andgate(a2),    
Orgate(o1),
Xorgate(b1),    Xorgate(b2)

Fulladder(f) the whole circuit

Connectivity
in1(b1) = in1(f),  in2(b1) = in2(f)

in1(b2) = out(b1),  in2(b2) = in3(f)

in1(a1) = in1(f),  in2(a1) = in2(f)

in1(a2) = in3(f),  in2(a2) = out(b1)

in1(o1) = out(a2),  in2(o1) = out(a1)

out1(f) = out(b2),  out2(f) = out(o1)

b1
b2

a2

a1
o1

Full Adder



KR & R              ©  Brachman & Levesque  2005   230

Circuit behaviour

Truth tables for logical gates
and(0,0) = 0,   and(0,1) = 0, ... or(0,0) = 0,   or(0,1) = 1, ...
xor(0,0) = 0,   xor(0,1) = 1, ...

Normal behaviour
Andgate(x)  ∧  ¬Ab(x)  ⊃  out(x) = and(in1(x), in2(x))
Orgate(x)  ∧  ¬Ab(x)  ⊃  out(x) = or(in1(x), in2(x))
Xorgate(x)  ∧  ¬Ab(x)  ⊃  out(x) = xor(in1(x), in2(x))

Abnormal behaviour: fault models
Examples

[Orgate(x)  ∨  Xorgate(x)] ∧ Ab(x)   ⊃  out(x) = in2(x) (short circuit)

Other possibilities ...
– some abnormal behaviours may be inexplicable
– some may be compatible with normal behaviour on certain inputs 
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Abductive diagnosis

Given KB as above + input settings
e.g. KB  ∪  {in1(f) = 1, in2(f) = 0, in3(f) = 1}

we want to explain observations at outputs
e.g.  (out1(f) = 1  ∧  out2(f) = 0)

in the language of Ab

Compute by “propositionalizing”:
For the above, x  ranges over 5 components and  u, v  range over 0 and 1.  

Easiest to do by preparing a table ranging over all Ab literals, and 
seeing which conjunctions entail the observations.

We want conjunction of Ab literals α such that
KB  ∪  Settings  ∪  {α}  |=  Observations
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Table for abductive diagnosis

...

            Ab(b1)       Ab(b2)       Ab(a1)      Ab(a2)       Ab(o1)      Entails observation?

1. Y Y Y Y Y N
2. Y Y Y Y N N
3. Y Y Y N Y N
4. Y Y Y N N N
5. Y Y N Y Y Y
6. Y Y N Y N N
7. Y Y N N Y Y
8. Y Y N N N Y
9. Y N Y Y Y N

10. Y N Y Y N N
11. Y N Y N Y N
12. Y N Y N N N
13. Y N N Y Y Y
14. Y N N Y N N
15. Y N N N Y Y

32. N N N N N N
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Example diagnosis

Using the table, we look for minimal sets of literals.
For example,  from line (5), we have that

Ab(b1)  ∧  Ab(b2)  ∧  ¬Ab(a1)  ∧  Ab(a2)  ∧  Ab(o1)
entails the observations.  However, lines (5), (7), (13) and (15) together 
lead us to a smaller set of literals (the first explanation below).

The explanations are
1. Ab(b1)  ∧  ¬Ab(a1)  ∧  Ab(o1)
2. Ab(b1)  ∧  ¬Ab(a1)  ∧  ¬Ab(a2)
3. Ab(b2)  ∧  ¬Ab(a1)  ∧  Ab(o1)

Note:  not all components are mentioned since for these settings, get the 
same observations whether or not they are working

but for this fault model only

Can narrow down diagnosis by looking at a number of different settings
differential diagnosis
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Diagnosis revisited

Abductive definition has limitations
• often only care about what is not working
• may not be able to characterize all possible failure modes
• want to prefer diagnoses that claim as few broken components as possible

Consistency-based diagnosis:
Assume KB uses the predicate Ab as before, but perhaps only 
characterizes the normal behaviour

e.g.    Andgate(x)  ∧  ¬Ab(x)  ⊃  out(x) = and(in1(x), in2(x))
Want a minimal set of components D, such that

{Ab(c)  |  c ∈ D}  ∪  {¬Ab(c)  |  c ∉ D}

is consistent with  KB  ∪  Settings  ∪  Observations

In previous example, get 3 diagnoses: {b1}, {b2, a2} and {b2,o1}

Note: more complex to handle non-minimal diagnoses 

can use table as before 
with last column changed 
to “consistency”
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Some complications

1. negative evidence
• allow for missing observations

e.g.  ensure that KB ∪ {α} |≠  fever

2. variables and quantification
• same definition, modulo “simplicity”,  (but how to use Resolution?)
• useful to handle open wffs also

KB  ∪  {x = 3}  |=  P(x)       handles WH-questions

3. probabilities
• not all simplest explanations are equally likely
• also:  replace  (Disease ∧ ...  ⊃  Symptom)  by a probabilistic version

4. defaults
• instead of requiring KB ∪ {α} |= β,  would prefer that given α,  it is 

reasonable  to believe β
e.g.  being a bird explains being able to fly 
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Other applications

1. object recognition
what scene would account for image elements observed? 
what objects would account for collection of properties discovered?

