Knowledge Representation
and
Reasoning

from the book of the same name
by
Ronald J. Brachman
and
Hector J. Levesque

Morgan Kaufmann Publishers, San Francisco, CA, 2004

KR & R © Brachman & Levesque 2005

1.

Introduction

What is knowledge?

Easier question: how do we talk about it?

We say “John knows that ...” and fill the blank with a proposition
— can be true / false, right / wrong

Contrast: “John fears that ...”
— same content, different attitude

Other forms of knowledge:
« know how, who, what, when, ...
+ sensorimotor: typing, riding a bicycle
- affective: deep understanding

Belief: not necessarily true and/or held for appropriate reasons
and weaker yet: “John suspects that ...”

Here: no distinction o taking the world to be one
the mainidea | 4y and not another

KR & R © Brachman & Levesque 2005

What is representation?

Symbols standing for things in the world

+ —— f{irst aid

J

Q —— ¥ women
"John" —————® John

"John loves Mary" ———— the proposition that
John loves Mary

Knowledge representation:

symbolic encoding of propositions believed
(by some agent)

KR & R

© Brachman & Levesque 2005

What is reasoning?

Manipulation of symbols encoding propositions to produce
representations of new propositions

Analogy: arithmetic =~ “1011” + 10" — *1101”
J J J

eleven two thirteen

“John is Mary's » John is an adult
father” male

!
.

KR & R © Brachman & Levesque 2005

Why knowledge?

For sufficiently complex systems, it is sometimes useful to
describe systems in terms of beliefs, goals, fears, intentions
e.g. in a game-playing program

“because it believed its queen was in danger, but wanted to still
control the center of the board.”

more useful than description about actual techniques used for
deciding how to move

“because evaluation procedure P using minimax returned a value
of +7 for this position

= taking an intentional stance (Dan Dennett)

Is KR just a convenient way of talking about complex systems?
« sometimes anthropomorphizing is inappropriate
e.g. thermostats

 can also be very misleading!
fooling users into thinking a system knows more than it does

KR & R © Brachman & Levesque 2005

Why representation?

Note: intentional stance says nothing about what is or is not
represented symbolically

e.g. in game playing, perhaps the board position is represented, but the goal of
getting a knight out early is not

KR Hypothesis: (Brian Smith)

“Any mechanically embodied intelligent process will be comprised of structural
ingredients that a) we as external observers naturally take to represent a
propositional account of the knowledge that the overall process exhibits, and b)
independent of such external semantic attribution, play a formal but causal and
essential role in engendering the behaviour that manifests that knowledge.”

Two issues: existence of structures that
* we can interpret propositionally
+ determine how the system behaves

Knowledge-based system: one designed this way!

KR & R © Brachman & Levesque 2005 8

Two examples

printColour(snow) :- !, write("It's white.").

printColour(grass) :- !, write("It's green.").
Example 1 printColour(sky) :- !, write("It's yellow.").

printColour(X) :- write("Beats me.").

printColour(X) :- colour(X,Y), !,

write("It's "), write(Y), write(".").

printColour(X) :- write("Beats me.").
Example 2 colour (snow,white).

colour (sky,yellow).

colour(X,Y) :- madeof(X,Z), colour(Z,Y).

madeof (grass,vegetation).

colour (vegetation, green).

Both systems can be described intentionally.

Only the 2nd has a separate collection of symbolic
structures a la KR Hypothesis

its knowledge base (or KB)
a small knowledge-based system

KR & R © Brachman & Levesque 2005

KR and Al

Much of Al involves building systems that are knowledge-based

ability derives in part from reasoning over explicitly represented knowledge
— language understanding,
— planning,
— diagnosis,
— “expert systems”, etc.

Some, to a certain extent
game-playing, vision, etc.

Some, to a much lesser extent

speech, motor control, etc.

Current research question:

how much of intelligent behaviour is knowledge-based?

Challenges: connectionism, others

KR & R © Brachman & Levesque 2005 10

Why bother?

Why not “compile out” knowledge into specialized procedures?

- distribute KB to procedures that need it
(as in Example 1)

- almost always achieves better performance

No need to think. Just do it!
— riding a bike
— driving a car
— playing chess?
— doing math?
— staying alive??

Skills (Hubert Dreyfus)

* novices think; experts react

]

« compare to current “expert systems”;
knowledge-based !

KR & R © Brachman & Levesque 2005

11

Advantage

Knowledge-based system most suitable for open-ended tasks

can structurally isolate reasons for particular behaviour

Good for

+ explanation and justification

— “Because grass is a form of vegetation.”
« informability: debugging the KB

— “No the sky is not yellow. It's blue.”

+ extensibility: new relations
— “Canaries are yellow.”

+ extensibility: new applications
— returning a list of all the white things
— painting pictures

KR & R © Brachman & Levesque 2005

12

Cognitive penetrability

Hallmark of knowledge-based system:

the ability to be told facts about the world and adjust our behaviour
correspondingly

for example: read a book about canaries or rare coins

Cognitive penetrability (Zenon Pylyshyn)

actions that are conditioned by what is currently believed
an example:
we normally leave the room if we hear a fire alarm

we do not leave the room on hearing a fire alarm
if we believe that the alarm is being tested / tampered
can come to this belief in very many ways

so this action is cognitively penetrable
a non-example:
blinking reflex

KR & R © Brachman & Levesque 2005 13

Why reasoning?

Want knowledge to affect action
not do action A if sentence P is in KB
but do action A if world believed in satisfies P

Difference:
P may not be explicitly represented

Need to apply what is known in general
to the particulars of a given situation

Example:
“Patient x is allergic to medication m.”

“Anybody allergic to medication m is also
allergictom'”

Is it OK to prescribe m' for x ?

Usually need more than just DB-style retrieval of facts in the KB

KR & R © Brachman & Levesque 2005

14

Entailment

Sentences P,, P,, ..., P, entail sentence P iff the truth of P is
implicit in the truth of P, P,, ..., P,.

If the world is such that it satisfies the P, then it must also satisfy P.
Applies to a variety of languages (languages with truth theories)

Inference: the process of calculating entailments
+ sound: get only entailments

« complete: get all entailments

Sometimes want unsound / incomplete reasoning

for reasons to be discussed later

Logic: study of entailment relations
+ languages
« truth conditions

* rules of inference

KR & R © Brachman & Levesque 2005

15

Using logic

No universal language / semantics
« Why not English?
+ Different tasks / worlds
- Different ways to carve up the world

No universal reasoning scheme
« Geared to language

+ Sometimes want “extralogical” reasoning

Start with first-order predicate calculus (FOL)

+ invented by philosopher Frege for the formalization of mathematics

+ but will consider subsets / supersets and very different looking
representation languages

KR & R © Brachman & Levesque 2005

16

Knowledge level

Allen Newell's analysis:
+ Knowledge level: deals with language, entailment
« Symbol level: deals with representation, inference

Picking a logic has issues at each level

+ Knowledge level:
expressive adequacy,
theoretical complexity, ...

« Symbol level:
architectures,
data structures,
algorithmic complexity, ...

Next: we begin with FOL at the knowledge level

KR & R © Brachman & Levesque 2005

17

2.

The Language of
First-order Logic

Declarative language

Before building system

before there can be learning, reasoning, planning,
explanation ...

need to be able to express knowledge

Want a precise declarative language

» declarative: believe P = hold Pto be true

cannot believe P without some sense of
what it would mean for the world to satisfy P

 precise: need to know exactly
what strings of symbols count as sentences

what it means for a sentence to be true
(but without having to specify which ones are true)

Here: language of first-order logic

again: not the only choice

KR & R © Brachman & Levesque 2005

Alphabet

Logical symbols:
« Punctuation: (,), .
- Connectives: -, A, v, V, 3, =

« Variables: x, x, x,, ... x, x", .., y, ooiy Z, ...
Fixed meaning and use
like keywords in a programming language

Non-logical symbols

+ Predicate symbols (like Dog) Note: not treating = as a predicate

« Function symbols (like bestFriendOf)
Domain-dependent meaning and use
like identifiers in a programming language

Have arity: number of arguments
arity O predicates: propositional symbols
arity O functions: constant symbols

Assume infinite supply of every arity

KR & R © Brachman & Levesque 2005 20

Grammar

Terms
1. Every variable is a term.

2.1ft, ¢, ..., t, are terms and fis a function of arity n,
then f(t,, t,, ..., t,) IS a term.

Atomic wffs (well-formed formula)

1.1f¢,1, .., t,are terms and P is a predicate of arity n,
then P(z,, ¢,, ..., t,) is an atomic wff.

2.1ft, and t, are terms, then (¢,=t,) is an atomic wff.

Wifs

1. Every atomic wif is a wiff.

2.If o and B are wffs, and v is a variable, then -a, (aAp), (avp), Av.a, Vv.a
are wffs.

The propositional subset: no terms, no quantifiers
Atomic wffs: only predicates of 0-arity: (p A =(q vr))

KR & R © Brachman & Levesque 2005

21

Notation

Occasionally add or omit (,), .
Use [,] and {,} also.

Abbreviations:
(aDB) for (ma v P)

safer to read as disjunction than as “if ... then ...”

(a=B) for (D) r (BDar))

Non-logical symbols:
+ Predicates: mixed case capitalized
Person, Happy, OlderThan
« Functions (and constants): mixed case uncapitalized

fatherOf, successor,
johnSmith

KR & R © Brachman & Levesque 2005 22

Variable scope

Like variables in programming languages, the variables in FOL
have a scope determined by the quantifiers

Lexical scope for variables
P(x) A Ax[P(x) v O(x)]

XY/

free bound occurrences of variables

A sentence: wif with no free variables (closed)

Substitution:

o[v/t] means o with all free occurrences of the v replaced by term ¢

Note: written o) elsewhere (and in book)

Also: a[t,...t,] means o|v,/t,,...v /t]

KR & R © Brachman & Levesque 2005 23

Semantics

How to interpret sentences?
- what do sentences claim about the world?

« what does believing one amount to?
Without answers, cannot use sentences to represent knowledge

Problem:

cannot fully specify interpretation of sentences because non-logical
symbols reach outside the language

So:

make clear dependence of interpretation on non-logical symbols

Logical interpretation:

specification of how to understand predicate and function symbols
Can be complex!

DemocraticCountry, IsABetterJudgeOfCharacterThan,
favouriteIceCreamFlavourOf, puddleOfWater27

KR & R © Brachman & Levesque 2005 24

The simple case

There are objects.
some satisfy predicate P; some do not

Each interpretation settles extension of P.
borderline cases ruled in separate interpretations

Each interpretation assigns to function f a mapping from objects
to objects.
functions always well-defined and single-valued

The FOL assumption:

this is all you need to know about the non-logical symbols
to understand which sentences of FOL are true or false

In other words, given a specification of
» what objects there are
» which of them satisfy P
» what mapping is denoted by f
it will be possible to say which sentences of FOL are true

KR & R © Brachman & Levesque 2005 25

Interpretations

Two parts: I =(D, I)

D is the domain of discourse

can be any non-empty set
not just formal / mathematical objects

e.g. people, tables, numbers, sentences, unicorns, chunks of peanut butter,
situations, the universe

I is an interpretation mapping

If P is a predicate symbol of arity n, If f is a function symbol of arity n,
[[P] € DxDx...xD I[f] € [DxDx...xD — D]
an n-ary relation over D an n-ary function over D
for propositional symbols, for constants, I[c] € D

IIp]={} or I[p]={Q}
In propositional case, convenient to assume

3 =1 € [prop. symbols — {true, false}]

KR & R © Brachman & Levesque 2005 26

Denotation

In terms of interpretation J, terms will denote elements of the
domain D.

will write element as ||¢|
For terms with variables, the denotation depends on the values of
variables

will write as |75,

where u € [Variables — D],
called a variable assignment

Rules of interpretation:
1o Mlsu = uv).
2. |[fit, ty s t) |3, = H@y, dy, ..., d,)
where H = [[f]
and d; = |{/|5, recursively

KR & R © Brachman & Levesque 2005 27

Satisfaction

In terms of an interpretation J, sentences of FOL will be either
true or false.

Formulas with free variables will be true for some values of the
free variables and false for others.
Notation:

will write as Ju |=a “ais satisfied by J'and y”
where u € [Variables — D], as before

or J|=a, whena is asentence

“a. is true under interpretation J”

or J|=S, when S is a set of sentences
“the elements of S are true under interpretation J”

And now the definition...

KR & R © Brachman & Levesque 2005 28

Rules of interpretation

1. Su|= P, t,...t) iff (d,d,, .. d) E R
where R = I[P]

and d; = [/ ¢,||5,, ason denotation slide
2. Sul= (1, =1) iff ||t |5, isthesameas| 1|y,
3. Jul=-a iff Jul=a
4. Ju |= (aap) iff Jul=a and Ju |=p
5. Su |= (avp) iff Jul=a or Ju|=p
6. Ju |= Iva iff forsomed e D, Ju{d;v}|=a
7. Su|l= Yva iff forallde D, Su{dv}|=a

where u{d;v} is just like u, except that u(v)=d.

For propositional subset:
S|=p iff I[p] = {3 and the rest as above

KR & R © Brachman & Levesque 2005 29

Entailment defined

Semantic rules of interpretation tell us how to understand all wffs
in terms of specification for non-logical symbols.

But some connections among sentences are independent of the
non-logical symbols involved.

e.g. If ais true under 3, then so is =(far-a.),
no matter what ' is, why a is true, what g is, ...
Y

S |=a iff forevery &, if & |=S then I |=a.

Say that S entails a or ais a logical consequence of S:

In other words: forno &, J |=SU {-a}. SU {-a} is unsatisfiable

Special case when S is empty: |= o iff forevery &, J |=a.

Say that a is valid.

Note: {a,, 0y, ..., .} |= a0 iff |= (0, A0, A..A Q) DA

finite entailment reduces to validity

KR & R © Brachman & Levesque 2005 30

Why do we care?

We do not have access to user-intended interpretation of non-
logical symbols

But, with entailment, we know that if S is true in the intended
interpretation, then so is a.

If the user's view has the world satisfying S, then it must also satisfy a.

There may be other sentences true also; but o is logically guaranteed.

So what about ordinary reasoning?
Dog(fido) " Mammal(fido) ?7?
Not entailment!

There are logical interpretations where I[Dog] ¢ I[Mammal]

_ include such connections explicitly in S
Key idea Vx[Dog(x) O Mammal(x)]

of KR: the rest is just

Get: S U {Dog(fido)} |= Mammal(fido) details...

KR & R © Brachman & Levesque 2005 31

Knowledge bases

KB is set of sentences

explicit statement of sentences believed (including any assumed
connections among non-logical symbols)

KB |=a a is a further consequence of what is believed
+ explicit knowledge: KB
- implicit knowledge: {a| KB |=a }

Often non trivial: explicit » implicit

Example:

Three blocks stacked.

green

A
Top one is green. B
C

Bottom one is not green.

non-green

Is there a green block directly on top of a non-green block?

KR & R © Brachman & Levesque 2005

32

A formalization

S = {On(a,b), On(b,c), Green(a), —~Green(c)}

all that is required

o = dxdy[Green(x) A =Green(y) A On(x,y)]
Claim: S|=a

Proof:
Let I'be any interpretation such that J|= S.

Case 2: J|= Green(b).
. J'|= = Green(b)

. J|= Green(a) A =Green(b) A On(a,b).

Case 1: J|= Green(b).
. J|= Green(b) A =Green(c) A On(b.c).

S Ea
S =a

Either way, forany 3, if 3|=S then J|=o.

So Sl|=o. QED

KR & R © Brachman & Levesque 2005 33

Knowledge-based system

Start with (large) KB representing what is explicitly known

e.g. what the system has been told or has learned

Want to influence behaviour based on what is implicit in the KB
(or as close as possible)

Requires reasoning

deductive inference:

process of calculating entailments of KB
i.e given KB and any o, determine if KB |= o,

Process is sound if whenever it produces a, then KB |= a

does not allow for plausible assumptions that may be true
in the intended interpretation

Process is complete if whenever KB |= a, it produces o

does not allow for process to miss some a or be unable to
determine the status of a

KR & R © Brachman & Levesque 2005

3.

Expressing
Knowledge

Knowledge engineering

KR is first and foremost about knowledge

meaning and entailment

find individuals and properties, then encode facts sufficient for entailments

Before implementing, need to understand clearly
- what is to be computed?

- why and where inference is necessary?

Example domain: soap-opera world
people, places, companies, marriages, divorces, hanky-panky, deaths,
kidnappings, crimes, ...

Task: KB with appropriate entailments
+ what vocabulary?
« what facts to represent?

KR & R © Brachman & Levesque 2005 36

Vocabulary

Domain-dependent predicates and functions

main question: what are the individuals?
here: people, places, companies, ...

named individuals

john, sleezyTown, faultyInsuranceCorp, fic, johnQsmith, ...

basic types

Person, Place, Man, Woman, ...

attributes

Rich, Beautiful, Unscrupulous, ...

relationships
LivesAt, MarriedTo, DaughterOf, HadAnAffairWith, Blackmails, ...

functions
fatherOf, ceoOf, bestFriendOf, ...

KR & R © Brachman & Levesque 2005

37

Basic facts

Usually atomic sentences and negations

type facts
Man(john),
Woman(jane),

Company(faultyInsuranceCorp)

property facts
Rich(john),
-HappilyMarried(jim),
WorksFor(jim,fic)

equality facts
john = ceoOf(fic),
fic = faultyInsuranceCorp,
bestFriendOf(jim) = john

Like a simple database (can store in a table)

KR & R © Brachman & Levesque 2005

38

Complex facts

Universal abbreviations

Vy[Woman(y) A y = jane DO Loves(y,john)]
possible to express

Vy[Rich(y) A Man(y) D Loves(y,jane)] without quantifiers
VxVy[Loves(x,y) D —=Blackmails(x,y)]

Incomplete knowledge

Loves(jane.john) v Loves(jane jim) cannot write down

which? a more complete
Ax[Adult(x) A Blackmails(x,john)] version
who?

Closure axioms
Vx[Person(x) D x=jane v x=john v x=jim ...]
VxVy[MarriedTo(x,y) D ...] limit the domain
Vx[x=fic v x=jane v x=john v x=jim ...] of discourse

also useful to have jane = john ...

KR & R © Brachman & Levesque 2005 39

Terminological facts

General relationships among predicates. For example:
disjoint Vx[Man(x) O —-Woman(x)]
subtype Vx[Senator(x) D Legislator(x)]
exhaustive Vx[Adult(x) D Man(x) v Woman(x)]
symmetry VxVy [MarriedTo(x,y) O MarriedTo(y,x)]
inverse VxVy [ChildOf(x,y) D ParentOf(y,x)]

type restriction VxVy [MarriedTo(x,y) D

Person(x) A Person(y) A OppSex(x,y)]

sometimes

Usually universally quantified conditionals or biconditionals

KR & R © Brachman & Levesque 2005

40

Entailments: 1

Is there a company whose CEO loves Jane?
dx [Company(x) A Loves(ceoOf(x),jane)] ?7?

Suppose J |= KB.
Then 3 |= Rich(john), Man(john),
and & |= Vy[Rich(y) A Man(y) D Loves(y,jane)]
so & |= Loves(john,jane).
Also & |= john = ceoOf(fic),
so I |= Loves(ceoOf(fic),jane).
Finally & |= Company(faultyInsuranceCorp),
and & |= fic = faultyInsuranceCorp,
so & |= Company(fic).
Thus, & |= Company(fic) A Loves(ceoOf(fic),jane),
and so

3 |= 3x [Company(x) A Loves(ceoOf(x) jane)].

Can extract identity of company from this proof

KR & R © Brachman & Levesque 2005 41

Entailments: 2

If no man is blackmailing John, then is he being blackmailed by
somebody he loves?

Vx[Man(x) O —Blackmails(x,john)] D
dy[Loves(john,y) A Blackmails(y,john)] ?7?

Note: KB |=(aDB) iff KBU {a}|=p

Let: = KB U {Vx[Man(x) D - Blackmails(x,john)]}
Show: 3 |= Jy[Loves(john,y) A Blackmails(y,john)

Have: 3dx[Adult(x) A Blackmails(x,john)] and Vx[Adult(x) O Man(x) v Woman(x)]
SO0 dx[Woman(x) A Blackmails(x,john)].

Then: Vy[Rich(y) A Man(y) D Loves(y,jane)] and Rich(john) A Man(john)
so Loves(john,jane)!

But: Vy[Woman(y) A y = jane D Loves(y,john)]
and VxVy[Loves(x,y) O —Blackmails(x,y)]
so Vy[Woman(y) A y=jane DO —Blackmails(y,john)] and Blackmails(jane john)!!

Finally: Loves(john,jane) A Blackmails(jane,john)
so: dy[Loves(john,y) A Blackmails(y,john)]

KR & R © Brachman & Levesque 2005

What individuals?

Sometimes useful to reduce n-ary predicates to 1-place
predicates and 1-place functions

* involves reifying properties: new individuals

- typical of description logics / frame languages (later)

Flexibility in terms of arity:

Purchases(john,sears,bike) or
Purchases(john sears bike feb14) or
Purchases(john,sears bike,feb14,$100)

Instead: introduce purchase objects

Purchase(p) A agent(p)=john A obj(p)=bike A source(p)=sears A ...
allows purchase to be described at various levels of detail

Complex relationships: MarriedTo(x,y) VS. ReMarriedTo(x,y) VS. ...

Instead define marital status in terms of existence of
marriage and divorce events.

Marriage(m) A husband(m)=x A wife(m)=y A date(m)=... A...

KR & R © Brachman & Levesque 2005 43

Abstract individuals

Also need individuals for numbers, dates, times, addresses, etc.

objects about which we ask wh-questions

Quantities as individuals
age(suzy) = 14
age-in-years(suzy) = 14
age-in-months(suzy) = 168
perhaps better to have an object for “the age of Suzy”, whose value in years is 14
years(age(suzy)) = 14
months(x) = 12*years(x)
centimeters(x) = 100*meters(x)

Similarly with locations and times

instead of
time(m)="Jan 5 2006 4:47:03EST"

can use
time(m)=t A year(1)=2006 A ...

KR & R © Brachman & Levesque 2005

44

Other sorts of facts

Statistical / probabilistic facts
- Half of the companies are located on the East Side.
« Most of the employees are restless.
« Almost none of the employees are completely trustworthy,

Default / prototypical facts

- Company presidents typically have secretaries intercepting their phone
calls.

 Cars have four wheels.
- Companies generally do not allow employees that work together to be
married.
Intentional facts
+ John believes that Henry is trying to blackmail him.
+ Jane does not want Jim to think that she loves John.

Others ...

KR & R © Brachman & Levesque 2005

45

4.

