Knowledge Representation

General goal of knowledge representation:

" Develop formalisms for providing high-level descriptions of the world
that can be effectively used to build intelligent applications.”

Introduction to Description Logics

e formalisms:
formal syntax and formal and unambiguous semantics

. . o high-level descriptions:
Anni-Yasmin Turhan hich hould b d. which lef 2
Technische Universitit Dresden which aspects shou e represented, which left out?
Institute for Theoretical Computer Science °

intelligent applications:
are able to infer new knowledge from given knowledge

@ e effectively used:

@ reasoning techniques should allow “usable” implementation

U

TU T
D Dresden

resden

Early knowledge representation systems Semantic networks: Drawbacks

How to represent terminological knowledge?

. mammal
Unclear semantics

is-a

Semantic Networks e What does a node mean? person _ OWns e ileats b
e representation by graph-based formalism o What does a link in the graph mean? =
e models entities and their relations | Ko
— ‘is-a’ has different meanings! aTiEld e lasagnia
mammal — ‘eats’: One thing that cats eat is meat?

i All things that cats eat is meat?
For example: is-a

owns eats

person; i i ba i meat Problems: missing semantics (reasoning!), complex pictures

» Ad-hoc methods for automated reasoning.

I>a » Result of automated reasoning is system dependent!
o eats
arfield—————— lasagna . . .
@ 9 g @ Remedy: Use a logical formalism for KR rather than pictures
Dresden 2 Dresden

On phases of DL research

©

T
D

(V]
resden

Early phase — eighties

e structural reasoning procedures

(bring concepts to a normal form and then compare their structure)

e sound, but incomplete reasoning systems

e complete reasoning regarded as not feasible (since intractable)

Second phase — nineties
e investigation of sound and complete reasoning procedures
Tableaux method

e complexity results and reasoning procedures for
increasingly expressive DLs

o optimized implementations of reasoning procedures
e.g. FaCT system ('98), RACER system ("99)

Overview DL systems

©

T
D

(V]
resden

Knowledge base

TBox
Terminological
background
knowledge

12U0Sedy

ABox
Knowledge about
Individuals

Concept language

On phases of DL research

©

T
D

(V]
resden

Third phase
e investigation of reasoning procedures for highly expressive DLs

e investigation of new inferences
e development of ontology editors

e standardization efforts: DAML+OIL, OWL 1.0

Fourth phase - last 6 years

o continuation of investigating increasingly expressive DLs
(e.9. SROZIQ)

e investigation of DLs with limited expressivity,
but good computational properties for a particular inference
“light weight DLs”
e W3C recommendation: OWL 2 (and 3 profiles)

Defining Concepts with DLs

©

T
D

(V]
resden

The core part of any DL is the concept language

Mammal M1 Jhas-cover.Fur 1 Veats.Meat

a name to groups of objects
e role names assign a name to relations between objects

e constructors allow to related concept names and role names

Complex concepts can be used in concept definitions:

Cat = Mammal M Jhas-cover.Fur M Veats.Meat

The description logic ALC: syntax Example: ACC-concept descriptions

Atomic types: concept names A, B, ... (unary predicates) Signature: N = { Person, Male, Happy }

role names ... (binary predicates
r&... (binaryp) N, = {has-child, has-sibling, likes, knows }

ALC concept constructors:

-C (negation)
@l /D) (conjunction) Parent:
cub (disjunction) Person M 3 has-child.Person
Jr.C (existential restriction) EIL
vr.C (value restriction) Grandparent:
. Person M 3 has-child.(3 has-child. Person)
Special concepts: e (top concept)
bottom concept
+ (Pt) Uncle of happy children:
For example: =(A Ul Jr.(Vs.B 1 —A)) Person 1 Male ™ 3 has-sibling.(3 has-child.Person)
@ Mammal M Jhas-cover.Fur M Veats.Meat @ MV has-sibling. (V' has-child. Happy)
—Eggesden 8 —EglrJesden 9
Semantics of named concepts Complex ACC-concepts: semantics

Semantics based on interpretation Z = (AZ,.T) Semantics of complex concepts:

. N

Concepts: Subsets of domain A (~C)T = AT\ CT

Roles: binary relations on domain A%
(cnbD)X=ctnD?

(CubD)=c*uD?