2. plan recognition
what high-level goals of an agent would account for the actions observed?

3. hypothetical reasoning
instead of asking:  what would I have to be told to believe β?
ask instead:  what would I learn if I was told that α?

Solution:    you learn β on being told α
iff

¬β  is an explanation for ¬α
can use the abduction procedure

Dual of explanation:  want β  such that
KB ∪ {α} |= β

KB |≠ β
simplicity, parsimony
using correct vocabulary
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14.

Actions
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Situation calculus

The situation calculus is a dialect of FOL for representing 
dynamically changing worlds in which all changes are the result of 
named actions.
There are two distinguished sorts of terms:

• actions, such as
– put(x,y) put object x on top of object y
– walk(loc) walk to location loc

– pickup(r,x) robot r picks up object x 
• situations, denoting possible world histories. A distinguished 

constant S0 and function symbol do are used
– S0 the initial situation, before any actions have been performed
– do(a,s) the situation that results from doing action a in situation s

for example:  do(put(A,B),do(put(B,C),S0))
the situation that results from
putting A on B after putting B 
on C in the initial situation
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Fluents

Predicates or functions whose values may vary from situation to 
situation are called fluents.
These are written using predicate or function symbols whose last 
argument is a situation

for example:  Holding(r, x, s):  robot r is holding object x in situation s
can have:  ¬Holding(r, x, s) ∧ Holding(r, x, do(pickup(r,x),s))

the robot is not holding the object x in situation s, but is holding it in the situation 
that results from picking it up

Note: there is no distinguished “current” situation. A sentence can 
talk about many different situations, past, present, or future.

A distinguished predicate symbol Poss(a,s) is used  to state that a 
may be performed in situation s

for example:  Poss(pickup(r,x), S0)

This is the entire language.

it is possible for the robot r to 
pickup object x in the initial situation
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Preconditions and effects

It is necessary to include in a KB not only facts about the initial 
situation, but also about world dynamics: what the actions do.
Actions typically have preconditions: what needs to be true for the 
action to be performed 

• Poss(pickup(r,x), s)  ≡  ∀z. ¬Holding(r,z,s) ∧ ¬Heavy(x) ∧ NextTo(r,x,s)
a robot can pickup an object iff it is not holding anything, the object is not too 
heavy, and the robot is next to the object

Note:  free variables assumed to be universally quantified 

• Poss(repair(r,x), s)  ≡   HasGlue(r,s) ∧ Broken(x,s)
it is possible to repair an object iff the object is broken and the robot has glue

Actions typically have effects:  the fluents that change as the 
result of performing the action

• Fragile(x)  ⊃  Broken(x, do(drop(r,x),s))
dropping a fragile object causes it to break

• ¬Broken(x, do(repair(r,x),s))
repairing an object causes it to be unbroken
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The frame problem

To really know how the world works, it is also necessary to know 
what fluents are unaffected by performing an action.  

• Colour(x,c,s)  ⊃   Colour(x, c, do(drop(r,x),s))
dropping an object does not change its colour

• ¬Broken(x,s)  ∧  [ x≠y  ∨ ¬Fragile(x) ]  ⊃  ¬Broken(x, do(drop(r,y),s)
not breaking things

These are sometimes called frame axioms.
Problem: need to know a vast number of such axioms.  ( Few 
actions affect the value of a given fluent; most leave it invariant. )

an object’s colour is unaffected by picking things up, opening a door, using 
the phone, turning on a light, electing a new Prime Minister of Canada, etc. 

The frame problem:
• in building KB, need to think of these ~ 2 × A × F facts about what 

does not change
• the system needs to reason efficiently with them
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What counts as a solution?

• Suppose the person responsible for building a KB has written down 
all the effect axioms

for each fluent F and action A that can cause the truth value of F to 
change, an axiom of the form [R(s)  ⊃  ±F(do(A,s))], where R(s) is some 
condition on s

• We want a systematic procedure for generating all the frame 
axioms from these effect axioms

• If possible, we also want a parsimonious representation for them 
(since in their simplest form, there are too many)

Why do we want such a solution?
• frame axioms are necessary to reason about actions and are not 

entailed by the other axioms
• convenience for the KB builder
• for theorizing about actions

– modularity: only add effect axioms
– accuracy: no inadvertent omissions
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The projection task

What can we do with the situation calculus? 

We will see later that it can be used for planning.

A simpler job we can handle directly is called the projection task.
Given a sequence of actions, determine what would be true in the 
situation that results from performing that sequence.

This can be formalized as follows:
Suppose that R(s) is a formula with a free situation variable s.
To find out if R(s) would be true after performing 〈a1,...,an〉 in the initial 
situation, we determine whether or not  

KB  |= R(do(an,do(an-1,...,do(a1,S0)...)))

For example, using the effect and frame axioms from before, it 
follows that ¬Broken(B,s) would hold after doing the sequence

〈pickup(A), pickup(B), drop(B), repair(B), drop(A)〉
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The legality task

The projection task above asks if a condition would hold after 
performing a sequence of actions, but not whether that sequence 
can in fact be properly executed.