Resolution

KR & R

© Brachman & Levesque 2005

46

Goal

Deductive reasoning in language as close as possible to full FOL
_I7 A7 V7 37V

Knowledge Level:

given KB, a, determine if KB |= o.

or given an open afx,x,...x,], find 71,2, such that KB |= a[t,.t,,..1,]
When KB is finite {a, o, ..., o}
KB |= o

iff |=[(0,A0,A...A0) D a]
iff KB U {-a} is unsatisfiable

iff KBU {-a} |= FALSE
where FALSE is something like 3x.(x=x)

So want a procedure to test for validity, or satisfiability, or
for entailing FALSE.

Will now consider such a procedure (first without quantifiers)

KR & R © Brachman & Levesque 2005 47

Clausal representation

Formula = set of clauses
Clause = set of literals

Literal = atomic sentence or its negation

positive literal and negative literal

Notation:
If p is a literal, then p is its complement
p=-p —p=p
To distinguish clauses from formulas:

[and] for clauses: [p,r,s] {and }for formulas: {[p,r,sl,[p,r sl,[p1}
[] is the empty clause {} is the empty formula
So {} is different from {[]}!

Interpretation:
Formula understood as conjunction of clauses {p,~ql, (], [s]} []
Clause understood as disjunction of literals represents represents
Literals understood normally (pv —=q) AT AS) FALSE

KR & R © Brachman & Levesque 2005 48

CNF and DNF

Every propositional wif a can be converted into a formula o’ in
Conjunctive Normal Form (CNF) in such a way that |=a =o'
1. eliminate D and = using (D p) ™ (-~a v p) etc.
2. push - inward using -(a A)™ (-mav =p) etc.
3. distribute v over A using ((aAB) vy)™ ((avy)aPvy))
4. collect terms using (o v a) ™ o etc.

Result is a conjunction of disjunction of literals.

an analogous procedure produces DNF,
a disjunction of conjunction of literals

We can identify CNF wffs with clausal formulas
PV =gvrAaGsv=r) = {[p,-qrlls-rl}

So: given a finite KB, to find out if KB |= a, it will be sufficient to
1. put (KB A —a) into CNF, as above
2. determine the satisfiability of the clauses

KR & R © Brachman & Levesque 2005 49

Resolution rule of inference

Given two clauses, infer a new clause:
From clause {p} U C,,
and {-p U G,
infer clause C, U C..

C, U C, is called a resolvent of input clauses with respect to p.

Example:
clauses [w,r, g] and [w,s, =r] have [w, g, s] as resolvent wrt r.

Special Case:
[r] and [-p] resolve to [] (the C,and C, are empty)

A derivation of a clause ¢ from a set S of clauses is a sequence
cy, ¢, ..., ¢, Of clauses, where ¢, = ¢, and for each c,, either

1. ¢, €85, or

2. ¢, is a resolvent of two earlier clauses in the derivation

Write: S — c if there is a derivation

KR & R © Brachman & Levesque 2005 50

Rationale

Resolution is a symbol-level rule of inference, but has a
connection to knowledge-level logical interpretations

Claim: Resolvent is entailed by input clauses.

Suppose J|=(pva) and J|=(-p v)
Case1: J |=p
then J [=B, so J |=(avp).
Case2: J

3|
Either way, J |=(av p).
So: {(pva), (~pvP)} |= (avp).
Special case:
[p] and [-p] resolve to [],
so {[pl,[-pl} |= FALSE
thatis: {[p], [-p]} is unsatisfiable

KR & R © Brachman & Levesque 2005

51

Derivations and entailment

Can extend the previous argument to derivations:

If S—c¢ then S |=c¢

Proof: by induction on the length of the derivation.
Show (by looking at the two cases) that S |=c;.

But the converse does not hold in general

Can have S|=c¢ without having S — c.

Example: {[-p]} |= [-p,~gq]l i.e. -p |= (-pV —q)
but no derivation

However.... Resolution is refutation complete!

Theorem: S—|[] iff S|=][] sound and complete

: g when restricted to
Result will carry over to quantified clauses (later) L]

So for any set S of clauses: S is unsatisfiable iff S —[].

Provides method for determining satisfiability: search all derivations for [].
So provides a method for determining all entailments

KR & R © Brachman & Levesque 2005 52

To determine if KB |= a,

A procedure for entailment

If KB = {}, then we are
put KB, —a into CNF to get S, as before testing the validity of o

check if S —].

Non-deterministic procedure

1. Checkif[]isin S.
If yes, then return UNSATISFIABLE

2. Check if there are two clauses in S such that they
resolve to produce a clause that is not already in S.

If no, then return SATISFIABLE
3. Add the new clause to Sand go to 1.

Note: need only convert KB to CNF once

can handle multiple queries with same KB
after addition of new fact o, can simply add new clauses o’ to KB

So: good idea to keep KB in CNF

KR & R

© Brachman & Levesque 2005

53

Example 1

KB Show that KB |=Girl
FirstGrade
FirstGrade O Child ~Child =
(FirstGrade] [-Child, -Male, Boy]

Child A Male D Boy
Kindergarten O Child [~ FirstGrade, Child] [~ Kindergarten, Child]
Child A Female D Girl '

[-Child, -Female, Girl]

Female

[Female]

(Girl, ~Female] /. [~Girl]

negation of
query

Derivation has
9 clauses, 4 new]

KR & R © Brachman & Levesque 2005 54

KB

(Rain v Sun)
(Sun D Mail)
((Rain v Sleet) DO Mail)

Similarly KB |= Rain

Example 2

Show KB |= Mail

[-Sleet, Mail]
[Rain , Sun] [-Sun, Mail] [-Rain, Mail] [-Mail]

[=Sun]

[Rain] [-Rain]

\/

[

Note: every clause
not in S has 2 parents

Can enumerate all resolvents given —Rain,
and [] will not be generated

KR & R © Brachman & Levesque 2005

55

Quantifiers

Clausal form as before, but atom is P(z,, t,, ..., t,), where z, may
contain variables

Interpretation as before, but variables are understood universally

Example: {[P(x), =R(af(b,x))], [O(x,y)] }
interpreted as

VxVy{[R(af(bx)) D P(x)] A Q(x,y)}

Substitutions: 0 ={v,/t,, v,/t,, .., v/t }

Notation: If pis a literal and 6 is a substitution, then 0 is the
result of the substitution (and similarly, ¢6 where c is a clause)

Example: 0= {x/a,y/g(x,b,z)}
P(x,zflx,y)) 0 = P(azflag(xbz))

A literal is ground if it contains no variables.

A literal p is an instance of o, if for some 6, p =p'6.

KR & R © Brachman & Levesque 2005 56

Generalizing CNF

Resolution will generalize to handling variables Ignore = for now

But to convert wffs to CNF, we need three additional steps:

1. eliminate D and =
2. push = inward using also -Vx.a = dx.—a etc.

3. standardize variables: each quantifier gets its own variable

e.g. Ix[P(x)] A O(x) ™ Fz[P(z)] A O(x) where z is a new variable
4. eliminate all existentials (discussed later)

5. move universals to the front using (Vxo) A ™ Vx(ana B)

where 3 does not use x
6. distribute v over a
7. collect terms

Get universally quantified conjunction of disjunction of literals

then drop all the quantifiers...

KR & R © Brachman & Levesque 2005 57

First-order resolution

Main idea: a literal (with variables) stands for all its instances; so
allow all such inferences

So given [P(x,a), =Q(x)] and [=P(b,y), =R(b f(y))],
want to infer [-Q(b), =R(bfla))] among others
since [P(x,a), -Q(x)] has [P(b,a), =-O(b)] and
[-P(b,y),~-R(bf(y))] has [-P(b,a),~R(bfla))]
Resolution:
Given clauses: {p,} UC, and {p,} U C,.
Rename variables, so that distinct in two clauses.

For any 6 such that p,0 = p,0, can infer (C, U C,)6.
We say that p, unifies with p, and that 6 is a unifier of the two literals

Resolution derivation: as before

Theorem: S—[] iff S|=[] iff Sis unsatisfiable

Note: There are pathological examples where a slightly more general
definition of Resolution is required. We ignore them for now...

KR & R © Brachman & Levesque 2005 58

Example 3

[= Student(x), HardWorker(x)] [-~HardWorker(sue)]

[- GradStudent(x), Student(x)]

x/sue

[GradStudent(sue)] [-Student(sue)]

?
KB |= HardWorker(sue)

[=GradStudent(sue)]

KB
Vx GradStudent(x) D Student(x) Label each step (]
with the unifier
Vx Student(x) O HardWorker(x) Point to relevant
GradStudent(sue) literals in clauses

KR & R © Brachman & Levesque 2005 59

The 3 block example

KB = {On(a,b), On(b,c), Green(a), —Green(c)} already in CNF
Query = IxJy[On(x,y) A Green(x) A —Green(y)]

Note: —=Q has no existentials, so yields \‘

[-On(x,y), ~Green(x), Green(y)]

[On(b,c)]
{x/b, y/c
[-Green(b), Green(c)] [On(a,b)]
{x/a, y/b}
[-Green(c)] [-Green(a), Green(b)]
[Green(a)]
[-Green(b)]

Note: Need to use

On(x,y) twice, for 2 cases [

KR & R © Brachman & Levesque 2005

60

Arithmetic

KB: Plus(zerox,x)
Plus(x,y,z) D Plus(succ(x),y,succ(z))

Q: du Plus(2,3,u)

[~ Plus(x,y,z), Plus(succ(x),y,succ(z))] [=Plus(2,3,u)]

For readability, [Plus(0,x x)]
we use

0 for zero,

1 for succ(zero),

2 for succ(succ(zero))

x/1,y/3, u/succ(v), z/v

[-Plus(1,3,v)]
x/0, y/3, v/succ(w), z/w &

etc.
Can find the answer in the derivation [=Plus(0,3,.w)]
u/succ(succ(3)) /3. w/3
thatis: u/5
[Rename variables

Can also derive Plus(2,3,5) to keep them distinct

KR & R © Brachman & Levesque 2005 61

Answer predicates

In full FOL, we have the possibility of deriving JxP(x) without
being able to derive P(¢) for any r.

e.g. the three-blocks problem
dx3y[On(x,y) A Green(x) A =Green(y)]
but cannot derive which block is which

Solution: answer-extraction process
+ replace query dxP(x) by Ax[P(x) A —=A(x)]

where A is a new predicate symbol called the answer predicate
* instead of deriving [], derive any clause containing just the answer predicate

 can always convert to and from a derivation of []

U

KB: Student(john) [-~ Student(x), ~Happy(x), A(x)]

Happy(john)

Student(jane) {x/john
Happy(john) Student(john) [-Student(john), A(john)]
Q: dx[Student(x) A Happy(x)]
[A(john)] An answer is: John

KR & R © Brachman & Levesque 2005 62

Disjunctive answers

KB: U
Student(john) [- Student(x), ~Happy(x), A(x)]
Studentgane) , Student(jane) Student(john)
Happy(john) v Happy(jane) {x/jane} {X/jy
Query: [~Happy(jane), A(jane)]
dx[Student(x) A Happy(x)] [~Happy(john), A(john)]

[Happy(john), Happy(jane)]

N

[Happy(john), A(jane)]

Note: [A(jane), A(john)]
_ _ An answer is: either Jane or John
« can have variables in answer

« need to watch for Skolem symbols... (next)

KR & R © Brachman & Levesque 2005 63

Skolemization

So far, converting wff to CNF ignored existentials
e.g. AxVy3dzP(x,y,z)

ldea: names for individuals claimed to exist, called Skolem
constant and function symbols

there exists an x, call it a
for each y, thereis a z, call it f(y)

get VyP(a,yf(y))

So replace Vx,(..Vx,(..Vx, (.. 3y[... ¥y ..]..0).0).0)
by Vi, (VX (e [i X 0e0X,) o] 20 enl))

fis a new function symbol that appears nowhere else

Skolemization does not preserve equivalence
e.g. |= IxP(x) = P(a)
But it does preserve satisfiability

o is satisfiable iff o' is satisfiable (where o' is the result of Skolemization)
sufficient for resolution!

KR & R © Brachman & Levesque 2005 64

Variable dependence

Show that IxVyR(x,y) |= VyAxR(x,y)
show {AxVyR(x,y), =Vy3IxR(x,y)} unsatisfiable
AxVyR(x,y) = VyR(a,y)
-=VyadxR(x,y) = AyVx-R(x,y) ™ Vx-=R(x,b)
then { [R(a,y)], [-R(x,b)] } — [] with {x/a, y/b}.

Show that Vy3axR(x,y) |= IxVyR(x,y)
show {Vy3axR(x,y), -IxVyR(x,y)} satisfiable
VydxR(x,y) = VyR(f().y)
—=3AxVyR(x,y) ™ VxIy-R(x,y) ™ Vx-R(x,g(x))

then get { [R(().], [-R(x,g(x)] }
where the two literals do not unify

Note: important to get dependence of variables correct
R(f(y),y) vS. R(a,y) inthe above

KR & R © Brachman & Levesque 2005

65

A problem

[LessThan(x,y), =LessThan(succ(x),y)]

KB:
LessThan(succ(x),y) O LessThan(x,y)
Query:

LessThan(zero,zero)

Should fail since KB |= Q

[~ LessThan(0,0)]
x/0, y/0

[-LessThan(1,0)]

x/1,y/0

[-LessThan(2,0)]

x/2,y/0

Infinite branch of resolvents

cannot use a simple depth-first
procedure to search for []

KR & R © Brachman & Levesque 2005

66

Undecidability

Is there a way to detect when this happens?

No! FOL is very powerful

can be used as a full programming language

just as there is no way to detect in general when
a program is looping

There can be no procedure that does this:

Proc[Clauses] =

If Clauses are unsatisfiable
then return YES
else return NO

However: Resolution is complete

some branch will contain [], for unsatisfiable clauses

So breadth-first search guaranteed to find []

search may not terminate on satisfiable clauses

branches

™~
/T//Q ™~
infinite 0

KR & R © Brachman & Levesque 2005

67

Overly specific unifiers

In general, no way to guarantee efficiency, or even termination
later: put control into users' hands

One thing that can be done:

reduce redundancy in search, by keeping search as general as possible

Example
oy P(8(X) f(x),2)] [=P(yfiw)a), ...
unified by
0, = {x/b, y/g(b), z/a, w/b} gives P(g(b)f(b),a)
and by
6, = {x/f(2), y/g(f(z)), z/a, wifi(z)} gives P(g(f(z))fif(z).a).

Might not be able to derive the empty clause from clauses having
overly specific substitutions
wastes time in search!

KR & R © Brachman & Levesque 2005 68

Most general unifiers

0 is a most general unifier (MGU) of literals p; and p, iff
1. 6 unifies p, and p,

2. for any other unifier 6', there is a another substitution 6~
such that 6’ =00~

Note: composition 60* requires applying 6* to terms in 6

for previous example, an MGU is
0 = {x/w, y/g(w), z/a}

for which
0, = 6{w/b}

6, = 6{w/fiz)}

Theorem: Can limit search to most general unifiers only without

loss of completeness (with certain caveats)

KR & R © Brachman & Levesque 2005

69

Computing MGUs

Computing an MGU, given a set of literals {p;}

usually only have two literals
Start with 6 := {}.

2. If all the p,0 are identical, then done;
otherwise, get disagreement set, DS

e.g P(afla,g(z),..- Plafla,u,...
disagreement set, DS ={u, g(z)}

3. Find a variable v € DS, and a term ¢ € DS not containing v.

If not, fail.
0:=06{v/t}
Goto 2

Note: there is a better linear algorithm

KR & R © Brachman & Levesque 2005

70

Herbrand Theorem

Some 1st-order cases can be handled by converting them to a
propositional form
Given a set of clauses S

- the Herbrand universe of S'is the set of all terms formed using only the function
symbols in S (at least one)

e.g., if S uses (unary) f, and ¢, d, U={c,d, flc).fid), fific), fiftd)), fifific))), ..}

« the Herbrand base of S is the set of all ¢6 such that ¢ € S and 6 replaces the
variables in ¢ by terms from the Herbrand universe

Theorem: S is satisfiable iff Herbrand base is

(applies to Horn clauses also)

Herbrand base has no variables, and so is essentially
propositional, though usually infinite
+ finite, when Herbrand universe is finite
can use propositional methods (guaranteed to terminate)
+ sometimes other “type” restrictions can be used to keep the Herbrand base finite
include f{t) only if ¢ is the correct type

KR & R © Brachman & Levesque 2005 71

Resolution is difficult!

First-order resolution is not guaranteed to terminate.

What can be said about the propositional case?

Shown by Haken in 1985 that there are unsatisfiable clauses {c,, c,, ..., ¢}
such that the shortest derivation of [] contains on the order of 2* clauses

Even if we could always find a derivation immediately, the most clever search
procedure will still require exponential time on some problems

Problem just with resolution?

Probably not.
Determining if a set of clauses is satisfiable was shown by Cook in 1972
to be NP-complete

No easier than an extremely large variety of computational tasks

Roughly: any search task where what is searched for can be verified in
polynomial time can be recast as a satisfiability problem

» satisfiability

» does graph of cities allow for a full tour of size < k miles?
» can N queens be put on an NxN chessboard all safely? and many, many more....

Satisfiability is believed by most people to be unsolvable in polynomial time

KR & R

© Brachman & Levesque 2005 72

SAT solvers

In the propositional case, procedures have been proposed for
determining the satisfiability of a set of clauses that appear to
work much better in practice than Resolution.

The most popular is called DP (or DPLL) based on ideas by
Davis, Putnam, Loveland and Logemann. (See book for details.)

These procedures are called SAT solvers as they are mostly used
to find a satisfying interpretation for clauses that are satisfiable.

related to constraint satisfaction programs (CSP)

Typically they have the property that if they fail to find a satisfying
interpretation, a Resolution derivation of [] can be reconstructed
from a trace of their execution.

S0 worst-case exponential behaviour, via Haken’s theorem!

One interesting counter-example to this is the procedure GSAT,
which has different limitations. (Again, see the book.)

KR & R © Brachman & Levesque 2005 73

Implications for KR

Problem: want to produce entailments of KB as needed for
immediate action

full theorem-proving may be too difficult for KR!

need to consider other options ...
— giving control to user e.g. procedural representations (later)
— less expressive languages e.g. Horn clauses (and a major theme later)

In some applications, it is reasonable to wait

e.g. mathematical theorem proving, where we care about specific formulas

Best to hope for in general: reduce redundancy

main example: MGU, as before
but many other strategies (as we will see)

ATP: automated theorem proving
— area of Al that studies strategies for automatically proving difficult theorems
— main application: mathematics,but relevance also to KR

KR & R © Brachman & Levesque 2005 74

Strategies

Clause elimination

pure clause

contains literal p such that p does not appear in any other clause
clause cannot lead to []

tautology

clause with a literal and its negation
any path to [] can bypass tautology

subsumed clause

a clause such that one with a subset of its literals is already present
path to [] need only pass through short clause

can be generalized to allow substitutions

Ordering strategies

many possible ways to order search, but best and simplest is

unit preference
prefer to resolve unit clauses first

Why? Given unit clause and another clause, resolvent is a smaller one ™]

KR & R

© Brachman & Levesque 2005

75

Strategies 2

Set of support

KB is usually satisfiable, so not very useful to resolve among clauses
with only ancestors in KB

contradiction arises from interaction with -Q

always resolve with at least one clause that has an ancestor in -Q
preserves completeness (sometimes)

Connection graph

pre-compute all possible unifications

build a graph with edges between any two unifiable literals of opposite
polarity

label edge with MGU

Resolution procedure:

repeatedly: select link
compute resolvent
inherit links from parents after substitution

Resolution as search: find sequence of links L,, L,, ... producing]

KR & R

© Brachman & Levesque 2005 76

Strategies 3

Special treatment for equality
instead of using axioms for =

relexitivity, symmetry, transitivity, substitution of equals for equals

use new inference rule: paramodulation
from {(t=5)} U C, and {P(...7..)} UC,
where 0 =16

infer {P(...s ..)}6 U C,6 U C,0.
collapses many resolution steps into one

see also: theory resolution (later)

Sorted logic

terms get sorts:

x: Male mother:[Person — Female]
keep taxonomy of sorts

only unify P(s) with P(r) when sorts are compatible
assumes only “meaningful” paths will lead to]

KR & R

© Brachman & Levesque 2005

77

Finally...

7. Directional connectives

given [-p, ¢g], can interpret as either
from p, infer g (forward)
to prove g, prove p (backward)

procedural reading of D
In 1st case: would only resolve [-p, ¢] with [p, ...] producing [g, ...]

In 2nd case: would only resolve [-p, g] with [-g, ...] producing [-p, ...]

Intended application:
forward: Battleship(x) O Gray(x)

do not want to try to prove something is gray
by trying to prove that it is a battleship

backward: Person(x) O Has(x,spleen)

do not want to conclude the spleen property for
each individual inferred to be a person

This is the starting point for the procedural representations (later)

KR & R © Brachman & Levesque 2005 78

5.

Reasoning with Horn
Clauses

Horn clauses

Clauses are used two ways:
+ as disjunctions: (rain v sleet)

 as implications: (-child v =male v boy)
Here focus on 2nd use

Horn clause = at most one +ve literal in clause

* positive / definite clause = exactly one +ve literal
e.9.[-p;, =ps s 7Dy dl

* negative clause = no +ve literals
e.g.[-p,, -p, -, =p,] and also[]

Note: [-p,, -p, ..., =P, q] IS a representation for
(=p; V =Py V..V=p,vqg) OF [(pjAD,A..AD,) D q]

socanread as: If p,and p,and ...and p, then g

andwrite as: p, Ap,A..Ap, = q O q < p,ApPyA..AD,

KR & R © Brachman & Levesque 2005 80

Resolution with Horn clauses

Only two possibilities:

Neg Pos Pos Pos

hd NS

Neg Pos

It is possible to rearrange derivations of negative clauses so that
all new derived clauses are negative

[-a, ﬂq\,pﬁb, gl [-c, ﬂ<] y] , Pl
[~c, =p] [p, —a, =b] o [~a,~¢c, =q] [-b,q]
[~a, =b, =c] [-a, =b, =c]
derived positive

clause to eliminate

KR & R © Brachman & Levesque 2005 81

Further restricting resolution

Can also change derivations such that each derived clause is a
resolvent of the previous derived one (negative) and some
positive clause in the original set of clauses

« Since each derived clause is negative, one parent must be positive (and so
from original set) and one parent must be negative.

- Chain backwards from the final negative clause until both parents are from
the original set of clauses ¢

+ Eliminate all other clauses not on this direct path

old

new

This is a recurring pattern in derivations

9
S}

« See previously:
— example 1, example 3, arithmetic example

W

« But not:
— example 2, the 3 block example

Vs

S

KR & R © Brachman & Levesque 2005 82

SLD Resolution

An SLD-derivation of a clause ¢ from a set of clauses Sis a
sequence of clause ¢y, ¢,, ... ¢, such that ¢, = ¢, and

1. ¢ €S8
2. ¢, isaresolventof c;and a clause in S

SLD means S(elected) literals

Write: S S C L(inear) form

D(efinite) clauses

Note: SLD derivation is just a special form of derivation
and where we leave out the elements of S (except c,)

In general, cannot restrict ourselves to just using SLD-Resolution

Proof: S={[p,q],[p, —ql,[-p, q]l[-p, ~q]}. Then S—[].