Primitive concepts Tz PSS (3r.C)T = {d € AT | Je: e € AT with (d,e) € r¥ and e € CT}
TI = AI AI ¢ '/. :<Ti \\\\
1Ty . A AR PR (Vr.C)T = {d € AT | Ve : e € AZ,(d,e) € rT implies e € CT}
e
z z
ATCA domain AT

© ©

TU TU
Dresden 10 Dresden

©

T
D

U

Reasoning tasks for concepts

resden

model of C: interpretation Z with CT £ (§
1. Concept satisfiability

C is satisfiable if there exists a model of C.

If unsatisfiable, the concept contains a contradiction.

2. Concept subsumption written C C D
Does CT C D7 hold for all Z?

If C C D, then D is more general than C

3. Concept equivalence written C = D
Does CT = D7Z hold for all Z?

If C = D, then D and C ‘say the same’.

DL systems are more than a concept language |

©

T
D

(V]
resden

Terminology of the application
(categories and relations)

Knowledge base

TBox
Terminological
background
knowledge

12U0Sedy

ABox
Knowledge about
Individuals

Concept language

©

U

T
Dresden

Examples

Vowner.Rich M Yowner.Famous C Vowner.(Rich 1 Famous)

Jowner.Rich M Jowner.Famous [Z Jowner.(Rich 1 Famous)

CLCT forall C.

o | C CforalC.

C C D if and only if C 11 =D is not satisfiable

C is satisfiable if not C C L.

» Subsumption can be reduced to (un)satisfiability and vice versa.

TBox: syntax and semantics

©

T
D

(V]
resden

Kinds of concept axioms:
e Primitive concept definition: A T D A € N¢
e Concept definition: A = D A € N¢

e General concept inclusion (GCl): C C D

C C D holds in an interpretation Z iff CT C D*

e General concept equivalence: C = D
C = D holds in an interpretation Z iff CT = D?

TBox 7 : Finite set of concept axioms.

T isamodel ofa TBox T if CT C DT foral CC D € T.

Kinds of TBoxes

Terminological Reasoning Services

1. TBox 7 is a general TBox, if

e it is a finite set of concept axioms
e cyclic definitions and GCls are allowed
{WildAnimal = Animal M —Jowner. T,

Mammal M 3bodypart.Hunch =

Camel LI Dromedary}
2. TBox 7 is an unfoldable TBox, if it has

e only (primitive) concept definitions

e concept names at most once on the
left-hand side of definitions {Elephant = Jpart. Trunk
e no cyclic definitions, no GCls Ma ="Elephant LI Li ra

@ » Unfoldable TBoxes can be conceived as macro definitions. @
Dresden 16 Dresden

Reasoning tasks for TBoxes:

1. Concept satisfiability w.r.t. TBoxes
Given C and 7. Does there exist a common model of C and 77?

2. Concept subsumption w.r.t. TBoxes (C T D)
Given C,D and 7. Does CT C D? hold in all models of 7?7

3. Classification of the TBoxes

Computation of all subsumption relationships between T
all named concepts in 7. PTet
= Subsumption can be used Dog Cat

to compute a concept hierarchy:
Beagle

| Example for TBox reasoning

DL systems are more than a concept language |

TBox
{ Mammal C Animal Salad C Plant
Vegetarian = Animal M Veats.Plant
Cat = Mammal M Jhas-cover.Fur M Veats.Meat
VegetarianCat = Cat I Veats.Plants 1 Jeats.Salad
“MearrPlaneE—t—

Salad T Meat }

1. TBox is satisfiable.
2. VegetarianCat is unsatisfiable w.r.t. TBox.
@ 3. VegetarianCat T Vegetarian w.r.t. all of theTBoxes. @

TU TU
Dresden 18 Dresden

Terminology of the application

Knowledge base (categories and relations)

TBox

% Terminological

= background 2

8 knowledge 2

i o

{=); -

o] (2

5 ABox

O Knowledge about

Individuals

Facts from the Application

ABoxes: syntax & semantics

©

TU
D

ABox assertions in DL systems are:

e Concept assertions: C'(a)
e Role assertions: r(a,b)
Extend interpretations to individuals:
a € NI, CLI € AI

Semantics of assertions:
o Concept Assertions: T satisfies C(a) <= a’ € C*

o Role Assertions: T satisfies 7(a,b) <— (a%,b%) € %

An ABox A is a finite set of assertions.
T is a model for an ABox A if Z satisfies all assertions in \A.