We call a situation legal if it is the initial situation or the result of 
performing an action whose preconditions are satisfied starting in 
a legal situation.

The legality task is the task of determining whether a sequence of 
actions leads to a legal situation.

This can be formalized as follows:
To find out if the sequence 〈a1,...,an〉 can be legally performed in the 
initial situation, we determine whether or not

KB  |= Poss(ai, do(ai-1,...,do(a1,S0)...))

for every i such that 1 ≤ i ≤ n.
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Limitations of the situation calculus

This version of the situation calculus has a number of limitations:
• no time: cannot talk about how long actions take, or when they 

occur
• only known actions: no hidden exogenous actions, no unnamed 

events
• no concurrency: cannot talk about doing two actions at once
• only discrete situations: no continuous actions, like pushing an 

object from A to B.
• only hypotheticals: cannot say that an action has occurred or will 

occur
• only primitive actions: no actions made up of other parts, like 

conditionals or iterations

We will deal with the last of these below.

First we consider a simple solution to the frame problem ...
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Normal form for effect axioms

Suppose there are two positive effect axioms for the fluent Broken:
Fragile(x)  ⊃  Broken(x,do(drop(r,x),s))
NextTo(b,x,s)  ⊃  Broken(x,do(explode(b),s))

These can be rewritten as
∃r {a=drop(r,x) ∧ Fragile(x)}   ∨   ∃b {a= explode(b) ∧  NextTo(b,x,s)}     

⊃    Broken(x,do(a,s))

Similarly, consider the negative effect axiom:
¬Broken(x,do(repair(r,x),s))

which can be rewritten as 
∃r {a=repair(r,x)}   ⊃   ¬Broken(x,do(a,s)) 

In general, for any fluent F, we can rewrite all the effect axioms as 
as two formulas of the form

PF(x, a ,s)  ⊃  F(x, do(a,s)) (1)
NF(x, a ,s)  ⊃  ¬F(x, do(a,s)) (2)

where PF(x, a ,s) and NF(x, a ,s) 
are formulas whose free variables 
are among the xi, a, and s.
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Explanation closure

Now make a completeness assumption regarding these effect 
axioms:

assume that (1) and (2) characterize all the conditions under which 
an action a changes the value of fluent F.

This can be formalized by  explanation closure axioms:
¬F(x, s) ∧ F(x, do(a,s))   ⊃   PF(x, a ,s)                  (3)

if F was false and was made true by doing action a
then condition PF must have been true

F(x, s) ∧ ¬F(x, do(a,s))   ⊃   NF(x, a ,s)                  (4)
if F was true and was made false by doing action a
then condition NF must have been true

These explanation closure axioms are in fact disguised versions 
of frame axioms!

¬F(x, s) ∧  ¬PF(x, a ,s)   ⊃   ¬F(x, do(a,s))
   F(x, s) ∧ ¬NF(x, a ,s)   ⊃   F(x, do(a,s))
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Successor state axioms

Further assume that our KB entails the following
• integrity of the effect axioms: ¬∃ x, a, s. PF(x, a, s) ∧ NF(x, a, s)
• unique names for actions:

A(x1,...,xn) = A(y1,...,yn)  ⊃  (x1=y1) ∧ ...∧ (xn=yn)
A(x1,...,xn) ≠ B(y1,...,ym)    where A and B are distinct 

Then it can be shown that KB entails that (1), (2), (3), and (4) 
together are logically equivalent to

F(x, do(a,s))   ≡   PF(x, a, s) ∨ (F(x, s) ∧ ¬NF(x, a,s))

This is called the successor state axiom for F.
For example, the successor state axiom for the Broken fluent is:

Broken(x, do(a,s))   ≡
    ∃r {a=drop(r,x) ∧ Fragile(x)}   
∨  ∃b {a=explode(b) ∧  NextTo(b,x,s)} 
∨  Broken(x, s)  ∧  ¬∃r {a=repair(r,x)} 

An object x is broken after doing action a
       iff 

      a is a dropping action and x is fragile, 
or   a is a bomb exploding 
            where x is next to the bomb, 
or   x was already broken and 
            a is not the action of repairing itNote universal quantification:  for any action a ...



KR & R              ©  Brachman & Levesque  2005   249

A simple solution to the frame problem

This simple solution to the frame problem (due to Ray Reiter) 
yields the following axioms:

• one successor state axiom per fluent
• one precondition axiom per action
• unique name axioms for actions

Moreover, we do not get fewer axioms at the expense of 
prohibitively long ones

the length of a successor state axioms is roughly proportional to the 
number of actions which affect the truth value of the fluent

The conciseness and perspicuity of the solution relies on
• quantification over actions
• the assumption that relatively few actions affect each fluent
• the completeness assumption (for effects)

Moreover, the solution depends on the fact that actions always 
have deterministic effects.



KR & R              ©  Brachman & Levesque  2005   250

Limitation: primitive actions

As yet we have no way of handling in the situation calculus 
complex actions made up of other actions such as

• conditionals:  If the car is in the driveway then drive else walk

• iterations: while there is a block on the table, remove one

• nondeterministic choice:  pickup up some block and put it on the floor

and others

Would like to define such actions in terms of the primitive actions, 
and inherit their solution to the frame problem

Need a compositional treatment of the frame problem for complex 
actions

Results in a novel programming language for discrete event 
simulation and high-level robot control



KR & R              ©  Brachman & Levesque  2005   251

The Do formula

For each complex action A, it is possible to define a formula of the 
situation calculus, Do(A, s, s′), that says that action A when started 
in situation s may legally terminate in situation s′.