Need to resolve some [p]Jand [p Jto get[].
But S does not contain any unit clauses.

So will need to derive both [p Jand [p] and then resolve them together.

KR & R © Brachman & Levesque 2005 83

Completeness of SLD

However, for Horn clauses, we can restrict ourselves to SLD-
Resolution

Theorem: SLD-Resolution is refutation complete for Horn
clauses: H —[] iff H=]]

SLD

So: His unsatisfiable iff H — []

This will considerably simplify the search for derivations

Note: in Horn version of SLD-Resolution, each clause in the
c(» Cy, -y C,, Will DEe negative

So clauses H must contain at least one negative clause, c,
and this will be the only negative clause of H used.

Typical case:
— KB is a collection of positive Horn clauses
— Negation of query is the negative clause

KR & R © Brachman & Levesque 2005

84

Example 1 (again)

SLD derivation

KB [~ Girl]

FirstGrade
FirstGrade O Child

[~ Child, = Female]

Child A Male D Boy [—Child]
Kindergarten O Child

Child A Female O Girl [~ FirstGrade]
Female

Show KB U {-Girl} unsatisfiable

alternate representation

goal

Girl

N

Child Female

solved

FirstGrade

solved

A goal tree whose nodes are atoms,
whose root is the atom to prove, and
whose leaves are in the KB

KR & R © Brachman & Levesque 2005

85

Prolog

Horn clauses form the basis of Prolog

Append(nil,y,y)
Append(x,y,z) = Append(cons(w,x),y,cons(w,z))

What is the result of appending [c] to the list [a,b] ?

Append(cons(a,cons(b,nil)), cons(c,nil), u) goal

With SLD derivation, can

u/cons(a,u’)
always extract answer from proof

H |= 3x a(x) Append(cons(b,nil), cons(c,nil), u')
iff

u' / cons(b,u'")
for someterm s, H |= a(r)

Different answers can be found Append(nil, cons(c,nil), u"")

by finding other derivations solved: '/ cons(c,nil)

So goal succeeds with u = cons(a,cons(b,cons(c,nil)))
that is: Append([a b],[c],[ab c])

KR & R © Brachman & Levesque 2005 86

Back-chaining procedure

SOlVG[ql, qrs e qn] = /* to establish conjunction of g, */

If n=0 then return YES; /* empty clause detected */
Foreachd € KB do

If d=1qy,-=py, =Py - =D, /* match first ¢ */

and /* replace g by -ve lits */
Solvelp,, py, oo Dy 425 - q,] 1* recursively */

then return YES
end for; /* can't find a clause to eliminate ¢ */
Return NO

Depth-first, left-right, back-chaining
- depth-first because attempt p, before trying g,
- left-right because try ¢;in order, 1,2, 3, ...
+ back-chaining because search from goal ¢ to facts in KB p

This is the execution strategy of Prolog
First-order case requires unification efc.

KR & R © Brachman & Levesque 2005

87

Problems with back-chaining

Can go into infinite loop

tautologous clause: [p, =p] (corresponds to Prolog program with p :- p).
Previous back-chaining algorithm is inefficient

Example: Consider 2n atoms, p,, ..., p,.;» 9o, - 4,,.; @nd 4n-4 clauses
P = p)s (G, = p)y i = q), (g = q)-
With goal p, the execution tree is like this

Pk

/\ Solve[p,] eventually

: ' :
Qs fails after 2* steps!

AN N

Pi-2) Pi-2 9r-2

SR

Is this problem inherent in Horn clauses?

KR & R © Brachman & Levesque 2005

88

Forward-chaining

Simple procedure to determine if Horn KB |=g.
main idea: mark atoms as solved

1. If g is marked as solved, then return YES

2. Isthere a{p,,-p,, ...~p,} € KB such that
D, - D, @re marked as solved, but the
positive lit p, is not marked as solved?

no: return NO
yes: mark p, as solved, and goto 1.
FirstGrade example: Note: FirstGrade gets marked since

all the negative atoms in the

Marks: FirstGrade, Child, Female, Girl then done! clause (none) are marked

Observe:
+ only letters in KB can be marked, so at most a linear number of iterations
+ not goal-directed, so not always desirable

 a similar procedure with better data structures will run in linear time overall

KR & R © Brachman & Levesque 2005 89

First-order undecidability

Even with just Horn clauses, in the first-order case we still have
the possibility of generating an infinite branch of resolvents.

KB: [-LessThan(0,0)]
LessThan(succ(x),y) = LessThan(x.y) x/0, y/0
Query:

[-LessThan(1,0)]
As with full Resolution,

there is no way to detect x/1, y/0
when this will happen

LessThan(zero,zero)

[-LessThan(2,0)]

There is no procedure that will test for the ¢ x/2, y/0
satisfiability of first-order Horn clauses

the question is undecidable

As with non-Horn clauses, the best that we can do is to give
control of the deduction to the user

to some extent this is what is done in Prolog,
but we will see more in “Procedural Control”

KR & R © Brachman & Levesque 2005

90

6.

Procedural Control of
Reasoning

Declarative / procedural

Theorem proving (like resolution) is a general domain-
independent method of reasoning

Does not require the user to know how knowledge will be used

will try all logically permissible uses

Sometimes we have ideas about how to use knowledge, how to
search for derivations

do not want to use arbitrary or stupid order

Want to communicate to theorem-proving procedure some
guidance based on properties of the domain

+ perhaps specific method to use
+ perhaps merely method to avoid

Example: directional connectives

In general: control of reasoning

KR & R © Brachman & Levesque 2005

92

DB + rules

Can often separate (Horn) clauses into two components:

Example:
MotherOf(jane,billy) a database of facts
FatherOf(john,billy) + basic facts of the domain

, + usually ground atomic wffs
FatherOf(sam, john)

ParentOf(x,y) <= MotherOf(x,y) collection of rules
ParentOf(x,y) < FatherOf(x,y) + extends the predicate vocabulary

ChildOf(x,y) < ParentOf(y.x) + usualy universally quantified
AncestorOf(x,y) < ...

Both retrieved by unification matching

Control issue: how to use the rules

KR & R © Brachman & Levesque 2005 93

Rule formulation

Consider AncestorOf in terms of ParentOf

Three logically equivalent versions:

1. AncestorOf(x,y) <= ParentOf(x,y)
AncestorOf(x,y) <= ParentOf(x,z) A AncestorOf(z,y)

2. AncestorOf(x,y) <= ParentOf(x,y)
AncestorOf(x,y) <= ParentOf(z,y) A AncestorOf(x,z)

3. AncestorOf(x,y) <= ParentOf(x,y)
AncestorOf(x,y) <= AncestorOf(x,z) A AncestorOf(z,y)

Back-chaining goal of AncestorOf(sam,sue) will ultimately reduce to set of
ParentOf(—,~) goals

1.get ParentOf(sam,z): find child of Sam searching downwards
2.get ParentOf(z,sue): find parent of Sue searching upwards
3. get ParentOf(—,-): find parent relations searching in both directions

Search strategies are not equivalent
if more than 2 children per parent, (2) is best

KR & R © Brachman & Levesque 2005 94

Algorithm design

Example: Fibonacci numbers
1,1,2,3,5,8,13, 21, ...

Version 1:
Fibo(0, 1)
Fibo(1, 1)
Fibo(s(s(n)), x) < Fibo(n, y) A Fibo(s(n), z) A Plus(y, z, x)

Requires exponential number of Plus subgoals

Version 2:
Fibo(n, x) <= F(n, 1,0, x)

F(@, ¢, p, ¢)
F(s(n),c, p, x) <= Plus(p,c,s) A F(n,s,c, x)

Requires only linear number of Plus subgoals

KR & R © Brachman & Levesque 2005

95

Ordering goals

Example:
AmericanCousinOf(x,y) < American(x) A CousinOf(x,y)
In back-chaining, can try to solve either subgoal first

Not much difference for AmericanCousinOf{(fred, sally), but big
difference for AmericanCousinOf(x, sally)

1.find an American and then check to see if she is a cousin of Sally
2.find a cousin of Sally and then check to see if she is an American

So want to be able to order goals

better to generate cousins and test for American

In Prolog: order clauses, and literals in them
Notation: G :- G,,G,,...,G, stands for

n

G <= G AG,AN...AG,
but goals are attempted in presented order

KR & R © Brachman & Levesque 2005

96

Commit

Need to allow for backtracking in goals
AmericanCousinOf(x,y) :- CousinOf(x,y), American(x)

for goal AmericanCousinOf(x,sally), may need to try to solve
the goal American(x) for many values of x

But sometimes, given clause of the form
G:-1T, S5
goal Tis needed only as a test for the applicability of subgoal S

- if T succeeds, commit to S as the only way of achieving goal G.

« if Sfails, then G is considered to have failed
— do not look for other ways of solving T
— do not look for other clauses with G as head

In Prolog: use of cut symbol
Notation: G - T, T,,...,1,!, G, G, ..., G

mr n

attempt goals in order, but if all T, succeed, then commit to G;

KR & R © Brachman & Levesque 2005 97

If-then-else

Sometimes inconvenient to separate clauses in terms of unification:

G(zero,—) :- method 1
G(succ(n),—) - method 2

For example, may split based on computed property:

Expt(a, n, x) :- Even(n), ... (what to do when n is even)
Expt(a, n, x) :- Even(s(n)), ... (whatto do when n is odd)

want: check for even numbers only once

Solution: use ! to do if-then-else

G :- P, 0.
G :- R.

To achieve G: if P then use Q else use R

Example:
Note: it would be correct to write

- — | x =
Expt(a, n,x) - n=0,!,x=1. Expt(a,0,x) - ! x=1.

Expt(a, n, x) :- Even(n), !, (foreven n) but not
Expt(a, n, x) :- (forodd n) Expt(a, 0, 1) :- .

KR & R © Brachman & Levesque 2005 98

Controlling backtracking

Consider solving a goal like

1
AncestorOf(jane,billy), Male(jane)

2
ParentOf(jane,billy), Male(jane)

3 / 4

Male(jane) ParentOf(z, billy), AncestorOf(jane, z), Male(jane)

FAILS Eventually FAILS

So goal should really be: AncestorOf(jane billy), !, Male(jane)

Similarly:

Member(x,/) < FirstElement(x,/)
Member(x,/) <= Rest(/,I') A Member(x,!")

If only to be used for testing, want On failure, do not try
_ to find another x later
Member(x,l) :- FirstElement(x,]), !, . in the rest of the list

KR & R © Brachman & Levesque 2005 99

Negation as failure

Procedurally: we can distinguish between the following:
can solve goal -G vs. cannot solve goal G

Use not(G) to mean the goal that succeeds if G fails, and fails if G
succeeds

Roughly: not(G) - G, !, fail. /* fail if G succeeds */
not(G). /* otherwise succeed */

Only terminates when failure is finite (no more resolvents)

Useful when DB + rules is complete
NoChildren(x) :- not(ParentOf(x,y))
or when method already exists for complement

Composite(n) - n>1, not(PrimeNum(n))

Declaratively: same reading as =, but not when new variables in G

[not(ParentOf(x,y)) DO NoChildren(x)] v
vs. [-ParentOf(x,y) O NoChildren(x)] X

KR & R © Brachman & Levesque 2005 100

Dynamic DB

Sometimes useful to think of DB as a snapshot of the world that

can be changed dynamically
assertions and deletions to the DB

then useful to consider 3 procedural interpretations for rules like
ParentOf(x,y) <= MotherOf(x,y)
1. If-needed: Whenever have a goal matching ParentOf(x,y), can solve it by
solving MotherOf(x,y)
ordinary back-chaining, as in Prolog
2. If-added: Whenever something matching MotherOf(x,y) is added to the DB,

also add ParentOf(x,y)
forward-chaining

3. If-removed: Whenever something matching ParentOf(x,y) is removed from
the DB, also remove MotherOf(x,y), if this was the reason

keeping track of dependencies in DB

Interpretations (2) and (3) suggest demons

procedures that monitor DB and fire when certain conditions are met

KR & R © Brachman & Levesque 2005 101

The Planner language

Main ideas:

1. DB of facts
(Mother susan john) (Person john)

2. If-needed, if-added, if-removed procedures consisting of

— body: program to execute
— pattern for invocation (Mother x y)

3. Each program statement can succeed or fail

— (goal p), (assert p), (erase p),

— (and s ... s), statements with backtracking
— (not s), negation as failure

— (for p s5), do s for every way p succeeds
— (finalize s), like cut

~ @alot more, including all of Lisp Shift from proving conditions

examples: (proc if-needed (cleartable) to making conditions hold!
(for (onx table)
(and (erase (onx table)) (goal (putawayx)))))

(proc if-removed (onx y) (print x "isnolongeron" y))

KR & R © Brachman & Levesque 2005 102

/.

Rules in Production
Systems

Direction of reasoning

A conditional like P = Q can be understood as transforming
« assertions of P to assertions of O
+ goals of QO to goals of P

(assert P) = (assert Q)

Can represent the two cases explicitly:
(goal Q) = (goal P)

and then distinguish between

1. goal vs. data directed reasoning 2. forward vs. backward-chaining
— goal: from Q towards P — forward: along the =
— data: from P towards Q — backward: against the =

Possible to have

« (proc if-added (mygoal Q) ... (mygoal P))
« (proc if-needed (myassert P)... (myassert Q))

How to do data-directed reasoning in Prolog

Now: a formalism with forward-chaining

KR & R © Brachman & Levesque 2005 104

Production systems

ldea: working memory + production rule set
Working memory: like DB, but volatile

Production rule: IF conditions THEN actions
condition: tests on WM
action: changes to WM

Basic operation: cycle of

1. recognize
find conflict set: rules whose conditions are satisfied by current WM

2. resolve
determine which of the rules will fire

3. act
perform required changes to WM

Stop when no rules fire

KR & R © Brachman & Levesque 2005

105

Working memory

Set of working memory elements (WME)

Each WME is of the form (type arttr,val, attr,val, ... attr, val)

where type, attr;, val. are all atoms

Examples: (person age 27 home Toronto)
(goal task openDoor importance 3)
(student name JohnSmith dept CS)

Understood as Ix[rype(x) A attr (x)=val, A ... A attr (x)=val]
— individual is not explicitly named
— order of attributes is not significant

Can handle n-ary relations as usual

(myAssertion relation OlderThan firstArg John secondArg Mary)

KR & R © Brachman & Levesque 2005 106

Rule conditions

Conditions: tested conjunctively

a condition is p or —-p, where p is a pattern of the form

(type attr, spec, ... attr, spec;)
* an atom

where each specification must be one of : -
* an expression within []

« a variable

Examples: - a test, within {}

(person age [n+4] occupation x)
- (person age {<23 A >6})

« the A, v, = of a specification

A rule is applicable if there are values of the variables to satisfy
all the conditions

- for a pattern, need WME of the correct type and for each attr in pattern,
val must match spec

- for —p, there must be no WME that matches p ~. negation as failure

KR & R © Brachman & Levesque 2005 107

Rule actions

Actions: performed sequentially

An action is of the form
* ADD pattern
* REMOVE index

* MODIFY index (attr spec)
where

— index i refers to the WME that matched i-th pattern (inapplicable to -p)
— variables and expressions refer to values obtained in the matching

Examples:
IF (Student name x) IF (Person age x) (Birthday)
THEN ADD (Person name x) THEN REMOVE 2

ordinary forward chaining MODIFY 1 (age [x+1])

database update

IF (starting)
THEN REMOVE 1
ADD (phase val 1) control information

KR & R © Brachman & Levesque 2005 108

Example 1

Placing bricks in order of size

largest in place 1, next in place 2, etc.

Initial working memory

(counter index 1)

(brick name A size 10 place heap)
(brick name B size 30 place heap)
(brick name C size 20 place heap)

Production rules:

IF (brick place heap name n size s)
-(brick place heap size {> s})
-(brick place hand)

THEN MODIFY 1 (place hand)

IF (brick place hand) (counter index i)
THEN MODIFY 1 (placei)
MODIFY 2 (index [i+1])

put the largest
brick in your hand

put a brick in your
hand at the next spot

KR & R © Brachman & Levesque 2005

109

Only one rule can fire at a time, so no conflict resolution is

Trace

required

The following modifications to WM

1. (brick name B size 30 place hand)
2. (brick name B size 30 place 1)
(counter index 2)
3. (brick name C size 20 place hand)
4. (brick name C size 20 place 2)
(counter index 3)
5. (brick name A size 10 place hand)
6. (brick name A size 10 place 3) (counter index 4)
(counter index 4) (brick name A size 10 place 3)
_ _ _ (brick name B size 30 place 1)
So the final working memory is | (prick name C size 20 place 2)
KR & R © Brachman & Levesque 2005 110

Example 2

How many days are there in a year?
Start with: (want-days year n)
End with: (has-days days m)

1. IF (want-days year n)
THEN REMOVE 1
ADD (year mod4 [n mod 4]
mod100 [n mod 100]
mod400 [n mod 400])

2. IF (year mod400 0)
THEN REMOVE 1 ADD (has-days days 366)

3. IF (year mod100 0 mod400 {=0})
THEN REMOVE 1 ADD (has-days days 365)

4. IF (year mod4 0 mod100 {=0})
THEN REMOVE 1 ADD (has-days days 366)

d. IF (year mod4 {=0})
THEN REMOVE 1 ADD (has-days days 365)

KR &R © Brachman & Levesque 2005 111

Applications

1. Psychological modeling

IF (goalis get-unit-digit) fine-grained modeling of symbol
(minuend unit d) manipulation performed by people
(subtrahend unit {> d}) during problem solving

THEN REMOVE 1
ADD (goal is borrow-from-tens)

2. Expert systems

rules used by experts in a problem area to perform complex tasks
(examples later)

Claimed advantages:
« modularity: each rule acts independently of the others
+ fine-grained control: no complex goal or control stack

+ transparency: can recast rules in English to provide explanation of
behaviour

KR & R © Brachman & Levesque 2005 112

MYCIN

System developed at Stanford to aid physicians in treating
bacterial infections

Approximately 500 rules for recognizing about 100 causes of
infection

IF
the type of x is primary bacteremia +
the suspected entry point of x is the other more static data
gastrointestinal tract structures (not in WM)
the site of the culture of x is one of * lists of organisms
the sterile sites - clinical parameters
THEN
there 1s evidence that x is bacteroides

Certainty factors
numbers from 0 to 1 attached to conclusions to rank order alternatives
AND - take min OR - take max

KR & R © Brachman & Levesque 2005 113

XCON

System developed at CMU (as R1) and used extensively at DEC
(now owned by Compagq) to configure early Vax computers

Nearly 10,000 rules for several hundred component types

Major stimulus for commercial interest in rule-based expert systems %

IF
the context is doing layout and assigning a power supply
an sbi module of any type has been put in a cabinet
the position of the sbi module is known
there is space available for the power supply
there is no available power supply

the voltage and the frequency of the components are known
THEN

add an appropriate power supply

KR & R © Brachman & Levesque 2005 114

Context switching

XCON and others use rules of the form

IF the current context is x
THEN deactivate x
activate context y

organized to fire when no other rules apply

Useful for grouping rules

IF (control phase 1) AND ...
THEN ...

IF (control phase 1) AND ...
THEN ... MODIFY 1 (phase?2) ...

IF (control phase 2) AND ...
THEN ...

IF (control phase 2) AND ...
THEN ... MODIFY 1 (phase3) ...

Allows emulation of
control structures.

But still difficult for
complex control

KR & R © Brachman & Levesque 2005

115

Conflict resolution

Sometimes with data-directed reasoning, we want to fire all
applicable rules

With goal-directed reasoning, we may want a single rule to fire

arbitrary
first rule in order of presentation (as in Prolog)
specificity, as in
IF (bird) THEN ADD (can-fly)
IF (bird weight {>100}) THEN ADD (cannot-fly)
IF (bird) (penguin) THEN ADD (cannot-fly)
recency
— fire on rule that uses most recent WME
— fire on least recently used rule

refractoriness
— never use same rule for same value of variables (called rule instance)

— only use a rule/WME pair once (will need a “refresh” otherwise)

KR & R

© Brachman & Levesque 2005 116

Conflict combinations

OPS5:

discard rule instances that have already been used

2. order remaining instances in terms of recency of WME matching 1st
condition (and then of 2nd condition, etc.)

3. if still no single rule, order rules by number of conditions

select arbitrarily among those remaining

SOAR:

system that attempts to find a way to move from a start state to a goal
state by applying productions

selecting what rule to fire

deciding what to do next

if unable to decide, SOAR sets up the selection as a new (meta-)goal to
solve, and the process iterates

KR & R © Brachman & Levesque 2005 117

Rete procedure

Early systems spent 90% of their time matching, even with
indexing and hashing.

But: - WM is modified only slightly on each cycle

* many rules share conditions

So: - incrementally pass WME through network of tests
- tokens that make it through satisfy all conditions and produce conflict set
- can calculate new conflict set in terms of old one and change to WM

IF (Person fathery age {< 14} name x) category: Person
(Person name y occupation doctor) /\
THEN ... i
age < 14 occupation = doctor

/ father:name
a nodes: *

self-contained tests B nodes:

RULE 1 multi-input for vars

KR & R © Brachman & Levesque 2005 118

8.

Object-Oriented
Representation

Organizing procedures

With the move to put control of inference into the user’s hands,
we’re focusing on more procedural representations

knowing facts by executing code

Even production systems are essentially programming languages.

Note also that everything so far is flat, i.e., sentence-like
representations

+ information about an object is scattered in axioms

+ procedure fragments and rules have a similar problem
With enough procedures / sentences in a KB, it could be critical to
organize them

 production systems might have rule sets, organized by context of
application

* but this is not a natural, representational motivation for grouping

KR & R © Brachman & Levesque 2005 120

Object-centered representation

Most obvious organizational technique depends on our ability to
see the world in terms of objects

* physical objects:

— a desk has a surface-material, # of drawers, width, length, height, color,
procedure for unlocking, etc.

— some variations: no drawers, multi-level surface, built-in walls (carrel)
+ also, situations can be object-like:

— a class: room, participants, teacher, day, time, seating arrangement, lighting,
procedures for registering, grading, etc.

— leg of a trip: destination, origin, conveyance, procedures for buying ticket,
getting through customs, reserving hotel room, locating a car rental etc.