20

resden

Assertional Reasoning Services

Reasoning tasks for ABoxes:

1. ABox consistency
Given: A and 7. Do they have a common model?

2. Instance checking
Given: A, T, individual a, and concept C
Does a € CZ hold in all models of A and 77?7

3. ABox realization
Given A and 7.
Compute for each individual a in \A:
the named concepts in 7~ of which a is an instance of.

©

U

T
Dresden

Example: ABox

ABox is a partial description of the world.

(unlike models!)

ABox A

Fur(f17)

has-cover(garfield, f17)
likes-most (garfield, garfield)

Mammal(garfield)
Lasagna(123)
eats(garfield, 123)
Veats.Beef(garfield)

©

21

TU
Dresden
Example for ABox Reasoning
ABox is a partial description of the world.
ABox Mammal(garfield) Fur(f17)
Lasagna(123) has-cover (garfield, f17)
eatstgarfield123) likes-most (garfield, garfield)
Veats.Beef(garfield)
TBox Cat = Mammal M Jhas-cover.Fur M1 Veats.Meat
Meat = Beef LI Chicken
Lasagna M Beef C L
1. ABox is inconsistent w.r.t. TBox.
@ 2. garfield is an instance of Cat
Dresden

23

©

T
D

(V]
resden

Relation of DLs to other logics

24

Translation of concept descriptions into First-order Logic

©

T
D

U
resden

¢*(A) = Pa(x)
¢"(2C) = —¢"(C)
¢*(CND) = ¢*(C) A (D)
¢*(CUD) = *(C)V ¢*(D)
¢*(Fr.C) = Fy.P.(x,y) A ¥(C) Y: x and y exchanged
@ (Vr.C) = Vy.P(z,y) = ¢¥(C)
Note: - two variables suffice (no ”=", no constants, no function symbols)

- not all DLs are purely first-order (transitive closure, etc.)

26

Description Logics and First-order Logic

©

T
D

(V]
resden

Basic correspondence:

concept names A <= unary predicates P4

role names r <= binary predicates P,

concepts = formulas with one free variable
individuals <= constants c,

25

Translation of TBoxes and ABoxes into FOL

©

T
D

(V]
resden

TBoxes:

Let C be a concept and 7~ a (general or unfoldable) TBox.

o(T) =Va.)\ (D)= ¢"(B)

DCE €T
ABoxes:
individual names a = constants c,
¢(C(a)) = ¢*(C)led]
('P(T(a’$ b)) = Pr(caa Cb)
o) = /\ #®

BEA

27

©

U

©

U

DLs beyond ACC

T
Dresden

28

Beyond ALC: Concept constructors Il

T
Dresden

Sometimes it is useful to refer to individuals in the TBox.

Recall: If they have same description

C = (V has-child.L)
D = (< 0 has-child)
—=C=D

« Concepts are equivalent.

+ Individuals are distinct. (Carla, Luisa): parent, Person(Carla),

(Markus, Luisa): parent, Person(Markus)
— Carla # Markus

Concept constructors using individuals:
{a}? = {a”}

{al,...,an}zz{af,...,ai}

e Nominals {a}

e One-of {a1,...,a,}

E.g.: RomanCatholic = 3 knows.{Pope}

30

©

T
D

©

T
D

U

Beyond ACLC: concept constructors

Number restrictions (£nr), (Znr)
(Enr)f={zeca’|#{y| (z,y) € r'} <n}
(>nr)f={zca’|#{y| (z,y) €’} >n}

Qualified number restrictions (£ nrC), (= nrC)
KnrC)Yf ={xzc A | #{y| (z,y) er? Ay e C*} <n}
GnrC)Yf={xzec A’ | #{y| (z,y) er* Ay e CT} >n}

Example:

Car M (> 5 has-seat) M (< 5 has-seat)
M (> 1 has-seat Drivers-seat) M (< 1 has-seat Drivers-seat)

resden 29

U

Beyond ALC: Roles

Role declarations

r atomicrole 7T C AT x AT
e.g. has-child
f featureor fI={(z,y) |

attribute (@,y) € fFN(z,2) € fT =y =2}

e.g. has-mother

r L s role inclusion
role hierarchy

rC sholdsin Z & rf C sT

e.g. has-mother C has-parent \Q
has-family-member

hassibling =

resden 31

Beyond ACC: Roles Il Names of description logics

Role operators Basis-DL: ACC

e &: Existential restrictions e F: Features, functional roles
T transitive role (r7)% = {(=, 2) |

(z,y) € %, (y,2) € T = (=,2) € r7} e A/: Number restrictions e T Transitive roles

e.g. has-ancestor v _—
o O: Qualified number restrictions e T Inverse roles

r— inverse role (r) = {(y,2) | (z,y) € 1T} o (O: nominals, Objects e H.: role Hierarchies
e.g. (has-parent)™ = has-child e R.: complex Role inclusions
@ @ S: Abbreviation for ACCT
TU TU
Dresden 32 Dresden 33
The OWL standard The £L family
OWL 1: Prominent members:

e W3C recommendation of 2004 EL: n,3, T

e OWL DL and OWL Lite: DL-based ontology languages
ELT extends £L by: complex role inclusions: 7 0 s C ¢ .