Primitive actions:  Do(A, s, s′)  =   Poss(A,s) ∧  s′=do(A,s)

Sequence: Do([A;B], s, s′)  =  ∃s′′. Do(A, s, s′′)  ∧  Do(B, s′′, s′)

Conditionals: Do([if φ then A else B], s, s′)  = 
             φ(s) ∧ Do(A, s, s′)   ∨   ¬φ(s) ∧ Do(B, s, s′)

Nondeterministic branch:  Do([A | B], s, s′)  =  Do(A, s, s′)  ∨ Do(B, s, s′)

Nondeterministic choice:  Do([πx. A], s, s′)  =  ∃x. Do(A, s, s′)

    etc.

Note: programming language constructs with a purely logical 
situation calculus interpretation



KR & R              ©  Brachman & Levesque  2005   252

GOLOG

GOLOG (Algol in logic) is a programming language that 
generalizes conventional imperative programming languages

• the usual imperative constructs + concurrency, nondeterminism, more...
• bottoms out not on operations on internal states (assignment statements, 

pointer updates) but on primitive actions in the world (e.g. pickup a block)
• what the primitive actions do is user-specified by precondition and 

successor state axioms

What does it mean to “execute” a GOLOG program?
• find a sequence of primitive actions such that performing them starting in 

some initial situation s would lead to a situation s′  where the formula
Do(A, s, s′) holds

• give the sequence of actions to a robot for actual execution in the world

Note: to find such a sequence, it will be necessary to reason 
about  the primitive actions

A ;  if  Holding(x)  then B else C
to decide between B and C we need to determine 
if the fluent Holding would be true after doing A
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GOLOG example

Primitive actions:  pickup(x), putonfloor(x), putontable(x)
Fluents:  Holding(x,s), OnTable(x,s),  OnFloor(x,s)

Action preconditions: Poss(pickup(x), s)   ≡  ∀z.¬Holding(z, s)
Poss(putonfloor(x), s)   ≡  Holding(x, s)
Poss(putontable(x), s)   ≡  Holding(x, s)

Successor state axioms:
Holding(x, do(a,s))  ≡   a=pickup(x) ∨  

Holding(x,s)  ∧  a≠putontable(x)   ∧  a≠putonfloor(x)
OnTable(x, do(a,s))  ≡   a=putontable(x)   ∨    OnTable(x,s)   ∧  a≠pickup(x)
OnFloor(x, do(a,s))  ≡   a=putonfloor(x)   ∨   OnFloor(x,s)   ∧  a≠pickup(x)

Initial situation: ∀x.¬Holding(x, S0)
ΟnTable(x, S0)  ≡   x=A ∨ x=B

Complex actions:
proc ClearTable :  while  ∃b.OnTable(b)  do   πb [OnTable(b)? ;  RemoveBlock(b)]
proc RemoveBlock(x) :  pickup(x) ; putonfloor(x)
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Running GOLOG

To find a sequence of actions constituting a legal execution of a GOLOG 
program, we can use Resolution with answer extraction.

For the above example, we have
KB  |=  ∃s. Do(ClearTable, S0, s)

The result of this evaluation yields
s = do(putonfloor(B), do(pickup(B), do(putonfloor(A), do(pickup(A),S0))))

and so a correct sequence is
〈 pickup(A), putonfloor(A), pickup(B), putonfloor(B)〉

When what is known about the actions and initial state can be expressed 
as Horn clauses, the evaluation can be done in Prolog.

The GOLOG interpreter in Prolog has clauses like
do(A,S1,do(A,S1)) :- prim_action(A), poss(A,S1).
do(seq(A,B),S1,S2) :- do(A,S1,S3), do(B,S3,S2).

This provides a convenient way of controlling a robot at a high level.
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15.

Planning
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Planning

So far, in looking at actions, we have considered how an agent 
could figure out what to do given a high-level program or complex 
action to execute.

Now, we consider a related but more general reasoning problem: 
figure out what to do to make an arbitrary condition true. This is 
called planning.

• the condition to be achieved is called the goal
• the sequence of actions that will make the goal true is called the plan

Plans can be at differing levels of detail, depending on how we 
formalize the actions involved 

• “do errands”   vs.  “get in car at 1:32 PM, put key in ignition, turn key 
clockwise, change gears,…”

In practice, planning involves anticipating what the world will be 
like, but also observing the world and replanning as necessary...
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Using the situation calculus

The situation calculus can be used to represent what is known 
about the current state of the world and the available actions.
The planning problem can then be formulated as follows:  

Given a formula Goal(s), find a sequence of actions a such that
KB  |=  Goal(do(a, S0)) ∧ Legal(do(a, S0))

where do(〈a1,...,an〉, S0) is an abbreviation for
do(an, do(an-1, ..., do(a2, do(a1, S0)) ...))

