
Faculty Room Telephone Email
in CCB Extension @cs.yorku.ca

M. Aboelaze 338 40607 aboelaze
J. Amanatides 254 44782 amana
E. Arjomandi 222 70130 eshrat
T. Brecht (on leave) brecht
P. Cribb 150 70127 peterc
P. Dymond 260 33948 dymond
J. Edmonds 350 44298 jeff
P. Godfrey 220 70128 godfrey
G. Gotshalks 216 77875 gunnar
J. Gryz 236 70150 jarek
M. Jenkin 126 33977 jenkin
Y. Lesperance 342 70146 lesperan
J. Liu 224 33928 joseph
M. Mandelbaum 358 40630
J. Mason 125A 66671 jmason
E. Milios (on leave) eem
A. Mirzaian 352 70133 andy
J. Ostroff 248 77882 jonathan
R. Paige 250 77878 paige
P. H. Roosen-Runge 319 Calumet 77844 peter
H. Roumani 146 66146 roumani
E. Ruppert 344 33979 ruppert
H. Sandhu (on leave) hsandhu
M. Spetsakis 252 77886 minas
Z. Stachniak 214 77877 zbigniew
W. Stuerzlinger 344 33947 wolfgang
A. Toptsis 142 66675 anestis
G. Tourlakis 354 66674 gt
J. Tsotsos 340 70135 tsotsos
F. van Breugel 348 77880 franck
A. Wallis 134 77874 tony
R. M. Wharton 136 33978 michael
J. Xu 346 77879 jxu

Table of Contents...........................................................................................................Page

Preface.......................................................................................................................................2



11

The Department.......................................................................................................................2

CSAC Accreditation.................................................................................................................4

A Note on Terminology..........................................................................................................4

Admission to the Computer Science Major.......................................................................4

Access to Courses...................................................................................................................5

Recent & Current (00/01) Academic Changes................................................................7

Programs Offered....................................................................................................................8

Elective Courses....................................................................................................................10

Industrial Internship Program.............................................................................................10

BA Information Technology Program...............................................................................11

Admission to the Graduate Program in Computer Science........................................12

The Service Program............................................................................................................12

York University Computer Club..........................................................................................13

Computer Facilities...............................................................................................................13

Computer Use Policy............................................................................................................14

Computer Science Awards..................................................................................................15

Academic Policies..................................................................................................................16

Appeal Procedures...............................................................................................................17

Grading System......................................................................................................................18

Course Descriptions : 1000-Level....................................................................................20

Course Descriptions: 2000-Level.....................................................................................23

Course Descriptions: 3000-Level.....................................................................................24

Course Descriptions: 4000-Level.....................................................................................37

Required Mathematics Courses........................................................................................47

Messages for Atkinson College Students........................................................................48

Computer Science Requirements - All Faculties...........................................................50

Prerequisites for Computer Science Courses................................................................52

Degree Checklists.................................................................................................................56



22

Preface

In choosing to study Computer Science you have chosen a career in an exciting
and rapidly changing discipline. As a computer scientist, you may become
involved in many of the great changes in the future, for the computer will play a
central role in these changes.

It is important, therefore, that you not only develop the practical and theoretical
skills of a professional computer scientist but that you also try to obtain an
understanding of the impact of computers on society. For that reason we would
strongly encourage you to select your elective courses outside Computer
Science in areas where you will broaden your knowledge of society. One way to
do this is to select isolated courses that catch your interest; however, a more
productive approach is to consider taking a concentration of courses in an area
outside of Computer Science.

So in planning your course selection you should be thinking ahead and asking
yourself not only which courses will give you a good Computer Science degree,
but which courses will make you a good professional computer scientist. That
implies a sound technical background, a broad education, professional ethics
and a social conscience. You can't get all that in your first year but you can at
least make a start.

Lastly we would like to remind you that Computer Science is an art as well as a
science which means you cannot learn it entirely from a book - you must also
practice it. We recommend a maximum of three Computer Science courses
per term.

The Department

Computer Science Department
York University

4700 Keele Street
Toronto, Ontario M3J 1P3

www.cs.yorku.ca

Office hours 9:00-12:00, 2:00-4:00

Peter Cribb, Undergraduate Director 125 CCB        Tel.  (416)736-
5334

Email: enquiries@cs.yorku.ca

John Amanatides, Graduate Program Director 125 CCB        Tel.  (416)736-
5334

www.cs.yorku.ca/grad/



33

Michael Jenkin, Chair 126 CCB       Tel.   (416)736-
5053

      Fax  (416)736-5872



44

CSAC Accreditation

All Computer Science honours programs offered in the Faculty of Pure and
Applied Science and the Faculty of Arts, with the exception of the BA honours
minor, are accredited by the Computer Science Accreditation Council (CSAC).
Accreditation for honours programs at Atkinson College is pending.