OWL 2:

¢ W3C recommendation of 2009 ELTT extends ELT by: oL

e nominals

o consists of o corresponds to OWL 2 EL profile

— an expressive language: SROZQ
— 2 profiles that correspond to light-weight DLs
@ @ Typically, used with general TBoxes!

TU
Dresden

o allows for efficient reasoning

TU
34 Dresden 35

DL-Lite family Overview DL systems

e designed for ontology-based data access
Knowledge base
o tailored towards applications that need to handle
huge amounts of data TBox
)
5 Terminological
o allow efficient querying of ABoxes = background ?DU
= Yy
= knowledge 2
e allow only for fairly light-weight TBoxes, but o 2
o
can express the basic constructs of ER or UML diagramms s
S ABox
» required to store ABox in relational data base system Know'?d.ge about
and use relational DB engine for querying Individuals
TU TU
Dresden 36 Dresden 37
Why automated reasoning? Automated Reasoning

TBox and the ABox capture implicit information.

We want to access this information by making it explicit! Requirements for good reasoning algorithms:

Does my knowledge base . .. They should be decision procedures, i.e. they should be:

e contain a concept that cannot have instances?

. . e s . Check for satisfiabiliy w.r.t. TBox. e terminating,
(since its definition is contradictory.) V 9 You get always an answer.
e sound, Every positive answer is correct.
e contain an unwanted synonym for a concept? Check for equivalent concepts. et _ .
(unwanted / unintended redundancy in my TBox) ¢ complete. Every negative answer is correct.
o yield the concept hierarchy | wanted? Classify.

» Prerequisit for safe and reliable applications!
o contain individuals not compliant with the - 2L

I Check ABox consistency.
specification of the concepts they belong to? ¥

© ©

TU TU
Dresden 38 Dresden 39

Reduction of inferences

Many standard reasoning services can be reduced to satisfiability.
(If negation is present in the DL!)

Use the reduction and implement one reasoning method!

e Equivalence <—> Satisfiability
C=7yD iffCCy+D and DC+C

e Subsumption <> Satisfiability

C C+ D iff C M ~D unsatisfiable w.r.t. T
C [Z7 L if C is satisfiable w.r.t. 7 unsatisfiable w.r.t. 7

©

TU
Dresden 40

Use the reduction

Reformulate a . .. as an ABox consistency check

satisfiability test:

sat(C)? Consistent: (7, {C(a)})?

@ Implement consistency test!
TU
Dresden 42

Reduction of inferences

Many standard reasoning services can be reduced to satisfiability.
(If negation is present in the DL!)

Use the reduction and implement one reasoning method!

e [nstance checking <—=> ABox consistency
a is instance of C w.r.t. (T, .A) iff (T, AU {~C(a)}) is inconsistent

e Satisfiability <—>- ABox consistency
C is satisfiable w.r.t. 7 iff (7, {C(a)}) is consistent

©

TU
Dresden 41

Reasoning method for .ALC-KBs with unfoldable TBox

We consider: satisfiability of a concept w.r.t. a TBox.

Main steps:
1. Use the reduction to reformulate the reasoning problem
2. Expand concepts w.r.t. TBox
3. Normalize concept descriptions

@ 4. Apply tableau rules

TU
Dresden 43

Expansion of concept descriptions

©

TU
Dresden

Idea: get rid of the unfoldable TBox in a preprocessing step.

Naive approach for expansion:

Let C be concept, 7 unfoldable TBox

1. replace every concept name of a defined concept with
the right-hand side of its definitions A = C

2. repeat until no more replacements can be made.

Negation Normal Form

©

TU
Dresden

A concept C is in negation normal form (NNF) if
negation occurs only in front of concept names.