and where Legal(〈a1,...,an〉, S0) is an abbreviation for
Poss(a1, S0) ∧ Poss(a2, do(a1, S0)) ∧  ... ∧ Poss(an, do(〈a1,...,an-1〉, S0))

So: given a goal formula, we want a sequence of actions such that
• the goal formula holds in the situation that results from executing the 

actions,   and
• it is possible to execute each action in the appropriate situation
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Planning by answer extraction

Having formulated planning in this way, we can use Resolution 
with answer extraction to find a sequence of actions:

KB  |=  ∃s. Goal(s) ∧ Legal(s)

We can see how this will work using a simplified version of a 
previous example:

An object is on the table that we would like to have on the floor.  Dropping 
it will put it on the floor, and we can drop it, provided we are holding it.  To 
hold it, we need to pick it up, and we can always do so.

• Effects: OnFloor(x, do(drop(x),s))
Holding(x, do(pickup(x),s))

Note: ignoring frame problem

• Preconds: Holding(x, s)  ⊃  Poss(drop(x), s)
Poss(pickup(x), s)

• Initial state: OnTable(B, S0)

• The goal: OnFloor(B, s)

KB
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Deriving a plan

[¬OnFloor(B,s1), ¬Legal(s1), A(s1)]

[¬Legal(do(drop(B),s2)), A(do(drop(B),s2))]

[¬Legal(s2), ¬Poss(drop(B),s2), A(do(drop(B),s2))]

[¬Legal(s2), ¬Holding(B,s2), A(do(drop(B),s2))]

[A(do(drop(B),do(pickup(B),s3))), ¬Legal(do(pickup(B),s3))]

[¬Legal(s3), A(do(drop(B),do(pickup(B),s3))), ¬Poss(pickup(B),s3), ]

[¬Legal(s3), A(do(drop(B),do(pickup(B),s3)))]

[A(do(drop(B), do(pickup(B), S0)))]

Axiom 1
expand Legal

Axiom 3

Axiom 2

expand Legal

Axiom 4

Legal for S0

Negated query + answer predicate

Here is the plan: in the initial situation, pickup
block B, and in the resulting situation, drop B.
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Using Prolog

Because all the required facts here can be expressed as Horn 
clauses, we can use Prolog directly to synthesize a plan:

onfloor(X,do(drop(X),S)).
holding(X,do(pickup(X),S)).
poss(drop(X),S) :- holding(X,S).
poss(pickup(X),S).
ontable(b,s0).
legal(s0).
legal(do(A,S)) :- poss(A,S), legal(S).

With the Prolog goal ?- onfloor(b,S), legal(S).
we get the solution S = do(drop(b),do(pickup(b),s0))

But planning problems are rarely this easy! 

Full Resolution theorem-proving can be problematic for a complex 
set of axioms dealing with actions and situations explicitly...
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The STRIPS representation

STRIPS is an alternative representation to the pure situation 
calculus for planning.  

from work on a robot called Shaky at SRI International in the 60’s.

In STRIPS, we do not represent histories of the world, as in the 
situation calculus.

Instead, we deal with a single world state at a time, represented 
by a database of ground atomic wffs (e.g., In(robot,room1))

This is like the database of facts used in procedural representations and 
the working memory of production systems

Similarly, we do not represent actions as  part of the world model 
(cannot reason about them directly), as in the situation calculus.

Instead, actions are represented by operators that syntactically 
transform world models

An operator takes a DB and transforms it to a new DB
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STRIPS operators

Operators have pre- and post-conditions 
• precondition = formulas that need to be true at start
• “delete list” = formulas to be removed from DB
• “add list” = formulas to be added to DB

Example:  PushThru(o,d,r1,r2)
“the robot pushes object o through door d  from room r1 to room r2”

• precondition: InRoom(robot,r1),  InRoom(o,r1), Connects(d,r1,r2)

• delete list: InRoom(robot,r1),  InRoom(o,r1)

• add list: InRoom(robot,r2),  InRoom(o,r2)

initial world model, DB0 (list of ground atoms)

STRIPS problem space  = set of operators (with preconds and effects)
goal statement (list of atoms)

desired plan:  sequence of ground operators
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STRIPS Example

In addition to PushThru, consider 

GoThru(d,r1,r2):
precondition: InRoom(robot,r1),  Connects(d,r1,r2)

delete list:  InRoom(robot,r1) 
add list:  InRoom(robot,r2) 

DB0:
InRoom(robot,room1) InRoom(box1,room2)
Connects(door1,room1,room2)     Box(box1)
Connects(door2,room2,room3)   …

Goal:  [ Box(x) ∧ InRoom(x,room1) ]

ROBOT
BOX1

ROOM1 ROOM2

ROOM3

DOOR1

DOOR2
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Progressive planning

Here is one procedure for planning with a STRIPS like 
representation:

Input :  a world model and a goal
Output :  a plan or fail.
ProgPlan[DB,Goal] =

If  Goal is satisfied in DB, then return empty plan
For each operator o such that precond(o) is satisfied in the current DB:

Let DB´ = DB + addlist(o) – dellist(o)
Let plan = ProgPlan[DB´,Goal]
If plan ≠ fail, then return [act(o) ; plan] 