Suggests clustering procedures for determining properties,

identifying parts, interacting with parts, as well as constraints
between parts, all of objects

* legs of desk connect to and support surface object-centered

+ beginning of a travel leg and destination of prior one constraints

KR & R © Brachman & Levesque 2005 121

Situation recognition

Focus on objects as an organizational / chunking mechanism to
make some things easier to find

Suggests a different kind of reasoning than that covered so far

basic idea originally proposed by Marvin Minsky

* recognize (guess) situation; activate relevant object representations

 use those object representations to set up expectations
some for verification; some make it easier to interpret new details

- flesh out situation once you’ve recognized

Wide applicability, but typical applications include
+ relationship recognition e.g., story understanding

+ data monitoring

+ propagation and enforcement of constraints for planning tasks

this latter is most doable and understandable,
so we will concentrate on it

KR & R © Brachman & Levesque 2005 122

IS-A and inheritance

Specialization relationships imply that procedures and fillers of
more general frame are applicable to more specific frame:
inheritance.

For example, instances of
MahoganyCoffeeTable

will inherit the procedure from
Table (via CoffeeTable)

Similarly, default values are
inheritable, so that Clyde
inherits a colour from
RoyalElephant, not Elephant

(CoffeeTable
<:IS-A Table> ...)

(MahoganyCoffeeTable
<:IS-A CoffeeTable> ...)

(Elephant
<:IS-A Mammal>
<:Colour gray> ...)

(RoyalElephant
<:IS-A Elephant>
<:Colour white>)

(clyde
<:INSTANCE-OF RoyalElephant>)

KR & R

© Brachman & Levesque 2005

126

Basic frame language

Let’s call our object structures frames

note wide variety of interpretations in literature

Two types:

+ individual frames
represent a single object like a person, part of a trip

* generic frames
represent categories of objects, like students

An individual frame is a named list of buckets called slots. What
goes in the bucket is called a filler of the slot. It looks like this:

(frame-name where frame names and slot names are atomic,
<slot-namel filler I> and fillers are either numbers, strings or the
<slot-name2 filler2 > ...) names of other individual frames.

Notation: individual frames: toronto
slot names: :‘Population (note “” at start)

generic frames: CanadianCity

KR & R © Brachman & Levesque 2005 123

Instances and specializations

Individual frames have a special slot called :INSTANCE-OF
whose filler is the name of a generic frame:

(toronto
<:INSTANCE-OF CanadianCity>
<:Province ontario>

<:Population 4.5M>...)
(tripLegl123-1

<:INSTANCE-OF TripLeg>

<:Destination toronto>...)

Generic frames have a syntax that is similar to that of individual

frames, except that they have a slot called :1S-A whose filler is the
name of another generic frame

(CanadianCity We say that the frame toronto is an
<:IS-A City> instance of the frame CanadianCity
<:Province CanadianProvince> and that the frame CanadianCity is a
<:Country canada>...) specialization of the frame City

KR & R © Brachman & Levesque 2005 124

Procedures and defaults

Slots in generic frames can have associated procedures
1. computing a filler (when no slot filler is given)

(Table
<:Clearance [IF-NEEDED computeClearanceFromLegs]> ...)

2. propagating constraints (when a slot filler is given)

(Lecture
<:DayOfWeek WeekDay>
<:Date [IFFADDED computeDayOfWeek]|> ...)

If we create an instance of Table, the :Clearance will be
calculated as needed. Similarly, the filler for :DayOfWeek will be

calculated when :Date is filled.
For instances of CanadianCity, the :Country slot will be filled
automatically. But we can also have

(city135 : : C
<INSTANCE-OF CanadianCity> The flllgr canada in CanadianCity
Is considered a default value.

<:Country holland>)

KR & R © Brachman & Levesque 2005 125

Reasoning with frames

Basic (local) reasoning goes like this:
1. user instantiates a frame, i.e., declares that an object or situation exists
2. slot fillers are inherited where possible

3. inherited IF-FADDED procedures are run, causing more frames to be
instantiated and slots to be filled.

If the user or any procedure requires the filler of a slot then:
1. if there is afiller, it is used

2. otherwise, an inherited IFFNEEDED procedure is run, potentially causing
additional actions

Globally:

« make frames be major situations or object-types you need to flesh out

* express constraints between slots as IF-NEEDED and IF-ADDED
procedures

« fill in default values when known
= like a fancy, semi-symbolic spreadsheet

KR & R © Brachman & Levesque 2005 127

Planning a trip

A simple example: a frame system to assist in travel planning
(and possibly documentation — automatically generate forms)

Basic structure (main frame types):

+ a Trip will be a sequence of TravelSteps
these will be linked together by slots

+ a TravelStep will usually terminate in a LodgingStay (except the last, or one
with two travels on one day)

— a LodgingStay will point to its arriving TravelStep and departing
TravelStep

— TravelSteps will indicate the LodgingStays of their origin and destination

j-\

trip17

(tripl7
<:INSTANCE-OF Trip>
<:FirstStep travelStep17a>

travelStep17b travelStepl7c <:Traveler ronB> ..)
lodgingStay17a lodgingStay17b

travelStep17a

KR & R © Brachman & Levesque 2005 128

Parts of a trip

TravelSteps and LodgingStays share some properties (e.g.,
:BeginDate, :EndDate, :Cost, :PaymentMethod), so we might create a
more general category as the parent frame for both of them:

(Trip
<:FirstStep TravelStep>
<:Traveler Person>
<:BeginDate Date>
<:TotalCost Price> ...

(TravelStep
<:IS-A TripPart>
<:Means>
<:Origin> <:Destination>
<:NextStep> <:PreviousStep>
<:DepartureTime> <:ArrivalTime>
<:OriginLodgingStay>
<:DestinationLodgingStay> ...)

(TripPart

<:BeginDate>
<:EndDate>

<:Cost>
<:PaymentMethod> ...)

(LodgingStay

<:IS-A TripPart>
<:ArrivingTravelStep>
<:DepartingTravelStep>
<:City>
<:LodgingPlace> ...)

KR & R © Brachman & Levesque 2005

129

Travel defaults and procedures

Embellish frames with defaults and procedures

(TravelStep
<:Means airplane> ...)

(TripPart
<:PaymentMethod visaCard> ...)
(TravelStep
<:Origin [IF-NEEDED {if no SELF:PreviousStep then newark}|>)
(Trip
<:TotalCost Program notation (for an imaginary language):
[IF-NEEDED * SELF is the current frame being processed
{ X<~ SELF:FirstStep; - if x refers to an individual frame, and y to a slot,
result<—0; then xy refers to the filler of the slot
repeat
{ ﬁ w x:NextStep assume this
thﬂ is O if there is
{ result<—result + x:Cost + 4 "olodgingStay

x:DestinationLodgingStay:Cost;
x<—x:NextStep }
else return result+x:Cost }}]>)

KR & R © Brachman & Levesque 2005 130

More attached procedures

(TravelStep
<:NextStep
[IF-ADDED
{if SELF:EndDate = SELF:NextStep:BeginDate
then
SELF:DestinationLodgingStay <—
SELF:NextStep:OriginLodgingStay <
create new LodgingStay
with :BeginDate = SELF:EndDate
and with :EndDate = SELF:NextStep:BeginDate
and with :ArrivingTravelStep = SELF
and with :DepartingTravelStep = SELF:NextStep
Y
er)

Note: default :City of LodgingStay, etc. can also be calculated:

(LodgingStay
<:City [IFF-NEEDED {SELF:ArrivingTravelStep:Destination}]...> ...)

KR & R © Brachman & Levesque 2005 131

Frames in action

Propose a trip to Toronto on Dec. 21, returning Dec. 22

(trip18
<:INSTANCE-OF Trip> the first thing to do is to create
<:FirstStep travelStep18a>) the trip and the first step
(travelStep18a

<:INSTANCE-OF TravelStep>
<:BeginDate 12/21/98>

<:EndDate 12/21/98> (travelStep18b

<:Means> <:INSTANCE-OF TravelStep>
<:Origin> <:BeginDate 12/22/98>
<:Destination toronto> <:EndDate 12/22/98>
<:NextStep> <:PreviousStep> <:Means>

<:DepartureTime> <:ArrivalTime>) <:Origin toronto>

<:Destination>
<:NextStep>
<:PreviousStep travelStep18a>

the next thing to do is to create <:DepartureTime> <:ArrivalTime>)
the second step and link it to the first
by changing the :NextStep (travelStep18a

<:NextStep travelStep18b>)

KR & R © Brachman & Levesque 2005 132

Triggering procedures

IF-ADDED on :NextStep then creates a LodgingStay:

trip18

:FirstStep ~\

(lodgingStay18a
<:INSTANCE-OF LodgingStay>

travelStep18a
:BeginDate 12/21/98
:EndDate 12/21/98
:Means
:Origin
:Destmatlon tor
:NextStep
:PreviousStep
:DepartureTime
:ArrivalTime
:DestinationLodgingStay \
:Cost

<:BeginDate 12/21/98>

<:EndDate 12/22/98>
<:ArrivingTravelStep travelStep18a>
<:DepartingTravelStep travelStep18b>
<:City>

<:LodgingPlace>)

/

travelStep18b

:Means

:Destination
:N¢€

lodging 18a
:BeginDateNQ/21/98
:EndDate 12/2

:ArrivingTravelStep
:DepartingTravelStep
:City

:LodgingPlace

:Cost

:Cost

:BeginDate 12/22/98
:EndDate 12/22/98

:Origin toronto

:PreviousStep
:DepartureTime
:ArrivalTime

:OriginLodgi@/

/

If requested, IF-NEEDED can provide :City for lodgingStay18a (toronto)

which could then be overridden by hand, if necessary
(e.g. usually stay in North York, not Toronto)

Similarly, apply default for :Means and default calc for :Origin

KR & R © Brachman & Levesque 2005

133

Finding the cost of the trip

trip18
ﬂ'rl)sirstSte < travelStep18a travelStepl 8b
: P \ :BeginDate 12/21/98 :BeginDate 12/22/98
:EndDate 12/21/98 :EndDate. 12/22/98
:Means airplane :g/le?ar.ls :11rplztne
:Origin newark :Origin toronto
:Desnnanon toro :Destination newark
:NextStep :Ne
SO far :PreviousStep :PreviousSte.p
e :DepartureTime 0900 :Eepartlll;f:Tlrrie; l15750
:ArrivalTime 1024 :ArrivalTime
:DestinationLodgingStay \) :OriginLodgingSta
: odgingSy 18 :Cost $321.00
:Cost $321.00 ‘BeginDatNQ/21/98
‘EndDate 12/2 /

:ArrivingTravelStep Y
:DepartingTravelStep
:City northYork
:LodgingPlace novotel
:Cost $124.75

Finally, we can use :TotalCost IF-NEEDED procedure (see above)
to calculate the total cost of the trip:

 result<— 0, x<—travelStep18a, x:NextStep=travelStep18b
 result<—0+$321.00+$124.75; x<— travelStep18b, x:NextStep=NIL
* return: result=$445.75+$321.00 = $766.75

KR & R © Brachman & Levesque 2005 134

Using the formalism

Main purpose of the above: embellish a sketchy description with
defaults, implied values

* maintain consistency

* use computed values to
1. allow derived properties to look explicit
2. avoid up front, potentially unneeded computation

Monitoring
* hook to a DB, watch for changes in values

- like an ES somewhat, but monitors are more object-centered, inherited

Scripts for story understanding

generate expectations (e.g., restaurant)

Real, Minsky-like commonsense reasoning
* local cues = potentially relevant frames = further expectations

 look to match expectations ; mismatch = “differential diagnosis”

KR & R © Brachman & Levesque 2005 135

Extensions

1. Types of procedures

- IF-REMOVED
e.g., remove TravelStep = remove LodgingStay

« “servants” and “demons”
flexible “pushing” and “pulling” of data

2. Slots

« multiple fillers
+ “facets” — more than just defaults and fillers

— [REQUIRE <class>] (or procedure)
— PREFER — useful if conflicting fillers

3. Metaframes
(CanadianCity <:INSTANCE-OF GeographicalCityType> ...)

(GeographicalCityType <:1S-A CityType>
<:AveragePopulation NonNegativeNumber> ...)

4. Frames as actions (“scripts”)

KR & R © Brachman & Levesque 2005 136

Object-oriented programming

Somewhat in the manner of production systems, specifying
problems with frames can easily slide into a style of programming,
rather than a declarative object-oriented modeling of the world

* note that direction of procedures (pushing/pulling) is explicitly specified
not declarative

This drifts close to conventional object-oriented programming
(developed concurrently).

+ same advantages:
— definition by specialization
— localization of control
— encapsulation
— etc.

* main difference:

— frames: centralized, conventional control regime (instantiate/ inherit/trigger)

— object-oriented programming: objects acting as small, independent agents
sending each other messages

KR & R © Brachman & Levesque 2005 137

9.

Structured Descriptions

From sentences to objects

As we saw with frames, it useful to shift the focus away from the
true sentences of an application towards the categories of objects
in the application and their properties.

In frame systems, this was done procedurally, and we
concentrated on hierarchies of frames as a way of organizing
collections of procedures.

In this section, we look at the categories of objects themselves:

+ objects are members of multiple categories
e.g. a doctor, a wife, a mother of two

categories of objects can be more or less specific than others
e.g. a doctor, a professional, a surgeon

categories of objects can have parts, sometimes in multiples
e.g. books have titles, tables have legs

the relation among the parts of an object can be critical in its being a
member of a category

e.g. a stack vs. a pile of bricks

KR & R © Brachman & Levesque 2005 139

Noun phrases

In FOL, all categories and properties of objects are represented
by atomic predicates.

* In some cases, these correspond to simple nouns in English such as
Person or City.

+ In other cases, the predicates seem to be more like noun phrases such as
MarriedPerson or CanadianCity or AnimalWithFourLegs.

Intuitively, these predicates have an internal structure and
connections to other predicates.
e.g. A married person must be a person.
These connections hold by definition (by virtue of what the predicates themselves
mean), not by virtue of the facts we believe about the world.
In FOL, there is no way to break apart a predicate to see how it is
formed from other predicates.

Here we will examine a logic that allows us to have both atomic
and non-atomic predicates: a description logic

KR & R © Brachman & Levesque 2005 140

Concepts, roles, constants

In a description logic, there are sentences that will be true or false
(as in FOL).

In addition, there are three sorts of expressions that act like nouns
and noun phrases in English:

+ concepts are like category nouns Dog, Teenager, GraduateStudent
* roles are like relational nouns :Age, :Parent, :AreaOfStudy
+ constants are like proper nouns johnSmith, chair128

These correspond to unary predicates, binary predicates and
constants (respectively) in FOL.

See also: generic frames, slots, and individual frames.
However: roles can have multiple fillers.

However, unlike in FOL, concepts need not be atomic and can
have semantic relationships to each other.

roles will remain atomic (for now)

KR & R © Brachman & Levesque 2005 141

The symbols of DL

Three types of non-logical symbols:

+ atomic concepts:

Dog, Teenager, GraduateStudent
We include a distinguished concept: Thing

* roles: (all are atomic)

:Age, :Parent, :AreaOfStudy

+ constants:
johnSmith, chair128

Four types of logical symbols:
« punctuation: [,], (,)
* positive integers: 1, 2, 3, ...
« concept-forming operators: ALL, EXISTS, FILLS, AND

- connectives: E, =, and —

KR & R © Brachman & Levesque 2005 142

The syntax of DL

The set of concepts is the least set satisfying:

Every atomic concept is a concept.

If » is a role and d is a concept, then [ALL r d] is a concept.

If » is a role and n is an integer, then [EXISTS n r] is a concept.

If » is a role and c is a constant, then [FILLS r c] is a concepit.

If d,, ..., d, are concepts, then sois [AND d,, ..., d].

Three types of sentences in DL.:

If d and e are concepts, then (d = ¢) is a sentence.

« if d and e are concepts, then (d £ ¢) is a sentence.

If d is a concept and c is a constant, then (¢ — d) is a sentence.

KR & R

© Brachman & Levesque 2005

143

The meaning of concepts

Constants stand for individuals, concepts for sets of individuals,
and roles for binary relations.

The meaning of a complex concept is derived from the meaning
of its parts the same way a noun phrases is:

+ [EXISTS nr]describes those individuals that stand in relation r to at least
n other individuals

« [FILLS r c] describes those individuals that stand in the relation r to the
individual denoted by ¢

* [ALL r d] describes those individuals that stand in relation r only to
individuals that are described by d

+ [AND d, ... d,] describes those individuals that are described by all of the d..

[AND Company

For example: [EXISTS 7 :Director]
“a company with at least 7 directors, [ALL :Manager [AND Woman
whose managers are all women with [FILLS :Degree phD]]]

PhDs, and whose min salary is $24/hr” [FILLS :MinSalary $24.00/hour]]

KR & R © Brachman & Levesque 2005 144

A DL knowledge base

A DL knowledge base is a set of DL sentences serving mainly to

* give names to definitions

e.g. (FatherOfDaughters = “A FatherOfDaughters is precisely
[AND Male [EXISTS 1 :Child] a male with at least one child and
[ALL :Child Female]]) all of whose children are female”

+ give names to partial definitions

e.g. (Dog & [AND Mammal Pet “A dog is among other things a
CarnivorousAnimal mammal that is a pet and a
[F ILLS :VoiceCall barking]]) carnivorous animal whose voice

call includes barking”
gives necessary but not sufficient conditions

- assert properties of individuals

e.g. (joe — “Joe is a FatherOfDaughters and
[AND FatherOfDaughters Surgeon]]) @ Surgeon”

Other types of DL sentences are typically not used in a KB.

e.g. ([AND Rational Animal] 2 [AND Featherless Biped])

KR & R © Brachman & Levesque 2005 145

Formal semantics

Interpretation 3 =(D, I) as in FOL, where
- for every constant ¢, I[c]€ D
- for every atomic concept a, I[a] C D
- foreveryroler, I[r]C D x D

We then extend the interpretation to all concepts as subsets of
the domain as follows:

* I[Thing] =

* I[[ALL rd]] ={x € D | for any y, if <x,y> € I[r] then y € I[d]}

« I[[EXISTS nr]] = {x&€ D | there are at least n y such that <x,y> € I[r]}

* [[[FILLS rc]] ={x€ DI <xI[c]> € I[r]}

 I[[AND d, ...d]J1=1I[d,]N ... N [d]

A sentence of DL will then be true or false as follows:
- J= (d = ¢) iff I[d] C I[e]
« J|=(d 2e) iff I[d]=I1]e]
« J|=(c—e) iff I[c] € I[e]

KR & R © Brachman & Levesque 2005 146

Entailment and reasoning

Entailment in DL is defined as in FOL.:

A set of DL sentences S entails a sentence a (which we write S |= o) iff
for every &, if 3 |= S then J |=

A sentence is valid iff it is entailed by the empty set.

Given a KB consisting of DL sentences, there are two basic sorts
of reasoning we consider:

1. determining if KB |= (¢ — ¢)

whether a named individual satisfies a certain description
2.determining if KB |= (d =e)
whether one description is subsumed by another

the other case, KB |=(d Z¢) reduces to
KB |=(d E¢) and KB |=(d Ee)

KR & R © Brachman & Levesque 2005 147

Entailment vs. validity

In some cases, an entailment will hold because the sentence in
question is valid.

* ([AND Doctor Female] = Doctor)
* ([FILLS :Child sue] = [EXISTS 1 :Child])
* (john — [ALL :Hobby Thing])
But in most other cases, the entailment depends on the
sentences in the KB.
For example,
(JAND Surgeon Female] = Doctor)
is not valid.
But it is entailed by a KB that contains
(Surgeon = [AND Specialist [FILLS :Specialty surgery]])

(Specialist = Doctor)

KR & R © Brachman & Levesque 2005 148

Computing subsumption

We begin with computing subsumption, that is, determining
whether or not KB |= (d Ee). and therefore

whetherd 2 ¢

Some simplifications to the KB:
* we can remove the (¢ — d) assertions from the KB

- we can replace (d Ee¢) in KB by (d =[AND e a]), where a is a new atomic
concept

- we assume that in the KB for each (d = ¢), the d is atomic and appears
only once on the LHS

« we assume that the definitions in the KB are acyclic
vs. cyclic (d =[AND e f]), (e =[AND d g])
Under these assumptions, it is sufficient to do the following:

« normalization: using the definitions in the KB, put d and e into a special
normal form, d' and ¢’

- structure matching: determine if each part of ¢’ is matched by a part of d'.

KR & R © Brachman & Levesque 2005 149

Normalization

Repeatedly apply the following operations to the two concepits:
« expand a definition: replace an atomic concept by its KB definition

- flatten an AND concept:
[AND ... [AND def] ..] = [AND ...def ..!]

« combine the ALL operations with the same role:
[AND ... [ALL rd]...[ALL re]..] = [AND...[ALL r[ANDd¢]]...]

+ combine the EXISTS operations with the same role:

[AND ... [EXISTS n,r]...[EXISTS n,r]..] =
[AND ... [EXISTS nr]...] (where n=Max(n,n,))

* remove a vacuous concept: Thing, [ALL r Thing], [AND]

* remove a duplicate expression atomic
[AND a,..a, %+
In the end, we end up with [FILLS r,c)] ... [FILLS r;c]
a normalized concept of [EXISTS n;s)] ... [EXISTS n,s,]
the following form unique 4 [ALL t¢,¢,]...[ALL ¢,¢,]]

roles

‘\ normalized

KR & R © Brachman & Levesque 2005 150

Normalization example

[AND Person
[ALL :Friend Doctor]
[EXISTS 1 :Accountant]
[ALL :Accountant [EXISTS 1 :Degree]]
[ALL :Friend Rich]

@ [ALL :Accountant [AND Lawyer [EXISTS 2 :Degree]]]]

[AND Person
[EXISTS 1 :Accountant]
[ALL :Friend [AND Rich Doctor]]

@ [ALL :Accountant [AND Lawyer [EXISTS 1 :Degree] [EXISTS 2 :Degree]]]]

[AND Person
[EXISTS 1 :Accountant]
[ALL :Friend [AND Rich Doctor]]
[ALL :Accountant [AND Lawyer [EXISTS 2 :Degreel]]]

KR & R © Brachman & Levesque 2005 151

Structure matching

Once we have replaced atomic concepts by their definitions, we
no longer need to use the KB.

To see if a normalized concept [AND g, ¢,] subsumes a
normalized concept [AND 4, ... d,], we do the following:
For each component ¢, check that there is a matching component d;, where
— if ¢; is atomic or [FILLS r c], then d; must be identical to it;
— if ¢, = [EXISTS 1 r], then d, must be [EXISTS n r] or [FILLS r c;

— if e; = [EXISTS n r] where n >1, then d; must be of the form
[EXISTS mr] where m = n;

— if ¢; = [ALL r '], then d; must be [ALL r d'], where recursively
e’ subsumes d'.

In other words, for every part of the more general concept,
there must be a corresponding part in the more specific one.

It can be shown that this procedure is sound and complete:
it returns YES iff KB |=(d Ee).

KR & R © Brachman & Levesque 2005 152

Structure matching example

[AND Person

[FILLS :Age 27]
[EXISTS 2 :Child]
[EXISTS 1 :Spouse]
[ALL :Friend [AND Doctor Rich]]]
[AND Person
Female
[FILLS :Age 27]

[EXISTS 3 :Child]
[FILLS :Spouse jack]
[FILLS :Mother sue]

[ALL :Friend [AND Doctor
[FILLS :Specialty surgery]
Rich]]]

not needed

KR & R © Brachman & Levesque 2005 153

Computing satisfaction

To determine if KB |= (¢ — ¢), we use the following procedure:
1. find the most specific concept d such that KB |= (¢ — d)

2. determine whether or not KB |= (d E ¢), as before.