The Computer Science Accreditation Council is an autonomous body established
by the Canadian Information Processing Society (CIPS).   The purpose of
accreditation is to identify those institutions that offer computer programs worthy
of recognition.  The objectives of the Council are:

• to formulate and maintain high educational standards for Canadian
universities offering computer and information science programs, and to
assist those institutions in planning and carrying out education programs.

• to promote and advance all phases of computer and information science
education with the aim of promoting public welfare through the development
of better educated computer professionals.

• to foster a cooperative approach to computer and information science
education between industry, government, and educators to meet the
changing needs of society.

Graduation from an accredited Computer Science Program simplifies the process
of professional certification as an Information Systems Professional of Canada or
ISP.  The ISP designation is formally recognized by the provinces of Ontario and
Alberta.  More information on professional accreditation and the accreditation
process can be found on the CIPS web page at www.cips.ca.

A Note on Terminology
In this document BA or BSc degree refers to the 90-credit bachelor degree.
BA(Hons) or BSc(Hons) refers to the 120-credit degree.

Admission to the Computer Science Major

The educational background of students who seek admission to a Computer
Science degree program generally belongs to one of two categories.  The
requirements for each are outlined below.

In each case a student must first have been admitted to either the Faculty of Arts
(for the BA degree), Atkinson College (for the BA or BSc) or the Faculty of Pure
and Applied Science (for the BSc degree).  Each Faculty has certain admission
requirements that must be met.  The requirements described below are in
addition to these faculty admission requirements (which are not described here).



5

1. Entry with only secondary school background
If a student’s only academic background is at the OAC level admission to a
Computer Science major requires:

• an overall OAC average of 77%.
• at least 2 mathematics OACs (one must be calculus) with an average

over of 75% with no mathematics grade less than 65%.

For students from outside Ontario with only secondary school credits the
York University Admissions Office will assess the equivalency of that
educational background.

2. Entry with post-secondary academic background
This category includes the following:

• students who are already admitted to York University and wish to
change their major.

• students who transfer from other universities in Canada.
• students who have completed courses at any post-secondary

educational institution anywhere in the world.
• students who have completed courses at a community college in

Canada or CEGEP in Quebec.

Admission to a Computer Science degree program requires:
• a B (6.0) average over all courses taken.
• at least 6 credits of mathematics, with a B (6.0) average over all major

stream mathematics credits taken and/or a B+ (7.0) average over all
service stream mathematics credits.

The York University Admissions Office will assess the conversion of grades
from other institutions to the York University grade scale.

If you have any post-secondary education you may not gain admission under
category 1 above.

Changing your Major to Computer Science?
Please note that category 2 above applies to you if you are already a York
University student and want to change your major - that is:

• a B (6.0) average over all courses taken at York University.
• at least 6 credits of mathematics, with a B (6.0) average over all

mathematics credits taken and/or a B+ (7.0) average over all service
stream mathematics credits.

NOTE:  Students who have a post-secondary education from an institution other
than York University, and who then take courses at York University before
applying to major in Computer Science, must meet the B (6.0) average in York
University courses.  That is, the B average will be applied to both the previous
academic record and to the York University academic record.

Access to Courses



6

Voice Response Enrolment System
Students enrol in courses using the York University Voice Response Enrolment
System, typically in the few months prior to the start of each term. Computer
Science courses frequently reach their class size maximum, in which case the
following procedures are followed.

Waiting Lists
Full courses are removed from VRES and students are invited to apply via a
waiting list form.  Waiting list applications are accepted up until the middle of the
first week of each term.  A waiting list application does not constitute enrolment in
a course. The student must check with the Department as to the result of their
application and use a VRES Special Permission Window assigned to them if their
application is successful.

Processing Waiting Lists
Waiting list applications are not treated on a first-come first-served basis.
Decisions are made according to the following criteria:

• normal progress through the degree (i.e. 1000-level courses in year one,
2000-level in year two, etc.).  There is no guarantee that students will be
able to take 3000-level computer science courses in the same term as
they are completing a 2000-level computer science course for example.

• the closer to graduation, the higher the priority.