End for
Return fail

This depth-first planner searches forward from the given DB0  for 
a sequence of operators that eventually satisfies the goal 

DB´ is the progressed world state

(ignoring variables)
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Regressive planning

Here is another procedure for planning with a STRIPS like 
representation:

Input :  a world model and a goal
Output :  a plan or fail.
RegrPlan[DB,Goal] =

If  Goal is satisfied in DB, then return empty plan
For each operator o such that dellist(o) ∩ Goal = {}:

Let Goal´ = Goal + precond(o) – addlist(o)
Let plan = RegrPlan[DB,Goal´]
If plan ≠ fail, then return [plan ; act(o)] 

End for
Return fail

This depth-first planner searches backward for a sequence of 
operators that will reduce the goal to something satisfied in DB0 

Goal´ is the regressed goal

(ignoring variables)
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Computational aspects

Even without variables, STRIPS planning is NP-hard.

Many methods have been proposed to avoid redundant search
e.g. partial-order planners,  macro operators

One approach: application dependent control
Consider this range of GOLOG programs:

< any deterministic program > while  ¬Goal  do  πa . a

In between, the two extremes we can give domain-dependent 
guidance to a planner:

while  ¬Goal  do  πa . [Acceptable(a)? ; a]
where Acceptable is formalized separately

This is called  forward filtering .

fully specific about sequence 
of actions required

any sequence such that Goal 
holds at end

easy to execute as hard as planning!

pick an action
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Hierarchical planning

The basic mechanisms of planning so far still preserve all detail 
needed to solve a problem

• attention to too much detail can derail a planner to the point of uselessness
• would be better to first search through an abstraction space, where 

unimportant details were suppressed
• when solution in abstraction space is found, account for remaining details

ABSTRIPS
precondition wffs in abstraction space will have fewer literals than those in 
ground space
e.g., PushThru operator

– high abstraction: applicable whenever an object is pushable and a door exists
– lower: robot and obj in same room, connected by a door to target room
– lower: door must be open
– original rep: robot next to box, near door

predetermined partial order of predicates with “criticality” level
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Reactive systems

Some suggest that explicit, symbolic production of formal plans is 
something to be avoided (especially considering computational 
complexity)

even propositional case is intractable;  first-order case is undecidable

Just “react”: observe conditions in the world and decide (or look 
up) what to do next

can be more robust in face of unexpected changes in the environment
⇒     reactive systems

“Universal plans”: large lookup table (or boolean circuit) that tells 
you exactly what to do based on current conditions in the world

Reactive systems have impressive performance on certain low-
level problems (e.g. learning to walk), and can even look 
“intelligent”

but what are the limitations?  ...
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16.

The Tradeoff between 
Expressiveness and 

Tractability
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Limit expressive power?

Defaults, probabilities, etc. can all be thought of as extensions to 
FOL, with obvious applications

Why not strive for the union of all such extensions? all of English?

Problem:  automated reasoning

Lesson here:  
reasoning procedures required for more expressive languages 
may not work very well in practice

Tradeoff:  expressiveness vs. tractability

Overview: – a Description Logic example
– limited languages
– the problem with cases
– vivid reasoning as an extreme case
– less vivid reasoning
– hybrid reasoning systems
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Simple description logic

Consider the language FL defined by:
<concept> ::= atom <role>  ::=  atom

| [AND <concept> ... <concept>]       | [RESTR <role> <concept>]
| [ALL <role> <concept>]
| [SOME <role>]   (= [EXISTS 1 <role>])

Example: [ALL :Child  [AND Female Student]]
an individual whose children are female students

[ALL [RESTR :Child  Female] Student]
an individual whose female children are students 
there may or may not be male children and they may or may not be students

Interpretation ℑ  = 〈 D, I 〉  as before, but with
I[[RESTR r c]] = { (x,y)  |  (x,y) ∈ I[r]   and  y ∈ I[c] }
So  [RESTR :Child  Female]  is  the :Child relation restricted to females = :Daughter 

Subsumption defined as usual
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Computing subsumption

First for FL¯ = FL without the RESTR operator
• put the concepts into normalized form
• to see if C subsumes D  make sure that

1. for every p ∈ C,   p ∈ D

2. for every [SOME r] ∈ C, [SOME r] ∈ D

3. for every [ALL s c] ∈ C,  find an [ALL s d] ∈ D such that c subsumes d.

Can prove that this method is sound and complete relative to 
definition based on interpretations

Running time:
• normalization is O(n2) 
• structural matching:  for each part of C, find a part of D.  Again O(n2)

What about all of FL,  including RESTR?