To a first approximation, the d we need is the AND of every d,

such that (c — d;) € KB.
Suppose the KB contains

(joe — Person)
However, this can (canCorp — [AND Company

miss some inferences! [ALL :Manager Canadian]
[FILLS :Manager joe]]

then the KB |= (joe — Canadian).

To find the d, a more complex procedure is used that propagates
constraints from one individual (canCorp) to another (joe).

The individuals we need to consider need not be named by constants;
they can be individuals that arise from EXISTS (like Skolem constants).

KR & R © Brachman & Levesque 2005 154

Taxonomies

Two common sorts of queries in a DL system:

* given a query concept ¢, find all constants ¢ such that KB |= (¢ — ¢)
e.g. ¢ is [AND Stock FallingPrice MyHolding] ~Mi9ht want to trigger a

procedure for each such ¢

- given a query constant ¢, find all atomic concepts a such that KB |= (¢ = «a)

We can exploit the fact that concepts tend to be structured
hierarchically to answer queries like these more efficiently.

Taxonomies arise naturally out of a DL KB:

- the nodes are the atomic concepts that appear on the LHS of a sentence
(a Ed)or(a =d)inthe KB

- there is an edge from a; to q; if (a; = a) is entailed and there is no distinct ;
such that (¢; £) and (g, E a)).

can link every constant ¢ to the most specific atomic concepts « in the
taxonomy such that KB |= (¢ — a)

Positioning a new atom in a taxonomy is called classification

KR & R © Brachman & Levesque 2005 155

Computing classification

Consider adding (a,.,, = d) to the KB.

« find S, the most specific subsumers of d: the atoms a such that
KB |= (d = a), but nothing below a see below

new

+ find G, the most general subsumees of d: the atoms a such that
KB |= (a E d), but nothing above a

if S N G is not empty, then q,,, is not new
« remove any links from atoms in G to atoms in S
- add links from all the atoms in G to q,,,, and from a,,, to all the atoms in S

* reorganize the constants:

for each constant ¢ such that KB |= (¢ — a) for all a € S,
but KB |= (¢ — a) for no a € G, and where KB |= (¢ — d),
remove links from ¢ to S and put a single link from c to a,,,.

Adding (a,,,, E d) is similar, but with no subsumees.

KR & R © Brachman & Levesque 2005 156

Subsumers and subsumees

Calculating the most specific subsumers of a concept d:
« Start with § = {Thing}.

+ Repeatedly do the following:

— Suppose that some a €S has at least one child @' just below it in the
taxonomy such that KB |= (d E a').

— Then remove a from § and replace it by all such children a'.

Calculating the most general subsumees of a concept d:
- Start with G = the most specific subsumers.

+ Repeatedly do the following:
— Suppose that for some a €G, KB J& (a = d).
— Then remove a from G and replace it by all of its children (or delete it,
if there are none).

- Repeatedly delete any element of G that has a parent subsumed by d.

KR & R © Brachman & Levesque 2005 157

An example of classification

D- ORDEAUX-
WINE INE
ET-
BORDEAUX- BORDEAUX-
WINE WINE
OVERY DRY-
A BORDEAUX-
WHITE- WINE
VERY-DRY-
BORDEAUX-
WINE EXPENSIVE-
WHITE-
new \ VERY-DRY-
BORDEAUX-

- WINE

KR & R © Brachman & Levesque 2005 158

Using the taxonomic structure

Note that classification uses the structure of the taxonomy:

If there is an a' just below a in the taxonomy such that KB J~ (d E a'), we
never look below this a'. If this concept is sufficiently high in the taxonomy
(e.g. just below Thing), an entire subtree will be ignored.

Queries can also exploit the structure:

For example, to find the constants described by a concept ¢, we simply
classify ¢ and then look for constants in the part of the taxonomy
subtended by g. The rest of the taxonomy not below ¢ is ignored.

This natural structure allows us to build and use very large
knowledge bases.

- the time taken will grow linearly with the depth of the taxonomy

+ we would expect the depth of the taxonomy to grow logarithmically with
the size of the KB

* under these assumptions, we can handle a KB with thousands or even
millions of concepts and constants.

KR & R © Brachman & Levesque 2005 159

Taxonomies vs. frame hierarchies

The taxonomies in DL look like the IS-A hierarchies with frames.

There is a big difference, however:

* in frame systems, the KB designer gets to decide what the fillers of
the :1S-A slot will be; the :IS-A hierarchy is constructed manually

+ in DL, the taxonomy is completely determined by the meaning of the
concepts and the subsumption relation over concepts
For example, a concept such as
[AND Fish [FILLS :Size large]]

must appear in the taxonomy below Fish even if it was first
constructed to be given the name Whale. It cannot simply be
positioned below Mammal.

To correct our mistake, we need to associate the name with a
different concept:
[AND Mammal [FILLS :Size large] ...]

KR & R © Brachman & Levesque 2005 160

Inheritance and propagation

As in frame hierarchies, atomic concepts in DL inherit properties
from concepts higher up in the taxonomy.

For example, if a Doctor has a medical degree, and Surgeon is below
Doctor, then a Surgeon must have a medical degree.

This follows from the logic of concepts:

If KB |= (Doctor £ [EXISTS 1 :MedicalDegree])
and KB |= (Surgeon = Doctor)
then KB |= (Surgeon = [EXISTS 1 :MedicalDegree])

This is a simple form of strict inheritance (cf. next chapter)

Also, as noted in computing satisfaction (e.g. with joe and
canCorp), adding an assertion like (¢ — ¢) to a KB can cause other
assertions (¢’ — ¢') to be entailed for other individuals.

This type of propagation is most interesting in applications where
membership in classes is monitored and changes are significant.

KR & R © Brachman & Levesque 2005 161

Extensions to the language

A number of extensions to the DL language have been
considered in the literature:
« upper bounds on the number of fillers

[AND [EXISTS 2 :Child] [AT-MOST 3 :Child]]
opens the possibility of inconsistent concepts

sets of individuals: [ALL :Child [ONE-OF wally theodore]]

relating the role fillers: [SAME-AS :President :CEO]

qualified number restriction: [EXISTS 2 :Child Female] VS.
[AND [EXISTS 2 :Child] [ALL :Child Female]]

complex (non-atomic) roles: [EXISTS 2 [RESTR :Child Female]]

[ALL [RESTR :Child Female] Married] VS.
[ALL :Child [AND Female Married]]

Each of these extensions adds extra complexity to the problem of
calculating subsumption.
This topic will be explored for RESTR in Chapter 16.

KR & R © Brachman & Levesque 2005 162

Some applications

Like production systems, description logics have been used in a
number of sorts of applications:
* interface to a DB

relational DB, but DL can provide a nice higher level view of the data
based on objects

+ working memory for a production system

instead of a having rules to reason about a taxonomy and inheritance
of properties, this part of the reasoning can come from a DL system

« assertion and classification for monitoring

incremental change to KB can be monitored with certain atomic
concepts declared “critical”

- contradiction detection in configuration

for a DL that allows contradictory concepts, can alert the user when
these are detected. This works well for incremental construction of a
concept representing e.g. a configuration of a computer.

KR & R © Brachman & Levesque 2005 163

10.

Inheritance

Hierarchy and inheritance

As we noticed with both frames and description logics, hierarchy
or taxonomy is a natural way to view the world

importance of abstraction in remembering and reasoning
— groups of things share properties in the world

— do not have to repeat representations
e.g. sufficient to say that “elephants are mammals” to know
a lot about them

Inheritance is the result of transitivity reasoning over paths in a
network

« for strict networks, modus ponens (if-then reasoning) in graphical form

« “does a inherit from 5»?” is the same as “is b in the transitive closure of :IS-A
(or subsumption) from a?” /. b,

graphically, is there a
/ path of :IS-A connections

° from a to b?

a ~

KR & R © Brachman & Levesque 2005 165

Path-based reasoning

Focus just on inheritance and transitivity

many interesting considerations in looking just at where information comes
from in a network representation

abstract frames/descriptions, and properties into nodes in graphs, and just
look at reasoning with paths and the conclusions they lead us to

o Gray

f note the translation of

° Elephant property, Gray, and the

? constant Clyde into a node
® Clyde

edges in the network: Clyde-Elephant, Elephant-Gray

paths included in this network: edges plus {Clyde-Elephant-Gray}
in general, a path is a sequence of 1 or more edges

conclusions supported by the paths:
Clyde — Elephant; FElephant — Gray; Clyde — Gray

KR & R

© Brachman & Levesque 2005 166

Inheritance networks

(1) Strict inheritance in trees
- as in description logics /° Gray

+ conclusions produced by complete
Rat ¢ ° Elephant

transitive closure on all paths
(any traversal procedure will do); ? T
all reachable nodes are implied Ben ° ® Clyde

(2) Strict inheritance in DAGs

 as in DL’s with multiple AND parents (= multiple inheritance)

+ same as above: all conclusions you can reach by any paths are supported

Illiterate o o Taxpayer _ e Salaried
Academic e
Note: negative \%
edge from Student: ® ® Employee
“is not a” Student
e Ernest

KR & R © Brachman & Levesque 2005 167

Inheritance with defeasibility

(3) Defeasible inheritance

+ as in frame systems

while elephants in general
are gray, Clyde is not

* inherited properties do not always o Gray
hold, and can be overridden (defeated)
- conclusions determined by searching * Elephant
upward from “focus node” and selecting ?
first version of property you want ° Clyde
A key problem: ambiguity
Pacifist

« credulous accounts choose arbitrarily

o
* Skeptical accounts are more conservative / \
o o)
Quaker \ / Republican
Is Nixon a °

acifist or not?)
P Nixon

KR & R © Brachman & Levesque 2005 168

Shortest path heuristic

Defeasible inheritance in DAGs
+ links have polarity (positive or negative)

« use shortest path heuristic

to determine which o Aquatic creature o Gray
polarity counts / A / A
o
Intuition: inherit from \; Mammal A Elephant
the most specific
b ' I
subsuming class * Whale ® Royal elephant
A A
+ as a result, not all paths count x White whale ; Fat royal elephant
in generating conclusions
o Baby Beluga o Clyde

— some are “preempted”
— but some are “admissible”

think of paths as arguments in support of conclusions

= the inheritance problem = what are the admissible conclusions?

KR & R © Brachman & Levesque 2005 169

Problems with shortest path

1. Shortest path heuristic produces o Gray
incorrect answers in the presence / 4 Elenh
of redundant edges (which are A\; sphant
already implied!)

(-]
the redundant edge ¢, Royal elephant 4

expressing that Clyde is an
Elephant changes polarity of

Fat royal elephant ; q
conclusion about color

Clyde °
2. Anomalous behavior with ambiguity
adding 2 edges to the
left side changes the 857 edges
conclusion! :
856 edges —
K :

Why should length be a factor?
This network should be ambiguous...

KR & R © Brachman & Levesque 2005 170

Specificity criteria

Shortest path is a specificity criterion (sometimes called a

preemption strategy) which allows us to make admissibility
choices among competing paths

* It’s not the only possible one

°o X
- Consider “inferential distance’: / *
not linear distance, but topologically based * .

— a node a is nearer to node b than to node ¢

« * C
if there is a path from a to ¢ through b . ?
— idea: conclusions from b preempt those from ¢ \. b
This handles Clyde — —Gray just fine, ?
as well as redundant links o d

« But what if path from b to ¢ has some of its
edges preempted? what if some are redundant?

KR & R © Brachman & Levesque 2005 171

A formalization (Stein)

An inheritance hierarchy I' = <V,E> is a directed, acyclic graph
(DAG) with positive and negative edges, intended to denote
“(normally) is-a” and “(normally) is-not-a”, respectively.

— positive edges are written a- x

— negative edges are written a- -x

A sequence of edges is a path:
— a positive path is a sequence of one or more positive edges a -...- x

— a negative path is a sequence of positive edges followed by a single negative
edgea-....v--x
Note: there are no paths with more than 1 negative edge.

Also: there might be O positive edges.

A path (or argument) supports a conclusion:
— a -...»x supports the conclusion a — x (a is an x)

— a ... =xsupports a {>x (ais notan x)
Note: a conclusion may be supported by many arguments

However: not all arguments are equally believable...

KR & R © Brachman & Levesque 2005 172

Support and admissibility

I" supports a path a-s,-...- s, - (—=)x if the corresponding set of
edges {a*s;, .., s, (=)x} isin E, and the path is admissible
according to specificity (see below).

the hierarchy supports a conclusion a — x (or a > x)
if it supports some corresponding path

A path is admissible if every edge in it is admissible.

An edge v - x is admissible

a S % X
in T wrt « if there is a positive o—b> 0. —po—po
patha s,...s, v (n=0) in E and f
1.each edgeina-s,...s, - vis admissible
. . the edge under
in T wrt a (recursively); consideration

do we believe it?

2.no edgeina-s,...s,cvis redundant in I wrt a (see below);

3. no intermediate node a,s,,...,s, is a preemptor of v - x wrt a (see below).

A negative edge v - =x is handled analogously.

KR & R © Brachman & Levesque 2005 173

Preemption and redundancy

A node y along path a -...y...- v is a preemptor of the edge v - x wrt a
if y -=x € E (and analogously for v - =x)

o Aquatic creature (= x)
for example, in this figure /i Mammal (= v)
the node Whale preempts 1 B
the negative edge from ?
Mammal to Aquatic creature (=y) Whale'e

wrt both Whale and Blue whale

_>
<

Blue whale e

A positive edge b - w is redundant in I" wrt node « if there is some
positive path b-¢,...t, - w € E (m = 1), for which

1.each edgeinb -t,...-t, is admissible in T wrt q;
2.there are no c and i such that ¢ - =¢, is admissible in I" wrt a;

3.there is no ¢ such that ¢ - =w is admissible in T" wrt a.

The edge labelled g above is redundant

The definition for a negative edge b - =w is analogous

KR & R © Brachman & Levesque 2005 174

Credulous extensions

I' is a-connected iff for every node x in T', there is a path from a to x, and
for every edge v+(=)x in I', there is a positive path from a to v.

In other words, every node and edge is reachable from a

I' is (potentially) ambiguous wrt a node « if there is some node x & V
such that both a -s,...s,-x and a -¢,...t, - =xare paths in I’

A credulous extension of I" wrt node a is a maximal unambiguous
a-connected subhierarchy of I" wrt a
If X is a credulous extension of I, then adding an edge of " to X makes X

either ambiguous or not a-connected ,
e Milk-producer

$ Milk-producer Mammal MammalT
Mammal ° Furry ° ° Egg Furry ° ° Egg
animal Layer animal Layer
Furry Egg
animal. ° Layer ® Platypus * Platypus
** Platypus Extension 1 Extension 2

KR & R © Brachman & Levesque 2005 175

Preferred extensions

Credulous extensions do not e Aquatic creature
incorporate any notion of A

admissibility or preemption. T

o Mammal
Let X and Y be credulous extensions A this network has two
of T wrt node a. X is preferred to Y credulous extensions
iff there are nodes v and x such that: ° Whale

- X and Y agree on all edges whose endpoints precede v topologically,

- there is an edge v« (or v-—x)
that is inadmissible in T,

- thisedgeisiny, e Aquatic creature (= x) o Aquatic creature
but not in X.
o Mammal (=v) o Mammal
\ ‘
e Whale (= a) \ / o Whale

] i is preferred to
A credulous extension is

a preferred extension if there is no other extension that is preferred to it.

KR & R © Brachman & Levesque 2005 176

Subtleties

What to believe?

 “credulous” reasoning: choose a preferred extension and believe all the
conclusions supported

+ “skeptical” reasoning: believe the conclusions from any path that is
supported by all preferred extensions

+ “ideally skeptical” reasoning: believe the conclusions that are supported by
all preferred extensions

note: ideally skeptical reasoning cannot be computed in a path-based way
(conclusions may be supported by different paths in each extension)

We’ve been doing “upwards” reasoning
- start at a node and see what can be inherited from its ancestor nodes

- there are many variations on this definition; none has emerged as the
agreed upon, or “correct” one

« an alternative looks from the top and sees what propagates down
upwards is more efficient

KR & R © Brachman & Levesque 2005 177

11.

Defaults

KR &R © Brachman & Levesque 2005 178

Strictness of FOL

To reason from P(a) to O(a), need either
- facts about « itself
* universals, e.g. Vx(P(x) D Q(x))

— something that applies to all instances
— all or nothing!

But most of what we learn about the world is in terms of generics

e.g., encyclopedia entries for ferris wheels, violins, turtles, wildflowers

Properties are not strict for all instances, because

* genetic / manufacturing varieties borderline cases
— early ferris wheels — toy violins
* cases in exceptional circumstances + imagined cases
— dried wildflowers — flying turtles
efc.

KR & R © Brachman & Levesque 2005 179

Generics vs. universals

v Violins have four strings.
VS.

X All violins have four strings.
VS.

? All violins that are not E, or E, or ... have four strings.
(exceptions usually cannot be enumerated)

Similarly, for general properties of individuals
« Alexander the great: ruthlessness

- Ecuador: exports

* pneumonia: treatment

Goal: be able to say a P is a Q in general, but not necessarily

It is reasonable to conclude Q(a) given P(a),
unless there is a good reason not to

Here: qualitative version (no numbers)

KR & R © Brachman & Levesque 2005 180

Varieties of defaults (l)

General statements

+ prototypical: The prototypical P is a Q.
Owls hunt at night.

« normal: Under typical circumstances, P's are QOSs.

People work close to where they live.

- statistical: Most Ps are O5.

The people in the waiting room are growing impatient.

Lack of information to the contrary

+ group confidence: All known Ps are 0.

Natural languages are easy for children to learn.

- familiarity: If a P was not a Q, you would know it.
— an older brother

— very unusual individual, situation or event

KR & R © Brachman & Levesque 2005

181

Varieties of defaults (ll)

Conventional

+ conversational: Unless | tell you otherwise, a Pis a Q

“There is a gas station two blocks east.”
the default: the gas station is open.

+ representational: Unless otherwise indicated, a Pisa Q
the speed limit in a city
Persistence

 inertia: APisa Qifitusedtobe a Q.
— colours of objects
— locations of parked cars (for a while!)

Here: we will use “Birds fly” as a typical default.

KR & R © Brachman & Levesque 2005 182

Closed-world assumption

Reiter's observation:

There are usually many more -ve facts than +ve facts!

Example: airline flight guide provides

DirectConnect(cleveland toronto) DirectConnect(toronto,northBay)
DirectConnect(toronto,winnipeg)

but not: - DirectConnect(cleveland ,northBay)

Conversational default, called CWA:

only +ve facts will be given, relative to some vocabulary
But note: KB |# -ve facts (would have to answer: “I don't know”)

Proposal: a new version of entailment: KB |=, o iff KB U Negs |=a

where Negs = {-p | p atomic and KB|= p} a common pattern:

Note: relation to negation as failure KB"'= KB U A

Gives: KB |=. +ve facts and -ve facts

KR & R © Brachman & Levesque 2005 183

Properties of CWA

For every a (without quantifiers), KB |=.a or KB |=. ~a

Why? Inductive argument:
— immediately true for atomic sentences
— push = in, e.g. KB |=--a iff KB |=«a
— KB |= (oA p) iff KB|=a and KB |=f

— Say KB |, (a. v B). Then KB |=, c.and KB |=,p.
So by induction, KB |=, ~a and KB |=, =f. Thus, KB |=,=(a v p).

CWA is an assumption about complete knowledge
never any unknowns, relative to vocabulary

In general, a KB has incomplete knowledge,

e.g. Let KB be (p v ¢). Then KB |=(p v g),
but KB|= p, KB|= -p, KB|= g, KB|z -¢

With CWA, have: If KB |=, (o v B), then KB |=, o or KB |=,p.

similar argument to above

KR & R © Brachman & Levesque 2005 184

Query evaluation

With CWA can reduce queries (without quantifiers) to the atomic case:
KB |=, (aaB) iff KB |=, o and KB |=, f
KB |=, (av B) iff KB |=, o or KB |=p
KB |=, ~(a A B) iff KB |=, ~a or KB |=, -f
KB |=, ~(av B) iff KB |=, ~a and KB |=, -p
KB |=. --a iff KB |= «a
reduces to: KB |=. p, where p is a literal
If KB U Negs is consistent, get KB |=, —a iff KB |=, o
reduces to: KB |=. p, where pis atomic

If atoms stored as a table, deciding if KB |=, a is like DB-retrieval:
 reduce query to set of atomic queries

+ solve atomic queries by table lookup

Different from ordinary logic reasoning (e.g. no reasoning by cases)

KR & R © Brachman & Levesque 2005 185

Consistency of CWA

If KB is a set of atoms, then KB U Negs is always consistent
Also works if KB has conjunctions and if KB has only negative
disjunctions

If KB contains (-p v =¢). Add both -p, —g.

Problem when KB |=(a v B), but KB|= o and KB|= f3

eg- KB=(pvq) Negs={-p,-q}
KB U Negs is inconsistent and so for every a, KB |=, a !

Solution: only apply CWA to atoms that are “uncontroversial”

One approach: GCWA
Negs ={-p | If KB|=(pvg,Vv..vqg,) thenKB |= (¢, Vv ...vgq,) }
When KB is consistent, get:
— KB U Negs consistent
— everything derivable is also derivable by CWA

KR & R © Brachman & Levesque 2005 186

Quantifiers and equality

So far, results do not extend to wffs with quantifiers
can have KB |=, Vx.o. and KB |=, - Vx.a

e.g. just because for every ¢, we have KB |=_ —=DirectConnect(myHome, 7)
does not mean that KB |=, Vx[-DirectConnect(myHome, x)]

But may want to treat KB as providing complete information about what
individuals exist

) i where the ¢, are all the constants
Define: KB |=cd o iff KB U NegsU Dc |= o appearing in KB (assumed finite)

where Dc is domain closure: Vx[x=c, v ... v x=c,],

Get: KB |=,,Ix.a iff KB |=,, a[x/c], for some c appearing in the KB
KB |=., Vx.a iff KB |=, a[x/c], for all c appearing in the KB

Then add: Un is unigue names: (c¢; =c), fori=;

Get: KB |=,, (c =d)iff cand d are the same constant

- full recursive query evaluation

KR & R © Brachman & Levesque 2005 187

Non-monotonicity

Ordinary entailment is monotonic
If KB |= a, then KB*|= a, for any KB C KB*
But CWA entailment is not monotonic
Can have KB |=, a, KB CKB', but KB' |=,
e.g. {p} |=. ~q, but {p,q} |=. ~q
Suggests study of non-monotonic reasoning

- start with explicit beliefs

+ generate implicit beliefs non-monotonically, taking defaults into account
- implicit beliefs may not be uniquely determined (vs. monotonic case)

Will consider three approaches:
« minimal entailment: interpretations that minimize abnormality
+ default logic: KB as facts + default rules of inference
+ autoepistemic logic: facts that refer to what is/is not believed

KR & R © Brachman & Levesque 2005 188

Minimizing abnormality

CWA makes the extension of all predicates as small as possible
by adding negated literals

Generalize: do this only for selected predicates
Ab predicates used to talk about typical cases
Example KB: Bird(chilly), ~Flies(chilly),

Bird(tweety), (chilly = tweety),

Vx[Bird(x) A =Ab(x) D Flies(x)] = All birds that

are normal fly

Would like to conclude by default Flies(tweety), but KB |= Flies(tweety)

because there is an interpretation where I[tweety] € I[Ab]

Solution: consider only interpretations where - .
this is sometimes

I[Ab] is as small as possible, relative to KB called “circumscription”
i . since we circumscribe
for example: KB requires that I[chilly] € I[Ab] the Ab predicate

Generalizes to many Ab, predicates

KR & R © Brachman & Levesque 2005 189

Minimal entailment

Given two interps over the same domain, J, and 3,

I, =, iff I,[Ab] C I[Ab] for every Ab predicate
I, <, iff 3 =3, butnot I, =< J read: J|is more normal than J,

Define a new version of entailment, |=_ by

KB |=_a iff forevery 3, if J|=KB and no J*< J s.t. 3" |= KB
then J'|= a.