Transformation rules:

—=C ~ C

~(CTM D)~ —~CU=D
—l(CUD)W -Cmn-=D

—(3Ir.C) ~ Vr.-C
=(vr.C) ~ ZFr.=C

44

46

Expansion of concept descriptions |1

©

T
D

U

resden

Expansion process terminates due to acyclicity of the concept definitions!

But: exponential blow-up in the worst case!

7—'

{ AO = V’I’.Al Il VSAl
A1 = V’l".Az 1 VS.Az

Ap_1 =Vr.A,MVs. Ay }

45

Tableau Algorithm: Idea

©

T
D

(V]
resden

Try to construct a model for the input concept C| as follows:
(Cpy: expanded and in NNF)

o Represent potential models by proof ABoxes

e To decide satisfiability of Cy,
start with one initial proof ABox Ay

e Repeatedly apply tableau rules
and check for obvious contradictions

e Return ‘satisfiable’ iff a complete and contradiction-free
proof ABox was found
(l.e. if all proof ABoxes contain a contradiction,
return ‘not satisfiable’)

47

Proof ABox Tableau rules for ALC

Tableau algorithm works on sets of ABoxes: S Precondition Replace A by:
—n | (i Cy)(m) € A A = AU {Ci(z), Ca(x)}
Initially, S contains proof ABox for concept Cy: Ci(z) € Aor Co(z) ¢ A

S := { Ao}, with Ay := {Co(x0)}

— | (LU Cy)(z) € A A = AU {(C1) (=)}

Ci(z) € Aand Ca(xz) € A A" = AU {(C:
Apply tableau rules to set of proof ABoxes S until @) () @@}

- a proof ABox is complete (no more rules applicable) 3 (EIT'C)(”.”) €A A= AUA{r(z, 2),C(2)}
but no z in A s.t.
or {r(z,2),C(2)} C A
- there exists an individual = in A such that
!l e—
{B(x),B(z)} C A for some concept name B (Clash) —v t{)(vg(c))(ﬁz)::(% Y} CA A= AU{C(y)}
ut
©@ or L(z) € A. © v
TU Tu
Dresden 48 Dresden 49
Algorithm is a decision procedure Soundness and completeness
Lemma Soundness of the procedure:

is shown by local correctness of each tableau rule.
1. If the algorithm returns “satisfiable”, y

then the input concept has a model.
Local correctness:

2. If the algorithm returns “not satisfiable”,

Let S’ be obtained from S by the application of a tableau rule.
then the input concept has no model.

Then S is consistent iff S is consistent.
3. The algorithm terminates on any input

Completeness of the procedure:
Corollary . L
. . . Directly follows from the definition of a clash.
ALC-concept satisfiability and subsumption are decidable

© ©

TU TU
Dresden 50 Dresden 51

Termination—some technical notions Termination—some technical notions

sub-concept descriptions of concepts sub(C):

Role depth of concepts d(C): C € sub(C)
d(A)=0 A € N¢ C = —D, then D € sub(C)
d(~C) = d(C) C =CyMCyor C=CyUC,, then Cy,Cy € sub(C)
d(C N D) = d(C U D) = max{d(C), d(D)} C =3r.Dor C =Vr.D, then D € sub(C)

d(3r.C) = d(vr.C) = d(C) + 1

sub-concept descriptions of ABoxes sub(.A):

sub(A) := U sub(C)

Maximal nesting of quantifiers in a concept description.

C(a)eA
TU TU
Dresden 52 Dresden
Termination Complexity for reasoning with unfoldable TBoxes
Complexity of unfolding: exponential
The algorithm terminates since:
Complexity of transformation into NNF: linear
1. depth of the proof ABox bounded by d(Cy). plexity
2. for each individual, at most #sub(C)) successors are generated Complexity of application of tableau rules: polynomial space
3. each individual has at most #sub(C) concept assertions Ay Ay A ysub(cy)
4. concepts are never deleted from node labels
P e all ABoxes need to be considered,
but only one at a time
e the whole tree may be generated,
@ @ but only one path needs to be stored

U

T (V]
Dresden

T
54 Dresden

Tableau algorithm for general TBoxes

e simple expansion does not work in the presence of GCls:

—replace a name by which part of the TBox?
— cyclic axioms: termination?

e Applying the GCls like rules does not work either!
Fr(CM3s.D) C -E UL 3Ir.D

‘Precondition’ may never appear at relevant element

e Recall: GCls hold at every point in the model
— new tableau rule for GCls needed

56

Problem: termination

Consider: 7 = {B C 3r.B}

with Cger = -B U Jr.B

o ®* B, -BL3r.B
_E"I"-,.g —3

T3 * B, -B'U3r.B
dr.B

T2 ® B -Bll3r.B
Jr.B

Remedy:
Block of application of — 5

58

@ if it is blocked or indirectly blocked.