       [AND p1 ... pk
[SOME r1] ... [SOME rm]
[ALL s1 c1] ... [ALL sn cn]]
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Subsumption in FL

• cannot settle for part-by-part matching
    [ALL [RESTR :Friend  [AND Male Doctor]]  [AND Tall Rich]]
subsumes
    [AND [ALL [RESTR :Friend Male] [AND Tall Bachelor]]

[ALL [RESTR :Friend Doctor] [AND Rich Surgeon]]]
• complex interactions

    [SOME [RESTR r  [AND a b]]]
subsumes
    [AND [SOME [RESTR r  [AND c d]]] [ALL [RESTR r  c]  [AND a e]]

[ALL [RESTR r [AND d e]]  b]]

In general:  FL is powerful enough to encode all of propositional logic.
There is a mapping Ω from CNF wffs to FL where

|= (α ⊃ β)   iff   Ω(α)  is subsumed by Ω(β)

But  |= (α ⊃ (p∧¬p))   iff   α is unsatisfiable

Conclusion: there is no good algorithm for FL unless P=NP
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Moral

Even small doses of expressive power can come at a significant 
computational price

Questions:
• what properties of a representation language control its difficulty?
• how far can expressiveness be pushed without losing good algorithms
• when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but some progress:
• need for case analyses is a major factor
• tradeoff for DL languages is reasonably well understood
• best addressed (perhaps) by looking at working systems

Useful approach:
• find reasoning tasks that are tractable
• analyze difficulty in extending them
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Limited languages

Many reasoning problems that can be formulated in terms of FOL 
entailment (KB  |=  α) admit very specialized methods because of 
the restricted form of either KB or α

although problem could be solved using full resolution, there is no need 

Example 1:  Horn clauses
• SLD resolution provides more focussed search
• in propositional case, a linear procedure is available

Example 2:  Description logics
Can do DL subsumption using Resolution
Introduce predicate symbols for concepts, and “meaning postulates”  like 
∀x[P(x)  ≡  ∀y(Friend(x,y) ⊃ Rich(y))

∧ ∀y(Child(x,y) ⊃ 
       ∀z(Friend(y,z) ⊃ Happy(z)))]      

Then ask if   MP |= ∀x[P(x) ⊃ Q(x)]

?

[AND [ALL :Friend Rich] 
        [ALL :Child 
                 [ALL :Friend Happy]]]
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Equations

Example 3: linear equations
Let E be the usual axioms for arithmetic:  

∀x∀y(x+y = y+x),  ∀x(x+0 = x),  ...  

Then we get the following:
E  |=  (x+2y=4 ∧  x–y=1)  ⊃  (x=2 ∧ y=1)

Can “solve” linear equations using Resolution!

But there is a much better way: 
Gauss-Jordan method with back substitution

In general, a set of linear equations can be solved in O(n3) operations

This idea obviously generalizes!
always advantageous to use a specialized procedure when it is available,
rather than a general method like Resolution

– subtract (2) from (1):  3y = 3
– divide by 3:  y = 1
– substitute in (1):  x = 2

Peano
axioms
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When is reasoning hard?

Suppose that instead of linear equations, we have something like
(x+2y=4  ∨  3x–y=7)  ∧  x–y=1

Can still show using Resolution:  y > 0

To use GJ method, we need to split cases:
x+2y=4 ∧  x–y=1  ➟    y=1

3x–y=7 ∧  x–y=1  ➟    y=2

What if 2 disjunctions?  (eqnA1 ∨ eqnB1)  ∧  (eqnA2 ∨ eqnB2)
there are four cases to consider with GJ method

What if n binary disjunctions?  (eqnA1 ∨ eqnB1)  ∧ ...  ∧  (eqnAn ∨ eqnBn) 
there are 2n cases to consider with GJ method

with n=30, would need to solve 109 systems of equations!

Conclusion:  case analysis is still a big problem.   
Question: can we avoid case analyses??

∴  y > 0
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Expressiveness of FOL

Ability to represent incomplete knowledge 
P(a) ∨ P(b) but which?
∃x P(x) P(a) ∨ P(b) ∨ P(c) ∨ ...

and  even 
c ≠  3 c=1 ∨ c=2 ∨ c=4 ∨ ...

Reasoning with facts like these requires somehow “covering” all 
the implicit cases

languages that admit efficient reasoning do not allow this type of 
knowledge to be represented

– Horn clauses, 
– description logics, 
– linear equations, ... 

only limited forms of disjunction, quantification etc.
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Complete knowledge

One way to ensure tractability:
somehow restrict contents of KB so that reasoning by cases is not required

But is complete knowledge enough for tractability?
suppose  KB |= α  or  KB |= ¬α,  as in the CWA

Get: queries reduce to  KB |= ρ,  literals
But:  it can still be hard to answer for literals

Example:  KB = {(p ∨ q), (¬p ∨ q), (¬p ∨ ¬q)}
Have:  KB |= ¬p ∧ q complete!
But to find literals may require case analysis

So complete knowledge is not enough to avoid case analyses if 
the knowledge is “hidden” in the KB.

Need a form of complete knowledge that is more explicit...
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Vivid knowledge

Note: If KB is complete and consistent, then it is satisfied by a 
unique interpretation I

Why?    define  I  by   I |= p   iff  KB |= p
Then for any I*,   if  I* |= KB  then I* agrees with I on all atoms p

Get:  KB |= α  iff  I |= α
entailments of KB are sentences that are true at I 
explains why queries reduce to atomic case

(α ∨ β)  is true  iff α is true or β is true, etc.

if we have the I , we can easily determine what is or is not entailed

Problem:  KB can be complete and consistent, but unique 
interpretation may be hard to find
Solution:  a KB is vivid if it is a complete and consistent set of 
literals (for some language)

e.g.  KB = {¬p, q}  specifies I directly

ignoring
quantifiers
for now
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Quantifiers

As with the CWA, we can generalize the notion of vivid to 
accommodate queries with quantifiers

A first-order KB is vivid iff for some finite set of positive function-
free ground literals KB+,   KB  =  KB+  ∪  Negs  ∪  Dc  ∪  Un.