So a must be true in all interps satisfying KB that are minimal in abnormalities

Get: KB |=_ Flies(tweety)

because if interp satisfies KB and is minimal, only I[chilly] will be in I[Ab]

Minimization need not produce a unique interpretation:
Bird(a), Bird(b), [—Flies(a) v —=Flies(b)] yields two minimal interpretations

KB |=_ Flies(a), KB |=_ Flies(b), KB |=_Flies(a) v Flies(b)

Different from the CWA: no inconsistency!
But stronger than GCWA: conclude a or b flies

KR & R © Brachman & Levesque 2005 190

Fixed and variable predicates

Imagine KB as before + Vx[Penguin(x) D Bird(x) A ~Flies(x)]
Get: KB |= Vx[Penguin(x) D Ab(x)]

So minimizing Ab also minimizes penguins: KB |=_ Vx-Penguin(x)

McCarthy's definition: Let P and Q be sets of predicates
3, = 3, iff same domain and
1. [L[P]CL[P], forevery PEP Ab predicates
2. L[Q]=L[Q], forevery Q& Q fixed predicates

so only predicates in Q are allowed to vary

Get definition of |=_ that is parameterized by what is minimized and
what is allowed to vary

Previous example: minimize Ab, but allow only Flies to vary.

Problems: - need to decide what to allow to vary

+ cannot conclude -Penguin(tweety) by default!
only get default (=Penguin(tweety) D Flies(tweety))

KR & R © Brachman & Levesque 2005 191

Default logic

Beliefs as deductive theory
explicit beliefs = axioms
implicit beliefs =theorems = least set closed under inference rules

e.g. If we can prove a and (o D), then infer

Would like to generalize to default rules:

If can prove Bird(x), but cannot prove —Flies(x), then infer Flies(x).

Problem: how to characterize theorems
cannot write a derivation, since do not know when to apply default rules
no guarantee of unique set of theorems
If cannot infer p, infer ¢ + If cannot infer ¢, inferp ?7?
Solution: default logic
no notion of theorem

instead, have extensions: sets of sentences that are “reasonable” beliefs,
given explicit facts and default rules

KR & R © Brachman & Levesque 2005 192

Extensions

Default logic KB uses two components: KB = «F,D»>
e F is a set of sentences (facts)

e Dis a set of default rules: triples <a:p/y> read as

If you can infer o, and p is consistent, then infer y
o: the prerequisite, p: the justification, y: the conclusion

e.g. <Bird(tweety) : Flies(tweety) / Flies(tweety)>

treat Bird(x) : Flies(x) / Flies(x)> as set of rules

Default rules where 3 = y are called normal and write as <« =

will see later a reason for wanting non-normal ones

A set of sentences E is an extension of «<F,D> iff for every sentence m,
E satisfies the following:

nEE iff FUA |=n, where A={y|<a:B/y>ED, a €EE, -BE&E}

So, an extension E is the set of entailments of F U {y}, where the y are
assumptions from D.

to check if Eis an extension, guess at A and show that it satisfies the above constraint

KR & R © Brachman & Levesque 2005 193

Example

Suppose KB has
F = Bird(chilly), —Flies(chilly), Bird(tweety)
D = Bird(x) = Flies(x)>

then there is a unique extension, where A = Flies(tweety)

« This is an extension since tweety is the only ¢ for this A such that Bird(r) € E and —Flies(r) & E.
No other extension, since this applies no matter what Flies(r) assumptions are in A.
But in general can have multiple extensions:

F = {Republican(dick), Quaker(dick)} = D = { <Republican(x) = —Pacifist(x)>,
<«Quaker(x) = Pacifist(x)> }

Two extensions: E, has A = -Pacifist(dick); E, has A = Pacifist(dick)

Which to believe?

credulous: choose an extension arbitrarily
skeptical: believe what is common to all extensions

Can sometimes use non-normal defaults to avoid conflicts in defaults

< Quaker(x) : Pacifist(x) A—~Republican(x) / Pacifist(x) »
but then need to consider all possible interactions in defaults!

KR & R © Brachman & Levesque 2005 194

Unsupported conclusions

Extension tries to eliminate facts that do not result from either F or D.

e.g., we do not want Yellow(tweety) and its entailments in the extension

But the definition has a problem:

Suppose F={} and D =<p :True/p>.

Then E = entailments of {p} is an extension
since p €E and -True & E, for above default

However, no good reason to believe p!
Only support for p is default rule, which requires p itself as a prerequisite
So default should have no effect. Want one extension: E = entailments of {}

Reiter's definition:

For any set S, let I'(S) be the least set containing F, closed under
entailment, and satisfying
if«:pB/y €D, a€I(S), and - &S, theny&T(S).

note: not I'(S)

A set E is an extension of <F, D> iff E = T(E).
called a fixed point of the T" operator

KR & R © Brachman & Levesque 2005 195

Autoepistemic logic

One disadvantage of default logic is that rules cannot be
combined or reasoned about

B/ = B/ (yvO)

Solution: express defaults as sentences in an extended language
that talks about belief explicitly
for any sentence a, we have another sentence Ba
Ba says "l believe o": autoepistemic logic
e.g. Vx[Bird(x) A =B-Flies(x) D Flies(x)]
All birds fly except those that | believe to not fly =
Any bird not believed to be flightless flies.

No longer expressing defaults using formulas of FOL.

KR & R © Brachman & Levesque 2005 196

Semantics of belief

These are not sentences of FOL, so what semantics and
entailment?

+ modal logic of belief provide semantics
- for here: treat Ba as if it were an new atomic wff
- still get entailment: Vx[Bird(x) A =B-Flies(x) D Flies(x) v Run(x)]

Main property for set of implicit beliefs, E:

1. fE|=a thena €E. (closed under entailment)
2. lfa€FE thenBa €E. (positive introspection)
3. lfa&E then -Ba EE. (negative introspection)

Any such set of sentences is called stable

Note: if E contains p but does not contain g, it will contain
Bp, BBp, BBBp, -Bg, B-Bg, B(Bp A—Byg), efc.

KR & R © Brachman & Levesque 2005 197

Stable expansions

Given KB, possibly containing B operators, our implicit beliefs should be
a stable set that is minimal.

Moore's definition: A set of sentences E is called a stable expansion of
KB iff it satisfies the following:

n€E iff KBUA |=n, where A={Ba|a€E}U{-Ba|a&E}

fixed point of another operator

analogous to the extensions of default logic
Example: for KB = { Bird(chilly), —Flies(chilly), Bird(tweety),
Vx[Bird(x) A =B-Flies(x) D Flies(x)] }
get a unique stable expansion containing Flies(tweety)
As in default logic, stable expansions are not uniquely determined

KB = {(-Bp D ¢q), (-Bg¢ Dp)} KB = {(=Bp Dp)} (seli-defeating default)

2 stable expansions no stable expansions!
(one with p, one with g) so what to believe?

KR & R © Brachman & Levesque 2005 198

Enumerating stable expansions

Define: A wif is objective if it has no B operators

When a KB is propositional, and B operators only dominate
objective wifs, we can enumerate all stable expansions using the

following:
1. Suppose Ba,, Ba,, ... Ba, are all the B wffs in KB.

2. Replace some of these by True and the rest by —=True in KB and simplify.
Call the result KB® (it’s objective).

at most 2" possible replacements

3. Check that for each a.,
— if Ba,; was replaced by True, then KB® |= o,
— if Ba,, was replaced by -True, then KB® |= a.

4. If yes, then KB° determines a stable expansion.
entailments of KB® are the objective part

KR & R © Brachman & Levesque 2005 199

Example enumeration

For KB = { Bird(chilly), —Flies(chilly), Bird(tweety),
[Bird(tweety) A =B-Flies(tweety) D Flies(tweety)],
[Bird(chilly) A =B-Flies(chilly) D Flies(chilly)] }

Two B wifs: B-Flies(tweety) and B-Flies(chilly),
so four replacements to try.

Only one satisfies the required constraint:
B-Flies(tweety) — —=True,

B-Flies(chilly) — True
Resulting KB® has
(Bird(tweety) D Flies(tweety))
and so entails
Flies(tweety)
as desired.

KR & R

© Brachman & Levesque 2005

200

More ungroundedness

Definition of stable expansion may not be strong enough

KB = {(Bp D p)} has 2 stable expansions:

— one without p and with -Bp
corresponds to KB° = {}

— one with p and Bp.
corresponds to KB° = {p}

But why should p be believed?
only justification for having p is having Bp!

similar to problem with default logic extension

Konolige's definition:

A grounded stable expansion is a stable expansion that is minimal wrt to
the set of sentences without B operators.

rules out second stable expansion

Other examples suggest that an even stronger definition is required!
can get an equivalence with Reiter's definition of extension in default logic

KR & R © Brachman & Levesque 2005 201

12.

Vagueness, Uncertainty
and Degrees of Belief

Noncategorical statements

Ordinary commonsense knowledge quickly moves away from
categorical statements like “a P is always (unequivocably) a Q”

There are many ways in which we can come to less than
categorical information

+ things are usually (almost never, occasionally, seldomly, rarely, almost
always) a certain way

judgments about how good an example something is
e.g., barely rich, a poor example of a chair, not very tall

imprecision of sensors
e.g., the best you can do is to get within +/-10%

reliability of sources of information
e.g., “most of the time he’s right on the money”

strength/confidence/trust in generic information or deductive rules

Conclusions will not “follow” in the usual sense

KR & R © Brachman & Levesque 2005 203

Weakening a universal

There are at least 3 ways a universal like Vx P(x) can be made ro
be less categorical:

A

strength of quantifier applicability of predicate/
(“95% of birds fly”) degree of membership
(“fairly tall”)

statistical interpretation/
probabilistic sentences

flexible membership
vague predicates

degree of belief in whole
sentence (“80%
confidence in this fact”)

uncertain knowledge/
subjective probability

KR & R © Brachman & Levesque 2005 204

Objective probability

Statistical (frequency) view of sentences
objective: does not depend on who is assessing the probability

Always applied to collections
can not assign probabilities to (random) events that are not members of
any obvious repeatable sequence:
— ok for “the probability that | will pick a red face card from the deck”
— not ok for “the probability that the Blue Jays will win the World Series this Fall”

— “the probability that Tweety flies is between .9 and .95” is always false
(either Tweety flies or not)

Can use probabilities to correspond to English words like “rarely,”
“likely,” “usually”

generalized quantifiers: “most,” “many,” “few”
For most x, O(x) vs. Forall x, O(x)

EEIN 1

KR & R © Brachman & Levesque 2005 205

The basic postulates

Numbers between 0 and 1 representing frequency of an event in
a (large enough) random sample
extremes: 0 = never happens; 1 = always happens

Start with set U of all possible occurrences. An event a is any subset of U.
A probability measure is any function Pr from events to [0,1] satisfying:

- Pr(U)=1.
« |Ifa,, .., a, are disjoint events, then Pr(Ua,) = X Pr(a,)

Conditioning: the probability of one event may depend on its
interaction with others

Pr(alb) = probability of a, given b = Pr(aNb) / Pr(b)

Conditional independence:

event «a is judged independent of event b conditional on background
knowledge s if knowing that b happened does not affect the probability of a

Pr(als) = Pr(alb,s) (note: Cl is symmetric)
Note: without independence, Pr(als) and Pr(alb,s) can be very different.

KR & R © Brachman & Levesque 2005 206

Some useful consequences

Conjunction:
Pr(ab) = Pr(alb) - Pr(b)
conditionally independent: Pr(ab) = Pr(a) - Pr(b)
Negation:
Pr(—=s) =1 — Pr(s)
Pr(—sld) =1 — Pr(sld)
Ifb,, b,, ..., b, are pairwise disjoint and exhaust all possibilities, then
Pr(a) = 3 Pr(ab) = 3 Pr(al b)) - Pr(b)
Pr(alc) = Y Pr(ab,l c)
Bayes’ rule:
Pr(alb) = Pr(a) - Pr(bla) | Pr(b)

if a is a disease and b is a symptom, it is usually easier to estimate
numbers on RHS of equation (see below, for subjective probabilities)

KR & R © Brachman & Levesque 2005 207

Subjective probability

It is reasonable to have non-categorical beliefs even in categorical
sentences

 confidence/certainty in a sentence

« “your” probability = subjective

Similar to defaults
« move from statistical/group observations to belief about individuals
 but not categorical: how certain am | that Tweety flies?

“Prior probability” Pr(x/s) (s = prior state of information or
background knowledge)

“Posterior probability” Pr(x/E,s) (E = new evidence)

Need to combine evidence from various sources

how to derive new beliefs from prior beliefs and new evidence?
want explanations; probability is just a summary

KR & R © Brachman & Levesque 2005 208

From statistics to belief

Would like to go from statistical information (e.g., the probability that a
bird chosen at random will fly) to a degree of belief (e.g., how certain are
we that this particular bird, Tweety, flies)

Traditional approach is to find a reference class for which we have
statistical information and use the statistics for that class to compute an
appropriate degree of belief for an individual

Imagine trying to assign a degree
of belief to the proposition

“Eric (an American male) is tall” B) 25% of Californian males are tall
given facts like these 7 C) Eric is from California

A) 20% of American males are tall

This is called direct inference

Problem: individuals belong to many classes
« with justA — .2
« A,B,C - prefer more specific — .25
« A,C - no statistics for more specific class — .27
- B - are Californians a representative sample?

KR & R © Brachman & Levesque 2005 209

Basic Bayesian approach

Would like a more principled way of calculating subjective
probabilities

Assume we have n atomic propositions p,,..., p, we care about.
A logical interpretation I can be thought of as a specification of
which p, are true and which are false.

Notation: for n=4, we use (-p,.p,p;—p, to mean the interpretation
where only p, and p; are true.

A joint probability distribution J, is a function from interpretations
to [0,1] satisfying X J(I) = 1 (where J(I) is the degree of belief in the
world being as per I).

The degree of belief in any sentence a: Pr(a) :12 J(I)
Fa

Example: Pr(p, A=p,) = J({=p; Py P3mP2) +
J((—.p],pz’—.pg,—.pél» + = Pr(p_2) * (1-Pr(p_4)
J{ p1sP2s P3mDy) +
J P1sP2mP3Pa)-

KR & R © Brachman & Levesque 2005 210

= Pr(p_2) * (1-Pr(p_4)

Problem with the approach

To calculate the probabilities of arbitrary sentences involving the
p;; we would need to know the full joint distribution function.

For n atomic sentences, this requires knowing 2" numbers
impractical for all but very small problems

Would like to make plausible assumptions to cut down on what
needs to be known.

In the simplest case, all the atomic sentences are independent.
This gives us that

J((P,,...P)= Pr(P,A .. AP)=]]Pr(P,) (Where P, is either p,or -p)
and so only n numbers are needed.

Bu this assumption is too strong. A better assumption:

the probability of each P; only depends on a small number of P,
and the dependence is acyclic.

KR & R © Brachman & Levesque 2005 211

Belief networks

Represent all the atoms in a belief network (or Bayes’ network).

Assume: | J(P,,...,P,)) = [] Pr(P;| c(P,)
where Pr(c(P,)) > 0

c(P) = parents of node P

How many probabilities?

EX . forp_1? 1
ample forp_2? 2 Pr(p_2lp_1) and Pr(p_2l~p_1)

PZ — f 3?2
P] C)\D J(<P] ’P2 ’P3 ’P4>) forp_4? 4 Pr(p_4|pi);,€)__3), Pr(p_4lp_2,~p_3)...
total =9
P, Pr(P)) - Pr(P, | Py)ouen need 2na - 16
O/p:

Pr(P,| P,) - Pr(P,| P,.P,).

So: J(p,prp;Py) =Pr(p)) - Pr(p,|p)) - Pr(p;1p)) - Pr(p, | p,p;)
= Pr(p,) - [1 - Pr(p, | p)] - Pr(p;1p) - [1= Pr(p, 1 prp3)]

To fully specify the joint distribution (and therefore probabilities over any
subset of the variables), we only need Pr(P | ¢(P)) for every node P.

If node P has parents Q,, ..., Q,,, then we need to know the values of
Priplq,q,..-9,), Pr(plq,;q,..q,), Priplq,49...q,), ..., Pr(pl q,.9,,..-q,,)-

n - 2"numbers << 2"numbers !

KR & R © Brachman & Levesque 2005 212

How many probabilities?
for p_1? 1
for p_2? 2 Pr(p_2|p_1) and Pr(p_2|~p_1)
for p_3? 2
for p_4? 4 Pr(p_4|p_2,p_3), Pr(p_4|p_2,~p_3)…
total = 9
Without BN need 2^4 = 16

Using belief networks

Assign a node to each variable in the domain and draw arrows
toward each node P from a select set ¢(P) of nodes perceived to be
“direct causes” of P.

Pr(fo)=.15 Pr(bp)=.01

¢l-problem

arcs can often be
interpreted as
causal connections

Pr(dolfo,bp)=.99
Pr(dolfo,~bp)=.9
Pr(dol—-fo,bp)=.97

Pr(lolfo)=.6 Pr(dol-fo,~bp)=.3

Pr(lol-=fo)=.05
Pr(hbldo)=.7 bafk
Pr(hbl—do)=01

From the DAG, we get that

J(FO,LO,BP,DO,HB)) = Text
Pr(FO) x Pr(LOIFO) x Pr(BP) x Pr(DO|FO,BP) x Pr(HB | DO)

Using this formula and the 10 numbers above, we can calculate the
full joint distribution

KR & R © Brachman & Levesque 2005 213

Yves Lesperance

Example calculation

Suppose we want to calculate Pr(fo | 1o, -hb)
Pr(fo | lo, -hb) = Pr(fo,lo, -hb) / Pr(lo,-hb) where

Pr(fo, lo, -hb) = 2 J({fo,lo, BP, DO, -hb)) first 4 values below
Pr(lo, -hb) = Y J(FO,lo,BP,DO, -hb)) all 8 values below

J((fo,lo,bp,do,—'hb>) =.15-.6-.01-.99-.3=.0002673 +
J((fo,lo,bp,—-do,—'hb» =.15-.6-.01-.01-.99=.00000891 +
J({fo,lo,~bp,do,~hb)) =.15-.6-.99- .9 .3 =.024057 +
J((fo,lo,—-bp,—-do,—-hb)) =.15-.6-.99-.1-.99=.0088209 +
J((—-fo,lo,bp,do,—-hb)) =.85-05-01-97-.3=.000123675
J((—-fo,lo,bp,—-do,—-hb>) =.85-.05-.01-.03-.99=.0000126225 +
J((—-fo,lo,—-bp,do,—-hb)) =.85-.05-99-3-.3=.00378675
J((—-fo,lo,—-bp,—-do,—'hb>) =85-05-99-.7-99=.029157975

Pr(fo | lo, -hb) = 03316/ .06624 = 5

KR & R © Brachman & Levesque 2005 214

Bypassing the full calculation

Often it is possible to calculate some probability values without
first calculating the full joint distribution

Example: what is Pr(fo | lo)?
v v ?
by Bayes rule: Pr(fo | lo) = Pr(lo | fo) -‘Pr(fo) / Pr(lo)
v v v v _
but: Pr(lo) = Pr(lo | fo) - Pr(fo) + Pr(lo | fo) - Pr(fo)

But in general, the problem is NP-hard

+ the problem is even hard to approximate in general

« much of the attention on belief networks involves special-purpose
procedures that work well for restricted topologies

KR & R © Brachman & Levesque 2005

215

Influence diagrams

Graphical knowledge representation for decision problems

* nodes represent propositions or quantities of interest, including decision
variables, states of the world, and preference values

- arcs represent influence or relevance (probabilistic or deterministic
relationships between the variables)

chest
pain

angiogram

Node types test [P

chance nodes (circles)

value nodes (diamonds)

decision nodes (rectangles)
deterministic nodes (double circles)

test
result

heart
surgery

coronary

artary disgase
future life
chest pain quali
value
heart life
attac years

cost

KR & R © Brachman & Levesque 2005

216

Another attempt at evidence-pooling

Dempster-Shafer theory

for cases where there is uncertainty about probability

Uses two-part measure: belief and plausibility
these are lower and upper bounds on probabilities of a proposition

Relational
DB example

Name | Age
a [22.,26]
b [20,22]
C [30,35]
d [2022] ——»
e [28,30]

{20,21,22} is the set of
possibilities of Age(d),
or the possibility
distribution of Age(d)

Set membership questions like Age(x)EQ cease to be applicable; more
natural to ask about the possibility of Q given the table above of Age(x)

if 0=[20,25], itis possible that Age(a)&Q, not possible that Age(c)E0,

certain that Age(d)EQ

What is the probability that the age of someone is in the range [20,25]7?
belief=2/5; plausibility=3/5. So answer is [.4,.6].

DS combination rule — multiple sources

KR & R © Brachman & Levesque 2005

217

Vague predicates

Not every predicate fits every object exactly (nor fails completely)

- Categories with degrees of membership
e.g., fast, old, distant

* Problem: reference sets
— big fly vs. big elephant

We call predicates that are thought of a holding to a degree
vague predicates (or fuzzy predicates).

For each vague predicate, there is a precise base function in

terms of which it is understood.
middle-aged

- tall: height . oung o
* rich: net worth
+ bald: percent hair cover 5
A degree curve maps 0 >
> 30 60

the base function to [0,1].

age in years (the base function)

KR & R © Brachman & Levesque 2005 218

Conjunction and disjunction

As with probabilities, we need boolean combinations of properties

Negation is as with probability:
degree of membership in =P = 1 - degree of membership in P

But handle conjunction with MIN and disjunction with MAX!
Example:

Suppose an individual has very high (.95) degree of membership in
predicates Tall, Coordinated, Strong, ... for 20 predicates.