Tableau algorithm for general TBoxes

Tableau rule for GCls
1. Code all GCls into one.

For 7T = {Clng, Cz;Dz,..., CnEDn}
build the GCI T C Cger with
Cger = (2C1U D) M (=Co U Dy) M-+ M (=Cy, U Dy)

2. Assert Cgcy for every individual: new tableau rule

——TCCqcr- If z in A and CGCI(:B) € A,
then replace A with A’ = A U {Cgcr(x)}

©

TU
Dresden

Ancestor blocking

An individual «x is directly blocked
by an individual y, iff:
o there is a path from y to « in A Ir.B

e x was generated by —> 5 after y
‘y is older than z.’ °

{C|C(x) e A} C{D | D(y) € A}

An individual x is indirectly blocked if:

o there is a path from y to « in A

e y is directly blocked xr e B,-BL3r.B

r.B
An individual x is blocked

TU
Dresden

Y e B,-BUIr.B

Adaptations to blocking

Replace the exists rule — 3 by a exists rule with blocking —5:

Precondition

Replace A by:

—an | (Fr.C)(x) € A,

and x is not (indirectly) blocked
but no z in A s.t.
{r(z,2),C(2)} C A

A=
AU {r(z,2),C(2)}

©

TU
Dresden

60

Soundness and completeness

Soundness of the procedure:

is shown by local correctness of each tableau rule.

Local correctness:

Let S’ be obtained from S by the application of a tableau rule.

Then S is consistent iff S’ is consistent.

Completeness of the procedure:

Directly follows from the definition of a clash.

©

TU
Dresden

62

©

T
D

U

Adaptations to blocking

resden

Have we obtained a model?

Some role-successors are missing in the ‘blocked’ ABox!

Build model w.r.t. blocking: Zoe B
oe , B U3r.B

How to obtain a model for: 3Ir.B
T ={BLC3r.B}?

Introduce ‘back links’.

r1® B,-BLU3r.B
Ir.B

Termination

The algorithm terminates since:

©

T
D

(V]
resden

1. depth of the proof ABox bounded:
e #individuals in A: finite

61

o #‘new’ individuals directly reachable from an ‘old individual': finite

o #‘new’ individuals reachable from a ‘new individual’: finite

(bound by blocking condition)

2. each individual has at most #sub(Cqcr) + #sub(A) successors

3. each individual has at most #sub(Cgcr) + #sub(A)
concept assertions

4. concepts are never deleted from node labels

63

Tableau method for DLs Tree-shaped models (for ACC) |

The tableaux algorithm I {A}

{B} 7‘\5

(B} " {s 0

e is implemented in reasoner systems for expressive DLs

— in particular in the reasoner for OWL 2

e requires optimizations to yield systems r 0
. I T {A} N8
with acceptable running times de A () @
r \S 3 0 d e AI
model of:
AC 3Ir.B Starting with a gi\./en node, th(’:‘ graph
- can be unraveled into a tree without
BLC 3r.A ‘changing membership’ in concepts.
@ @ AU BELC3s.T
TU TU
Dresden 64 Dresden 65
Tree model property of ACC No tree model property for ALCO
Let 7 be a TBox and C' a concept description.
The interpretation Z is a tree model of C w.r.t. T if Theorem:
e Z is a model of 7 and ALCO does not have the tree model property.
o the graph (A%, J,cn,, r7) is a tree whose root belongs to C”.
Proof:

Theorem: The concept {a} does not have a tree model w.r.t. {{a} C 3r.{a}}.

ACLC has the tree model property.

i.e., if 7: ALC-TBox and C: ALC-concept description such that
C is satisfiable w.r.t. ‘T, then C has a tree model w.r.t. .

© ©

TU TU
Dresden 66 Dresden 67

Finite model property of ACC

©

T
D

(V]
resden

Let 7 be a TBox and C' a concept description.

The interpretation Z is a finite model of C w.r.t. T iff
e Z is a model of 7~ and
o CT £ (9, and A7 is finite.

Theorem:
ACLC has the finite model property.

i.e., if 7: ALC-TBox and C: ALC-concept description such that
C is satisfiable w.r.t. T, then C has a finite model w.r.t. 7.

68