Get a simple recursive algorithm for KB |= α:

KB |= ∃x.α   iff   KB |= α[x/c],   for some c ∈ KB+

KB |= (α ∨ β)   iff   KB |= α  or  KB |= β
KB |= ¬α   iff   KB |≠ α
KB |= (c = d)   iff   c and d are the same constant
KB |= p   iff   p ∈ KB+

This is just database retrieval
• useful to store KB+ as a collection of relations
• only KB+ is needed to answer queries, but Negs, Dc, and Un are required 

to justify the correctness of the procedure
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Analogues

Can think of a vivid KB as an analogue of the world
there is a 1-1 correspondence between 

– objects in the world and constants in the KB+

– relationships in the world and syntactic relationships in the KB+

for example, if constants c1 and c2 stand for objects in the world o1 and o2

there is a relationship R holding between objects o1 and o2 in the world
iff

constants c1 and c2 appear as a tuple in the relation represented by R

Not true in general
for example, if KB = {P(a)} then it only uses 1 constant, but could be 
talking about a world where there are 5 individuals of which 4 satisfy P

Result:  certain reasoning operations are easy
– how many objects satisfy P (by counting)
– changes to the world (by changes to KB+)
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Beyond vivid

Requirement of vividness is very strict.

Want weaker alternatives with good reasoning properties

Extension 1

Suppose KB is a finite set of literals
– not necessarily a complete set  (no CWA)
– assume consistent, else trivial

Cannot reduce KB |= α  to literal queries
if KB = {p}   then KB |= (p∧q  ∨  p∧¬q)  but   KB |≠ p∧q  and  KB |≠ p∧¬q

But:  assume α is small.  Can put into CNF
α  ➟  (c1 ∧ ... ∧ cn)

• KB |= α  iff   KB |= ci,  for every clause in CNF of α
• KB |= c   iff  c has complimentary literals   –  tautology

or  KB ∩ c  is  not empty

ignoring
quantifiers
again
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Extension 2

Imagine KB vivid as before + new definitions:
∀xyz[R(x,y,z) ≡  ... wff in vivid language ...]

Example:  have vivid KB using predicate ParentOf
add: ∀xy[MotherOf(x,y) ≡ ParentOf(x,y) ∧ Female(x)]

To answer query containing R(t1,t2,t3), simply macro expand it with 
definition and continue

• can handle arbitrary logical operators in definition since they become part 
of query, not KB

• can generalize to handle predicates not only in vivid KB, provided that they 
bottom out to KB+

∀xy[AncestorOf(x,y) ≡ ParentOf(x,y)  ∨ 
∃z ParentOf(x,z) ∧ AncestorOf(z,y)]

• clear relation to Prolog
a version of logic programming based on inductive definitions,
not Horn clauses
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Other extensions

Vivification:  given non-vivid KB, attempt to make vivid e.g. by 
eliminating disjunctions etc. 

for example, 
– use taxonomies to choose between disjuncts

Flipper is a whale or a dolphin.
– use intervals to encompass disjuncts

The picnic will be on June 2, 3,or 4th.
– use defaults to choose between disjuncts

Serge works in Toronto or Montreal.

Problem:  what to do with function symbols, when Herbrand 
universe is not finite?

partial Herbrand base?
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Hybrid reasoning

Want to be able to incorporate a number of special-purpose 
efficient reasoners into a single scheme such as Resolution

Resolution will be the glue that holds the reasoners together

Simple form: semantic attachment
• attach procedures to functions and predicates

e.g.  numbers: procedures on plus, LessThan, ...

• ground terms and atomic sentences can be evaluated  prior to Resolution
– P(factorial(4), times(2,3))   ➟   P(24, 6) 
– LessThan(quotient(36,6), 5)  ∨  α   ➟    α

• much better than reasoning directly with axioms

More complex form:  theory resolution
• build theory into unification process    (the way paramodulation builds in =)

• extended notion of complimentary literals
{α, LessThan(2,x)}  and  {LessThan(x,1), β}   resolve to  {α,β}
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Using descriptions

Imagine that predicates are defined elsewhere as concepts in a 
description logic

Married  =  [AND ...] Bachelor   =  [AT-MOST ...]

then  {P(x), Married(x)}  and  {Bachelor(john), Q(y)}  resolve to   {P(john), Q(y)}

Can use description logic procedure to decide if two predicates are 
complimentary

instead of explicit meaning postulates

Residues:  for “almost” complimentary literals
{P(x), Male(x)}  and  {¬Bachelor(john), Q(y)}

resolve to
{P(john), Q(y), Married(john)} 

since the two literals are contradictory unless John is married

Main issue:  what resolvents are necessary to get the same conclusions 
as from meaning postulates?

residues are necessary for completeness
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THE END