Then want to say very high (.95) degree of membership in
(Tall A Coordinated A Strong A ...)

as opposed to

Suppose there is a very high (.95) probability of being Tall, of being
Coordinated, of being Strong, ... for 20 predicates.

The probability of being all of them at the same time
(Tall A Coordinated A Strong A ...) can be low.

Other operators: “very” = square; “somewhat” = square root

KR & R © Brachman & Levesque 2005 219

Rules with vague predicates

Imagine degrees of fraud = {high, somewhat high, medium,
somewhat low, low}, based on a numeric universe of discourse (to

some maximum amount)

Construct a set of rules that indicate degrees of fraud based on
authorizations and difference in amount of recorded accountability

and actual stock:

1) If number of authorizations is often
then fraud is somewhat high

2) |f amount is larger than usual
then high fraud

Want to estimate the amount of fraud given inputs

10 authorizations,
amount of $60K

KR & R © Brachman & Levesque 2005 220

Applying rules

Use degree curves for “somewhat high”, “larger than usual” eftc.

Can combine with rules in a way that allows conclusion of rule to
apply to the degree that the condition of the rule applied.

often somewhat
'T T high I
fraud
710 40k 70k 40k 70k
. larger L
I than 1 / 1+
usual
high
fraud
60k 40k 70k 40k 70k
Given: 10 authorizations conclusion: /
amount of 60k g =center S
of gravity A

KR & R © Brachman & Levesque 2005 221

13.

Explanation and
Diagnosis

Abductive reasoning

So far: reasoning has been primarily deductive:
« given KB, is a an implicit belief?

« given KB, for what x is a[x] an implicit belief?

Even default / probabilistic reasoning has a similar form

Now consider a new type of question:

Given KB, and an a that | do not believe,
what would be sufficient to make me believe that o was true?
or what else would | have to believe for a to become an implicit belief?
or what would explain o being true?

Deduction: given (p D g), from p, deduce ¢
Abduction: given (p D g), from g, abduce p

p is sufficientforg or one way for g to be true is for p to be true

Also induction: given p(t,), q(t,), ..., p(t,), q(t,), induce Vx (p(x) D g(x))

Can be used for causal reasoning: (cause D effect)

KR & R © Brachman & Levesque 2005 223

Diagnosis

One simple version of diagnosis uses abductive reasoning

KB has facts about symptoms and diseases
including: (Disease n Hedges O Symptoms)
Goal: find disease(s) that best explain observed symptoms

Observe: we typically do not have knowledge of the form
(Symptom a ... O Disease)

SO reasoning is not deductive

Example:
(tennis-elbow DO sore-elbow) Explain: sore-elbow
(tennis-elbow D tennis-player) Want: tennis-elbow,
(arthritis A untreated O sore-joints) (arthritis A untreated),
(sore-joints D sore-elbow A sore-hip)

Non-uniqueness: multiple equally good explanations

+ logical equivalences: (untreated A — —arthritis)

KR & R © Brachman & Levesque 2005 224

Adequacy criteria

Given KB, and f to be explained, we want an a such that

1. o is sufficient to account for 3
KBU{a}|=p or KB|=(aDp)

2. a is not ruled out by KB
KB U {a} is consistent or KB |= -«

3. ais as simple as possible

parsimonious : as few terms as possible

explanations should not unnecessarily
strong or unnecessarily weak

4. o is in the appropriate vocabulary

atomic sentences of o should be drawn
from H, possible hypotheses in terms of
which explanations are to be phrased

e.g. diseases, original causes

Call such o an explanation of § wrt KB

otherwise (p A —=p) would count
as an explanation

e.g. KB={(pDq),-r} and B =gq
a=(p AsA-t) istoo strong
a=(pvr) istoo weak

e.g. sore-elbow explains sore-elbow
trivial explanation

sore-joints explains sore-elbow
may or may not be suitable

KR & R © Brachman & Levesque 2005

225

Some simplifications

From criteria of previous slide, we can simplify explanations in
the propositional case, as follows:

« To explain an arbitrary wff g, it is sufficient to choose a new letter p, add
(p = p) to KB, and then explain p.

KB |=(EDp) iff KBU{(p=p)}|=(EDp)

+ Any explanation will be (equivalent to) a conjunction of literals
(that is, the negation of a clause)

Why? If ais a purported explanation, and DNF[a] =(d, vd, Vv ... v d)
then each d; is also an explanation that is no less simple than a

A simplest explanation is then the negation of a clause with a
minimal set of literals

So: to explain a literal p, it will be sufficient to find the minimal
clauses C (in the desired vocabulary) such that

1. KB|=(-CDp) or KB|=(CU{p}) sufficient
2. KB|=C consistent

KR & R © Brachman & Levesque 2005 226

Prime implicates

A clause C is a prime implicate of a KB iff

1. KB |= ¢ Note: For any clause C, if KB |=C, then
2 FornoC*CC. KB |= Cc* some subset of C is a prime implicate

Example: KB = {(pagar D g), (mprg D g), (mgar D g)}
Prime implicates:

(p voq vg), | | |
(_'r v g); and Note: taUtOIOgy (CZV —|Cl) IS always a prime

/ implicate unless KB |=a or KB |= -a
(pv-p)Ev-9,..

For explanations:
+ want minimal C such that KB |= (C U {p}) and KB |= C

« s0: find prime implicates C such that p € C;
then —(C — p) must be an explanation for p

Example: explanations for g in example above

+ 3 prime implicates contain g, so get 3 explanations: (-pag), r, and g

KR & R © Brachman & Levesque 2005 227

Computing explanations

Given KB, to compute explanations of literal p in vocabulary H:
calculate the set {-=(C —p) | C is a prime implicate and p € C}

prime implicates containing p

But how to compute prime implicates?

Can prove: Resolution is complete for non-tautologous prime implicates
KB |=C iff KB—C completeness for [] is a special case!

So: assuming KB is in CNF, generate all resolvents in language H, and
retain those containing p that are minimal

Could pre-compute all prime implicates, but there may be
exponentially many, even for a Horn KB

Example: atoms: p, g, E, O, O0<si<n + E_, O,

wffs: E;np; O Oy, E;ng; O Eyy,

O, Ap; D Eyy, O;ng OO0
Ey, =0y

explain: E,

1+1°

KR & R © Brachman & Levesque 2005 228

Circuit example

Components

Gate(x) = Andgate(x) v Orgate(x) v Xorgate(x)

Andgate(al), Andgate(a2),

Orgate(ol), —

Full Adder

Xorgate(bl), Xorgate(b2)

Fulladder(f) the whole circuit

.

Connectivity

inl(bl) =inl(f), in2(b1) = in2(f)
in1(b2) = out(bl), in2(b2) = in3(f)
inl(al) =inl(f), in2(al) = in2(%)
inl(a2) = in3(f), in2(a2) = out(bl)
inl(ol) = out(a2), in2(ol) = out(al)
outl(f) = out(b2), out2(f) = out(ol)

-)
-

KR & R

© Brachman & Levesque 2005

229

Circuit behaviour

Truth tables for logical gates

and(0,0) =0, and(0,1)=0, ... or(0,0) =0, or(0,1)=1, ...

xor(0,0) =0, xor(0,1)=1, ...

Normal behaviour
Andgate(x) A —=Ab(x) D out(x) = and(inl(x), in2(x))
Orgate(x) A —=Ab(x) D out(x) = or(inl(x), in2(x))
Xorgate(x) A —=Ab(x) D out(x) = xor(inl(x), in2(x))
Abnormal behaviour: fault models

Examples
[Orgate(x) v Xorgate(x)] A Ab(x) D out(x) = in2(x)

Other possibilities ...

— some abnormal behaviours may be inexplicable

(short circuit)

— some may be compatible with normal behaviour on certain inputs

KR & R © Brachman & Levesque 2005

230

Abductive diagnosis

Given KB as above + input settings
e.g. KB U {inl(f) = 1, in2(f) = 0, in3(f) = 1}

we want to explain observations at outputs
e.g. (outl(f)=1 A out2(f) =0)

in the language of Ab

We want conjunction of Ab literals a such that
KB U Settings U {a} |= Observations

Compute by “propositionalizing”:

For the above, x ranges over 5 components and u,v range over 0 and 1.

Easiest to do by preparing a table ranging over all Ab literals, and
seeing which conjunctions entail the observations.

KR & R © Brachman & Levesque 2005 231

Table for abductive diagnosis

Ab(bl) Ab(b2) Ab(al) Ab(a2) Ab(ol) Entails observation?

—
COOONOOTA~WMN =

— ot —h
W=

IN
K<< << <LK << << <<

ZZZZ2Z2Z2Z2<<<<<<X=<<
ZZ2Z2<X<X<X<XZ2Z2Z2Z2<<<<<
Z<<Z2Z2<X<Z2Z2<<Z2Z2<<<
<Z2<KZ2Z<KZ2<KZ2<K2Z2<K2Z2<K2Z2z<
<Z<XZZ2Z2Z2<X<XZ2<Z2Z2Z22Z

—
o

32. N N

Z
Z
Z
Z

KR & R © Brachman & Levesque 2005 232

Example diagnosis

Using the table, we look for minimal sets of literals.
For example, from line (5), we have that
Ab(bl) A Ab(b2) A —=Ab(al) A Ab(a2) A Ab(ol)
entails the observations. However, lines (5), (7), (13) and (15) together
lead us to a smaller set of literals (the first explanation below).

The explanations are

1. Ab(bl) A —~Ab(al) A Ab(ol)

2. Ab(bl) A —Ab(al) A —Ab(a2)

3. Ab(b2) A -Ab(al) A Ab(ol)
Note: not all components are mentioned since for these settings, get the
same observations whether or not they are working

but for this fault model only

Can narrow down diagnosis by looking at a number of different settings

differential diagnosis

KR & R © Brachman & Levesque 2005 233

Diagnosis revisited

Abductive definition has limitations
- often only care about what is not working
« may not be able to characterize all possible failure modes
« want to prefer diagnoses that claim as few broken components as possible

Consistency-based diagnosis:

Assume KB uses the predicate Ab as before, but perhaps only
characterizes the normal behaviour

e.g. Andgate(x) A —=Ab(x) D out(x) = and(inl(x), in2(x))
Want a minimal set of components D, such that can use table as before

- with last column changed
{Ab(c) | c€ED} U {=Ab(c) | ¢ & D} {0 "consistency’

is consistent with KB U Settings U Observations

In previous example, get 3 diagnoses: {bl}, {b2,a2} and {b2,01}

Note: more complex to handle non-minimal diagnoses

KR & R © Brachman & Levesque 2005 234

Some complications

1. negative evidence

- allow for missing observations
e.g. ensure that KB U {a} |= fever

2. variables and quantification
« same definition, modulo “simplicity”, (but how to use Resolution?)
- useful to handle open wifs also
KB U {x=3} |= P(x) handles WH-questions
3. probabilities
+ not all simplest explanations are equally likely
- also: replace (Disease n ... O Symptom) by a probabilistic version

4. defaults

» instead of requiring KB U {a} |= B, would prefer that given o, it is
reasonable to believe

e.g. being a bird explains being able to fly

KR & R © Brachman & Levesque 2005

235

Other applications

1. object recognition

what scene would account for image elements observed?

what objects would account for collection of properties discovered?

2. plan recognition
what high-level goals of an agent would account for the actions observed?

3. hypothetical reasoning

instead of asking: what would | have to be told to believe ?
ask instead: what would | learn if | was told that o.?

Dual of explanation: want 3 such that

Solution: you learn on being told o
iff
- is an explanation for —a
can use the abduction procedure

KB U {a} |=p
KB |= 3

simplicity, parsimony
using correct vocabulary

KR & R

© Brachman & Levesque 2005

236

14.

Actions

KR &R © Brachman & Levesque 2005 237

Situation calculus

The situation calculus is a dialect of FOL for representing
dynamically changing worlds in which all changes are the result of
named actions.

There are two distinguished sorts of terms:

- actions, such as
— put(x,y) put object x on top of object y
— walk(loc) walk to location loc
— pickup(r,x) robot r picks up object x

- situations, denoting possible world histories. A distinguished
constant S, and function symbol do are used

- S, the initial situation, before any actions have been performed

— do(a,s) the situation that results from doing action « in situation s

the situation that results from
putting A on B after putting B
on C in the initial situation

for example: do(put(A,B),do(put(B,C),S,))

KR & R © Brachman & Levesque 2005 238

Fluents

Predicates or functions whose values may vary from situation to
situation are called fluents.

These are written using predicate or function symbols whose last
argument is a situation

for example: Holding(r, x, s): robot r is holding object x in situation s

can have: -Holding(7, x, s) A Holding(r, x, do(pickup(7,x),s))

the robot is not holding the object x in situation s, but is holding it in the situation
that results from picking it up

Note: there is no distinguished “current” situation. A sentence can
talk about many different situations, past, present, or future.

A distinguished predicate symbol Poss(a,s) is used to state that a
may be performed in situation s

it is possible for the robot r to

for example: Poss(pickup(r.x), S) pickup object x in the initial situation

This is the entire language.

KR & R © Brachman & Levesque 2005 239

Preconditions and effects

It is necessary to include in a KB not only facts about the initial
situation, but also about world dynamics: what the actions do.

Actions typically have preconditions: what needs to be true for the
action to be performed
* Poss(pickup(r,x), s) = Vz. -Holding(r,z,s) A =Heavy(x) A NextTo(r,x,s)

a robot can pickup an object iff it is not holding anything, the object is not too
heavy, and the robot is next to the object

Note: free variables assumed to be universally quantified
* Poss(repair(r,x), s) = HasGlue(r,s) A Broken(x,s)
it is possible to repair an object iff the object is broken and the robot has glue

Actions typically have effects: the fluents that change as the
result of performing the action
* Fragile(x) O Broken(x, do(drop(r,x),s))
dropping a fragile object causes it to break

« = Broken(x, do(repair(r,x),s))
repairing an object causes it to be unbroken

KR & R © Brachman & Levesque 2005 240

The frame problem

To really know how the world works, it is also necessary to know
what fluents are unaffected by performing an action.
* Colour(x,c,s) O Colour(x, ¢, do(drop(r,x),s))
dropping an object does not change its colour
* = Broken(x,s) A [x=y v —Fragile(x)] D -Broken(x, do(drop(r,y),s)
not breaking things

These are sometimes called frame axioms.

Problem: need to know a vast number of such axioms. (Few
actions affect the value of a given fluent; most leave it invariant.)

an object’s colour is unaffected by picking things up, opening a door, using
the phone, turning on a light, electing a new Prime Minister of Canada, efc.

The frame problem:

- in building KB, need to think of these ~ 2 x A x Ffacts about what
does not change

+ the system needs to reason efficiently with them

KR & R © Brachman & Levesque 2005 241

What counts as a solution?

« Suppose the person responsible for building a KB has written down
all the effect axioms

for each fluent F and action A that can cause the truth value of F to
change, an axiom of the form [R(s) D =F(do(A,s))], where R(s) is some
condition on s

- We want a systematic procedure for generating all the frame
axioms from these effect axioms

- If possible, we also want a parsimonious representation for them
(since in their simplest form, there are too many)

Why do we want such a solution?

- frame axioms are necessary to reason about actions and are not
entailed by the other axioms

« convenience for the KB builder | — modularity: only add effect axioms

- for theorizing about actions — accuracy: no inadvertent omissions

KR & R © Brachman & Levesque 2005 242

The projection task

What can we do with the situation calculus?
We will see later that it can be used for planning.

A simpler job we can handle directly is called the projection task.

Given a sequence of actions, determine what would be true in the
situation that results from performing that sequence.

This can be formalized as follows:
Suppose that R(s) is a formula with a free situation variable s.

To find out if R(s) would be true after performing (a;,....a,) in the initial
situation, we determine whether or not

KB |= R(do(a,do(a,,,....do(a,,S,)...))

For example, using the effect and frame axioms from before, it
follows that —Broken(B,s) would hold after doing the sequence

(pickup(A), pickup(B), drop(B), repair(B), drop(A))

KR & R © Brachman & Levesque 2005 243

The legality task

The projection task above asks if a condition would hold after
performing a sequence of actions, but not whether that sequence
can in fact be properly executed.

We call a situation legal if it is the initial situation or the result of
performing an action whose preconditions are satisfied starting in
a legal situation.

The legality task is the task of determining whether a sequence of
actions leads to a legal situation.

This can be formalized as follows:

To find out if the sequence (q,,...,a,) can be legally performed in the
initial situation, we determine whether or not

KB |= Poss(a;, do(a,,....do(a,,S,)...))

for every i such that 7 <i <n.

KR & R © Brachman & Levesque 2005 244

Limitations of the situation calculus

This version of the situation calculus has a number of limitations:

no time: cannot talk about how long actions take, or when they
occur

only known actions: no hidden exogenous actions, no unnamed
events

no concurrency: cannot talk about doing two actions at once

only discrete situations: no continuous actions, like pushing an
object from A to B.

only hypotheticals: cannot say that an action has occurred or will
occur

only primitive actions: no actions made up of other parts, like
conditionals or iterations

We will deal with the last of these below.

First we consider a simple solution to the frame problem ...

KR & R

© Brachman & Levesque 2005 245

Normal form for effect axioms

Suppose there are two positive effect axioms for the fluent Broken:
Fragile(x) O Broken(x,do(drop(7,x),s))
NextTo(b,x,s) O Broken(x,do(explode(b),s))

These can be rewritten as

dr {a=drop(r,x) A Fragile(x)} v db{a= explode(b) A NextTo(b,x,s)}
O Broken(x,do(a,s))

Similarly, consider the negative effect axiom:
- Broken(x,do(repair(r,x),s))

which can be rewritten as
dr {a=repair(r,x)} O -Broken(x,do(a,s))

In general, for any fluent F, we can rewrite all the effect axioms as
as two formulas of the form

where Pg(x, a ,s) and Ng(x, a ,s)
PF(x’ a.s) D F(x,do(as)) (1) are formulas whose free variables
Ni(x,a,s) DO -F(x,do(a,s)) (2) are among the x;, a, and s.

KR & R © Brachman & Levesque 2005 246

Explanation closure

Now make a completeness assumption regarding these effect
axioms:

assume that (1) and (2) characterize all the conditions under which
an action a changes the value of fluent F.

This can be formalized by explanation closure axioms:

-F(x,s) A F(x,do(a,s)) DO Pgx,a,s) (3)

if F was false and was made true by doing action a
then condition P must have been true

F(x,s) A =F(x,do(a,s)) O Ngx,a,s) 4)

if F was true and was made false by doing action a
then condition N must have been true

These explanation closure axioms are in fact disguised versions
of frame axioms!

~F(x,s) A =Pix,a,s) DO -F(x, do(a,s))
F(x,s) A =Ngx,a,s) D F(x,do(a,s))

KR & R © Brachman & Levesque 2005 247

Successor state axioms

Further assume that our KB entails the following
- integrity of the effect axioms: =3 x, a, 5. Px(x, a, s) A Ni(x, a, s)

* unique names for actions:

A(xp,.0x,) = A(y,,..0y,) D (X,=y;) A oA (Xx,=Y,)
A(x,,...x,) #B(y,,....y,) where A and B are distinct

Then it can be shown that KB entails that (1), (2), (3), and (4)
together are logically equivalent to

F(x,do(a,s)) = Pg(x,a,s)v (F(x,s) N =Ngx, a,s))
This is called the successor state axiom for F.

For example, the successor state axiom for the Broken fluent is:

Broken(x, do(a,s)) = An object x is broken after doing action a
. iff
r {a:drop(r,x) A Fraglle(x)} a is a dropping action and x is fragile,
v 3b {a=explode(b) n NextTo(b,x,s)} or ais a bomb exploding

i . where x is next to the bomb,
v BrOken(x’ S) AE {a—repalr(r,x)} or x was already broken and

Note universal quantification: for any actiona ... a is not the action of repairing it

KR & R © Brachman & Levesque 2005 248

A simple solution to the frame problem

This simple solution to the frame problem (due to Ray Reiter)
yields the following axioms:

* one successor state axiom per fluent
+ one precondition axiom per action

* unique name axioms for actions

Moreover, we do not get fewer axioms at the expense of
prohibitively long ones

the length of a successor state axioms is roughly proportional to the
number of actions which affect the truth value of the fluent

The conciseness and perspicuity of the solution relies on
 quantification over actions
+ the assumption that relatively few actions affect each fluent
+ the completeness assumption (for effects)

Moreover, the solution depends on the fact that actions always
have deterministic effects.

KR & R © Brachman & Levesque 2005 249

Limitation: primitive actions

As yet we have no way of handling in the situation calculus
complex actions made up of other actions such as

 conditionals: If the car is in the driveway then drive else walk
* iterations: while there is a block on the table, remove one
« nondeterministic choice: pickup up some block and put it on the floor

and others

Would like to define such actions in terms of the primitive actions,
and inherit their solution to the frame problem

Need a compositional treatment of the frame problem for complex
actions

Results in a novel programming language for discrete event
simulation and high-level robot control

KR & R © Brachman & Levesque 2005 250

The Do formula

For each complex action A, it is possible to define a formula of the
situation calculus, Do(A, s, s'), that says that action A when started
In situation s may legally terminate in situation s'.

Primitive actions: Do(A, s,s') = Poss(A,s) A s'=do(A,s)
Sequence: Do([A;B],s,s') = 3As".Do(A, s, s") n Do(B,s",s’)

Conditionals: Do([if ¢ then A else B], s, s') =
¢(s) A Do(A,s,s') v =¢(s)ADo(B,s,s')

Nondeterministic branch: Do([A I B],s,s') = Do(A,s,s') v Do(B, s, s')
Nondeterministic choice: Do([nx.A], s, s') = 3x. Do(A, s, s')
efc.

Note: programming language constructs with a purely logical
situation calculus interpretation

KR & R © Brachman & Levesque 2005 251

GOLOG

GOLOG (Algol in logic) is a programming language that
generalizes conventional imperative programming languages

+ the usual imperative constructs + concurrency, nondeterminism, more...

+ bottoms out not on operations on internal states (assignment statements,
pointer updates) but on primitive actions in the world (e.g. pickup a block)

« what the primitive actions do is user-specified by precondition and
successor state axioms

What does it mean to “execute” a GOLOG program?

+ find a sequence of primitive actions such that performing them starting in
some initial situation s would lead to a situation s’ where the formula
Do(A, s, s') holds

- give the sequence of actions to a robot for actual execution in the world

Note: to find such a sequence, it will be necessary to reason
about the primitive actions

. _ to decide between B and C we need to determine
A ; if Holding(x) then B else C if the fluent Holding would be true after doing A

KR & R © Brachman & Levesque 2005 252

GOLOG example

Primitive actions: pickup(x), putonfloor(x), putontable(x)
Fluents: Holding(x,s), OnTable(x,s), OnFloor(x,s)

Action preconditions: Poss(pickup(x), s) = Vz.-Holding(z, s)
Poss(putonfloor(x), s) = Holding(x, s)
Poss(putontable(x), s) = Holding(x, s)

Successor state axioms:

Holding(x, do(a,s)) = a=pickup(x) v
Holding(x,s) A a=putontable(x) A a=putonfloor(x)

OnTable(x, do(a,s)) = a=putontable(x) v OnTable(x,s) A a=pickup(x)
OnFloor(x, do(a,s)) a=putonfloor(x) v OnFloor(x,s) A a=pickup(x)

Initial situation: Vx.-Holding(x, S,)
OnTable(x, §)) = x=A v x=B

Complex actions:
proc ClearTable : while db.OnTable(b) do wb [OnTable(b)? ; RemoveBlock(b)]

proc RemoveBlock(x) : pickup(x) ; putonfloor(x)

KR & R © Brachman & Levesque 2005 253

Running GOLOG

To find a sequence of actions constituting a legal execution of a GOLOG
program, we can use Resolution with answer extraction.
For the above example, we have

KB |= 3s. Do(ClearTable, S,,, s)
The result of this evaluation yields

s = do(putontloor(B), do(pickup(B), do(putonfloor(A), do(pickup(A),S,))))
and so a correct sequence is

(pickup(A), putonfloor(A), pickup(B), putonfloor(B))

When what is known about the actions and initial state can be expressed
as Horn clauses, the evaluation can be done in Prolog.

The GOLOG interpreter in Prolog has clauses like
do(A,S1,do(A,S1)) :- prim action(A), poss(A,Sl).
do(seq(A,B),S1,S2) :- do(A,S1,S3), do(B,S3,S52).

This provides a convenient way of controlling a robot at a high level.

KR & R © Brachman & Levesque 2005 254

15.

Planning

KR &R © Brachman & Levesque 2005 255

Planning

So far, in looking at actions, we have considered how an agent
could figure out what to do given a high-level program or complex
action to execute.

Now, we consider a related but more general reasoning problem:
figure out what to do to make an arbitrary condition true. This is
called planning.

« the condition to be achieved is called the goal

- the sequence of actions that will make the goal true is called the plan

Plans can be at differing levels of detail, depending on how we
formalize the actions involved
+ “do errands” vs. “getin car at 1:32 PM, put key in ignition, turn key
clockwise, change gears,...”

In practice, planning involves anticipating what the world will be
like, but also observing the world and replanning as necessary...

KR & R © Brachman & Levesque 2005 256

Using the situation calculus

The situation calculus can be used to represent what is known
about the current state of the world and the available actions.

The planning problem can then be formulated as follows:

Given a formula Goal(s), find a sequence of actions a such that
KB |= Goal(do(a, S,)) n Legal(do(a, S,))

where do({a,,...,a,), S,) is an abbreviation for
do(a,, do(a, ,, ..., do(a,, do(a,, S;)) ...))

and where Legal({a,,...,a,), S,) is an abbreviation for
Poss(a,, S;) A Poss(a,, do(a,, Sy)) A ... A Poss(a,, do({a,,...a,_;), S;))

So: given a goal formula, we want a sequence of actions such that

- the goal formula holds in the situation that results from executing the
actions, and

* it is possible to execute each action in the appropriate situation

KR & R © Brachman & Levesque 2005 257

Planning by answer extraction

Having formulated planning in this way, we can use Resolution
with answer extraction to find a sequence of actions:

KB |= ds. Goal(s) A Legal(s)

We can see how this will work using a simplified version of a
previous example:
An object is on the table that we would like to have on the floor. Dropping

it will put it on the floor, and we can drop it, provided we are holding it. To
hold it, we need to pick it up, and we can always do so.

Effects: OnFloor(x, do(drop(x),s))
Holding(x, do(pickup(x),s))

Note: ignoring frame problem

Preconds: Holding(x, s) O Poss(drop(x), s) KB
Poss(pickup(x), s)

Initial state: OnTable(B, S,)

The goal: OnFloor(B, s)

KR & R © Brachman & Levesque 2005 258

Deriving a plan

. Negated query + answer predicate
Axiom 1 [gated query P

\ [-OnFloor(B,s1), —Legal(s1), A(s])]

expand Legal

Axiom 3 [-Legal(do(drop(B).s2)), A(do(drop(B),s2))]

Axiom 2

\[—-Legal(s2), -~ Poss(drop(B),s2), A(do(drop(B),s2))]
\ [-Legal(s2), ~Holding(B,s2), A(do(drop(B),s2))]

[A(do(drop(B),do(pickup(B),s3))), —Legal(do(pickup(B),s3))] expand Legal

\

[-Legal(s3), A(do(drop(B),do(pickup(B),s3))), =Poss(pickup(B),s3), |

/ Axiom 4

Legal for S, [~Legal(s3), A(do(drop(B) do(pickup(B).s3)))]

\ [A(do(drop(B), do(pickup(B), S0)))]

Here is the plan: in the initial situation, pickup
block B, and in the resulting situation, drop B.

KR & R © Brachman & Levesque 2005 259

Using Prolog

Because all the required facts here can be expressed as Horn
clauses, we can use Prolog directly to synthesize a plan:

onfloor (X,do(drop(X),S)).
holding(X,do(pickup(X),S)).

poss(drop(X),S) :- holding(X,S).

poss (pickup(X),S).

ontable(b,s0).

legal(sO0).

legal(do(A,S)) :- poss(A,S), legal(S).

With the Prolog goal ?- onfloor(b,s), legal(s).
we get the solution S = do(drop(b),do(pickup(b),s0))

But planning problems are rarely this easy!

Full Resolution theorem-proving can be problematic for a complex
set of axioms dealing with actions and situations explicitly...

KR & R © Brachman & Levesque 2005 260

The STRIPS representation

STRIPS is an alternative representation to the pure situation
calculus for planning.

from work on a robot called Shaky at SRI International in the 60’s.

In STRIPS, we do not represent histories of the world, as in the
situation calculus.

Instead, we deal with a single world state at a time, represented
by a database of ground atomic wffs (e.g., In(robot,room,))

This is like the database of facts used in procedural representations and
the working memory of production systems

Similarly, we do not represent actions as part of the world model
(cannot reason about them directly), as in the situation calculus.

Instead, actions are represented by operators that syntactically
transform world models

An operator takes a DB and transforms it to a new DB

KR & R © Brachman & Levesque 2005 261

STRIPS operators

Operators have pre- and post-conditions
« precondition = formulas that need to be true at start
+ “delete list” = formulas to be removed from DB
- “add list” = formulas to be added to DB

Example: PushThru(o,d,r;,r,)
“the robot pushes object o through door 4 from room r,to room r,”
 precondition: InRoom(robot,r;), InRoom(o,r,), Connects(d,r,,r,)
* delete list: InRoom(robot,r;), InRoom(o,r,)

« add list: InRoom(robot,r,), InRoom(o,r,)

initial world model, DB (list of ground atoms)

STRIPS problem space = | set of operators (with preconds and effects)

goal statement (list of atoms)

desired plan: sequence of ground operators

KR & R © Brachman & Levesque 2005 262

STRIPS Example

In addition to PushThru, consider

GoThru(d,r,,r,):
precondition: InRoom(robot,r;), Connects(d,r,,r,)

delete list: InRoom(robot,r;)

add list: InRoom(robot,r,)

ROOM, ROOM,
A DOOR BOX,
ROBOT 1 []
DOOR,
0 ROOM,

InRoom(robot,room;) InRoom(box,,room,)
Connects(door, room,,room,) Box(box,)
Connects(door, room,,room;)

Goal: [Box(x) A InRoom(x,room,)]

KR & R © Brachman & Levesque 2005 263

Progressive planning

Here is one procedure for planning with a STRIPS like
representation:

Input : a world model and a goal
Output : a plan or fail.

ProgPlan[DB,Goal] =

If Goal is satisfied in DB, then return empty plan

For each operator o such that precond(o) is satisfied in the current DB:
Let DB” = DB + addlist(o) — dellist(o)
Let plan = ProgPlan[DB’,Goal]
If plan = fail, then return [act(o) ; plan]

End for

Return fail

(ignoring variables)

This depth-first planner searches forward from the given DB, for
a sequence of operators that eventually satisfies the goal

DB’ is the progressed world state

KR & R © Brachman & Levesque 2005 264

Regressive planning

Here is another procedure for planning with a STRIPS like
representation:

Input : a world model and a goal
Output : a plan or fail.

RegrPlan[DB,Goal] =

If Goal is satisfied in DB, then return empty plan

For each operator o such that dellist(o) N Goal = {}:
Let Goal” = Goal + precond(o) — addlist(o)
Let plan = RegrPlan[DB,Goal’]
If plan = fail, then return [plan ; act(o)]

End for

Return fail

(ignoring variables)

This depth-first planner searches backward for a sequence of

operators that will reduce the goal to something satisfied in DB,

Goal’ is the regressed goal

KR & R © Brachman & Levesque 2005

265

Computational aspects

Even without variables, STRIPS planning is NP-hard.

Many methods have been proposed to avoid redundant search

e.g. partial-order planners, macro operators

One approach: application dependent control

pick an action
Consider this range of GOLOG programs: V/
< any deterministic program > sl while -Goal do ma . a

fully specific about sequence any sequence such that Goal
of actions required holds at end
easy to execute as hard as planning!

In between, the two extremes we can give domain-dependent
guidance to a planner:

while —-Goal do ma . [Acceptable(a)? ; a]

where Acceptable is formalized separately

This is called forward filtering .

KR & R © Brachman & Levesque 2005 266

Hierarchical planning

The basic mechanisms of planning so far still preserve all detail
needed to solve a problem

attention to too much detail can derail a planner to the point of uselessness

would be better to first search through an abstraction space, where
unimportant details were suppressed

when solution in abstraction space is found, account for remaining details

ABSTRIPS

precondition wffs in abstraction space will have fewer literals than those in
ground space
e.g., PushThru operator
— high abstraction: applicable whenever an object is pushable and a door exists
— lower: robot and obj in same room, connected by a door to target room
— lower: door must be open
— original rep: robot next to box, near door

predetermined partial order of predicates with “criticality” level

KR & R

© Brachman & Levesque 2005 267

Reactive systems

Some suggest that explicit, symbolic production of formal plans is
something to be avoided (especially considering computational
complexity)

even propositional case is intractable; first-order case is undecidable

Just “react”: observe conditions in the world and decide (or look
up) what to do next

can be more robust in face of unexpected changes in the environment

= reactive systems

“Universal plans”: large lookup table (or boolean circuit) that tells
you exactly what to do based on current conditions in the world

Reactive systems have impressive performance on certain low-
level problems (e.g. learning to walk), and can even look
“intelligent”

but what are the limitations? ...

KR & R © Brachman & Levesque 2005 268

16.

The Tradeoff between
Expressiveness and
Tractability

Limit expressive power?

Defaults, probabilities, etc. can all be thought of as extensions to
FOL, with obvious applications

Why not strive for the union of all such extensions? all of English?
Problem: automated reasoning

Lesson here:

reasoning procedures required for more expressive languages
may not work very well in practice

Tradeoff: expressiveness vs. tractability

Overview: ~ a Description Logic example

— limited languages

— the problem with cases

— vivid reasoning as an extreme case
— less vivid reasoning

— hybrid reasoning systems

KR & R © Brachman & Levesque 2005 270

Simple description logic

Consider the language FL defined by:

<concept> ::= atom <role> ::= atom
| [AND <concept> ... <concept>] | [RESTR <role> <concept>]
| [ALL <role> <concept>]
| [SOME <role>] (= [EXISTS 1 <role>))

Example: [ALL :Child [AND Female Student]]

an individual whose children are female students

[ALL [RESTR :Child Female] Student]

an individual whose female children are students

there may or may not be male children and they may or may not be students

Interpretation 3 = (D, I) as before, but with
[[[RESTRrc]]= {(xy) | (x,y) €I[r] and y€EI[c] }

So [RESTR :Child Female] is the :Child relation restricted to females = :Daughter

Subsumption defined as usual

KR & R © Brachman & Levesque 2005 271

Computing subsumption

First for FL™ = FL without the RESTR operator

 put the concepts into normalized form [AND p, ... p,
[SOME r,] ... [SOME r,]

« to see if C subsumes D make sure that
[ALL s, ¢4] ... [ALL s, c,]]

1.foreverypeC, pED
2.for every [SOME r] € C, [SOME r] € D
3.for every [ALL s c] € C, find an [ALL s d] € D such that ¢ subsumes d.

Can prove that this method is sound and complete relative to
definition based on interpretations

Running time:
« normalization is O(n?)

- structural matching: for each part of C, find a part of D. Again O(n?)

What about all of FL, including RESTR?

KR & R © Brachman & Levesque 2005 272

Subsumption in FL

+ cannot settle for part-by-part matching

[ALL [RESTR :Friend [AND Male Doctor]] [AND Tall Rich]]

subsumes

[AND [ALL [RESTR :Friend Male] [AND Tall Bachelor]]
[ALL [RESTR :Friend Doctor] [AND Rich Surgeon]]]

« complex interactions

[SOME [RESTR r [AND a b][]

subsumes

[AND [SOME [RESTR r [AND c d]]] [ALL [RESTR r c¢] [AND « €]]
[ALL [RESTR r [AND d ¢]] b]]

In general: FL is powerful enough to encode all of propositional logic.

There is a mapping Q from CNF wffs to FL where
= (D p) iff Q(a) is subsumed by Q(f)

But |= (D (pa-p)) iff o is unsatisfiable

Conclusion: there is no good algorithm for FL unless P=NP

KR & R © Brachman & Levesque 2005 273

Moral

Even small doses of expressive power can come at a significant
computational price

Questions:
« what properties of a representation language control its difficulty?
« how far can expressiveness be pushed without losing good algorithms

« when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but some progress:
* need for case analyses is a major factor
« tradeoff for DL languages is reasonably well understood

- best addressed (perhaps) by looking at working systems

Useful approach:
+ find reasoning tasks that are tractable
+ analyze difficulty in extending them

KR & R © Brachman & Levesque 2005 274

Limited languages

Many reasoning problems that can be formulated in terms of FOL
entailment (KB |=* o) admit very specialized methods because of
the restricted form of either KB or o

although problem could be solved using full resolution, there is no need

Example 1: Horn clauses
« SLD resolution provides more focussed search
* in propositional case, a linear procedure is available

Example 2: Description logics
Can do DL subsumption using Resolution

Introduce predicate symbols for concepts, and “meaning postulates” like

Vx[P(x) = Vy(Friend(x,y) D Rich(y)) [AND [ALL :Friend Rich]
A Yy(Child(x,y) D [ALL :Child
Vz(Friend(y,z) D Happy(2)))] [ALL :Friend Happy]]]

Then ask if MP |= Vx[P(x) D Q(x)]

KR & R © Brachman & Levesque 2005 275

Equations

Example 3: linear equations

Let E be the usual axioms for arithmetic:
Peano

VxVy(x+y = y+x), Vx(x+0 =x), ... axioms
Then we get the following:

E |= (x+2y=4 A x—y=1) D (x=2 A y=1)
Can “solve” linear equations using Resolution!

But there is a much better way: _ subtract (2) from (1): 3y =3

Gauss-Jordan method with back substitution | — divide by 3: y =1
— Substitute in (1): x=2

In general, a set of linear equations can be solved in O(n’) operations

This idea obviously generalizes!

always advantageous to use a specialized procedure when it is available,
rather than a general method like Resolution

KR & R © Brachman & Levesque 2005 276

When is reasoning hard?

Suppose that instead of linear equations, we have something like
(x+2y=4 v 3x—y=T) A x—y=1
Can still show using Resolution: y>0

To use GJ method, we need to split cases:
x+2y=4 A x—y=1 » y=I . y>0
3x—y=T A x—y=1 = y=2

What if 2 disjunctions? (eqnA, v eqnB,) A (eqnA, v eqnB,)

there are four cases to consider with GJ method
What if n binary disjunctions? (eqnA, v eqnB,) A ... A (eqnA, v eqnB,)

there are 2" cases to consider with GJ method
with n=30, would need to solve 10° systems of equations!

Conclusion: case analysis is still a big problem.

Question: can we avoid case analyses??

KR & R © Brachman & Levesque 2005 277

Expressiveness of FOL

Ability to represent incomplete knowledge

P(a) v P(b) but which?

x P(x) P(a) v P(b) v P(c) v ...
and even

c=3 c=lvec=2vc=4v..

Reasoning with facts like these requires somehow “covering” all
the implicit cases
languages that admit efficient reasoning do not allow this type of
knowledge to be represented
— Horn clauses,
— description logics,
— linear equations, ...

only limited forms of disjunction, quantification etc.

KR & R © Brachman & Levesque 2005 278

Complete knowledge

One way to ensure tractability:

somehow restrict contents of KB so that reasoning by cases is not required

But is complete knowledge enough for tractability?

suppose KB |=a or KB |=-a, asinthe CWA
Get: queries reduce to KB |= p, literals
But: it can still be hard to answer for literals

Example: KB = {(p vq),(-p vq),(-p v =q)}
Have: KB |= =p A g complete!
But to find literals may require case analysis

So complete knowledge is not enough to avoid case analyses if
the knowledge is “hidden” in the KB.

Need a form of complete knowledge that is more explicit...

KR & R © Brachman & Levesque 2005 279

Vivid knowledge

Note: If KB is complete and consistent, then it is satisfied by a

unique interpretation 1
anoring
Why? define I by I|=p iff KB|=p ?i;’gvaes

Then for any I*, if I*|= KB then I'* agrees with 7 on all atoms p

Get: KB |=a iff 1|=a
entailments of KB are sentences that are true at /

explains why queries reduce to atomic case
(o v B) istrue iff ais true or p is true, etc.

if we have the I, we can easily determine what is or is not entailed

Problem: KB can be complete and consistent, but unique
interpretation may be hard to find

Solution: a KB is vivid if it is a complete and consistent set of
literals (for some language)

e.g. KB={-p,q} specifies I directly

KR & R © Brachman & Levesque 2005 280

Quantifiers
As with the CWA, we can generalize the notion of vivid to
accommodate queries with quantifiers

A first-order KB is vivid iff for some finite set of positive function-
free ground literals KB*, KB = KB* U Negs U Dc U Un.

Get a simple recursive algorithm for KB |= a:
KB |= 3x.a iff KB |= a[x/c], for some ¢ € KB*
KB|=(avp) iff KB|=o or KB|=p
KB |=-a iff KB|=a
KB |=(c =d) iff c¢andd are the same constant
KB|=p iff peKB*

This is just database retrieval
- useful to store KB+ as a collection of relations

+ only KB* is needed to answer queries, but Negs, Dc, and Un are required
to justify the correctness of the procedure

KR & R © Brachman & Levesque 2005 281

Analogues

Can think of a vivid KB as an analogue of the world

there is a 1-1 correspondence between
— objects in the world and constants in the KB*
— relationships in the world and syntactic relationships in the KB+
for example, if constants ¢, and ¢, stand for objects in the world o, and o,
there is a relationship R holding between objects o, and o, in the world
iff
constants ¢, and ¢, appear as a tuple in the relation represented by R

Not true in general

for example, if KB = {P(a)} then it only uses 1 constant, but could be
talking about a world where there are 5 individuals of which 4 satisfy P

Result: certain reasoning operations are easy
— how many objects satisfy P (by counting)
— changes to the world (by changes to KB*)

KR & R © Brachman & Levesque 2005 282

Beyond vivid

Requirement of vividness is very strict.
Want weaker alternatives with good reasoning properties

Extension 1 s

again
Suppose KB is a finite set of literals

— not necessarily a complete set (no CWA)
— assume consistent, else trivial

Cannot reduce KB |= a to literal queries
if KB= {p} thenKB |=(pag v pa-q) but KB |=pag and KB |=pa-g

But: assume a is small. Can put into CNF
a ™ (c;A...A¢c,)
* KB |=a iff KB|=c, forevery clause in CNF of a

« KB |=c¢ iff ¢ has complimentary literals — tautology
or KB Nc is not empty

KR & R © Brachman & Levesque 2005 283

Extension 2

Imagine KB vivid as before + new definitions:
Vxyz[R(x,y,z) = ... wif in vivid language ...]

Example: have vivid KB using predicate ParentOf
add: Vxy/MotherOf(x,y) = ParentOf(x,y) A Female(x) /

To answer query containing R(z,.t,.t;), Simply macro expand it with
definition and continue

+ can handle arbitrary logical operators in definition since they become part
of query, not KB

+ can generalize to handle predicates not only in vivid KB, provided that they
bottom out to KB+

Vxy[AncestorOf(x,y) = ParentOf(x,y) v
dz ParentOf(x,z) A AncestorOf(z,y)]
+ clear relation to Prolog

a version of logic programming based on inductive definitions,
not Horn clauses

KR & R © Brachman & Levesque 2005 284

Other extensions

Vivification: given non-vivid KB, attempt to make vivid e.g. by
eliminating disjunctions etc.
for example,

— use taxonomies to choose between disjuncts
Flipper is a whale or a dolphin.

— use intervals to encompass disjuncts
The picnic will be on June 2, 3,0r 4th.
— use defaults to choose between disjuncts

Serge works in Toronto or Montreal.

Problem: what to do with function symbols, when Herbrand
universe is not finite?

partial Herbrand base?

KR & R © Brachman & Levesque 2005 285

Hybrid reasoning

Want to be able to incorporate a number of special-purpose
efficient reasoners into a single scheme such as Resolution
Resolution will be the glue that holds the reasoners together

Simple form: semantic attachment

- attach procedures to functions and predicates

e.g. numbers: procedures on plus, LessThan, ...

« ground terms and atomic sentences can be evaluated prior to Resolution
— P(factorial(4), times(2,3)) ™ P(24,6)
— LessThan(quotient(36,6), 5) v o ™ «

« much better than reasoning directly with axioms

More complex form: theory resolution

* build theory into unification process (the way paramodulation builds in =)

+ extended notion of complimentary literals
{a, LessThan(2,x)}! and {LessThan(x,/), 8} resolveto {o,f(}

KR & R © Brachman & Levesque 2005 286

Using descriptions

Imagine that predicates are defined elsewhere as concepts in a
description logic

Married = [AND ..] Bachelor = [AT-MOST ..]

then {P(x),Married(x)} and {Bachelor(john), O(y)} resolve to {P(john), 0(y)}

Can use description logic procedure to decide if two predicates are
complimentary

instead of explicit meaning postulates

Residues: for “almost” complimentary literals
{P(x), Male(x)} and {-Bachelor(john), Q(y)}
resolve to
{P(john), O(y), Married(john) }
since the two literals are contradictory unless John is married

Main issue: what resolvents are necessary to get the same conclusions
as from meaning postulates?

residues are necessary for completeness

KR & R © Brachman & Levesque 2005 287

THE END

KR &R © Brachman & Levesque 2005 288