Limits on Course Enrolment
A maximum of two 2000-level Computer Science courses in one term is
permitted. Three 3000- or 4000-level courses per term is normal.  Specialized
honours students may take four upper level computer science courses.  In the
summer term students are not permitted to take more than 6 credits in Computer
Science.  Under no circumstances will students be permitted to take five computer
science courses in one term.  If any student enrols in more than four upper year
or two 2000-level computer science courses per term they will be removed from
whichever courses the department requires space.  The Department also
reserves the right to move students from a course in one term to the same course
in the next term should such steps be necessary to ensure equitable access to
courses.  This includes movement from fall to winter or winter to summer.

Prerequisites
Students are responsible for ensuring they enrol only in courses for which they
meet the prerequisites.  Prerequisites include a minimum GPA over computer
science courses.  Students will be removed from a course if they do not meet the
prerequisites, at any time before or during the course.

Courses Outside the Department
Students wishing to take Computer Science courses at another institution should
submit a Letter of Permission (LOP) form. For the purpose of satisfying
departmental degree requirements, the number of Computer Science (COSC)
credits taken outside the Department of Computer Science may not exceed 6



7

credits in core courses and 12 credits in total. Advanced standing credit is
included as credit taken outside the Department.

Definition of Core Courses:
Core courses include all 1000- and 2000-level Computer Science courses, the
3000-level computer science courses satisfying the breadth requirement, and
any required 3000- and 4000-level computer science courses, ie. COSC3101
3.0, COSC3221 3.0, COSC3311 3.0, COSC4101 3.0, COSC4111 3.0.

Recent & Current (00/01) Academic Changes

1. New Degree Requirements
• Beginning FW00/01 all degree programs will require COSC2031 3.0 in

addition to those 2000-level COSC courses previously required. For
honours degrees the required 3000-level COSC credit is reduced by 3.

• Beginning FW00/01 all honours degree programs will require the
following specific courses at the 3000-level to satisfy breadth –
COSC3101 3.0, COSC3221 3.0, COSC3311 3.0, and one Applications
area (Group A) COSC34xx 3.0 course. For 90-credit degrees the 3000-
level COSC breadth requirement is unchanged.

2. Reclassification of 3000-Level Courses
The names of the 3000-level course groupings are changed to

• Theory and Numerical Computation,
• Systems,
• Software Development,
• Applications.

A few courses are moved between groupings and therefore renumbered.
(See below.)

3. Course Numbering Changes
COSC3221 3.0, Operating System Fundamentals (previously COSC3321
3.0) COSC3341 3.0, Program Verification (previously COSC3111 3.0)

4. GPA Prerequisite in Computer Science (98/99)
 The COSC prerequisite GPA for 2000-level and higher Computer Science
courses is 4.5.  Note: This is a prerequisite for continuing to take Computer
Science courses and not a graduation requirement.



8

5. Graduation Requirements (This is a new requirement for BSc. degree
only - previously existed for BA)
 A minimum overall grade-point average of 4.0 is required to be eligible to
graduate in a 90-credit undergraduate degree program.
 A minimum overall grade-point average of 5.0 is required to be eligible to
graduate in an undergraduate Honours degree program.

6. Non-COSC, non-MATH courses (98/99)
 All Honours programs, with the exception of the BA minor, require
completion of at least 30 credits that are not COSC and not MATH.

7. Organisation and Management Seminar Course
 There is a new course COSC3002 1.0, Organisation and Management
Seminar. All students are encouraged to take this course since it provides
important insight into the social responsibilities of a Computer Science
professional.

Programs Offered

For detailed information you are advised to first read the appropriate sections of
the York University Undergraduate Calendar (click on Calendars in the York
University web page - www.yorku.ca); secondly, read this supplemental
Calendar, and thirdly, see an advisor in the Department of Computer Science at
one of the regularly scheduled advising sessions.

Computer Science is available as a major program leading to an Honours (120-
credit) degree in either the Faculty of Arts, the Faculty of Pure and Applied
Science or Atkinson College.  It may also be combined with most subjects in both
Arts and Science leading to a four-year double major degree. These degree
types are BA(Hons) or BSc(Hons)

The recommended courses in computer science and mathematics are identical
in most programs in the first two years of study so that students can make their
final decision as to which program to graduate in after they have more exposure
to the discipline.

Bachelor (90-credit) vs. Honours (120-credit) Programs
A BA or BSc program requires 90-credits (normally completed in three years of
study) and a grade point average of 4.0 over all courses. A BA(Hons) or
BSc(Hons) program requires 120-credits (normally completed in four years of
study), more specialization, a higher minimum performance (a grade-point-
average of 5.0), and in some cases different courses than an BA or BSc degree.

All programs are structured in such a way that a student who embarks on a
BA(Hons) or BSc(Hons) program can meet the requirements for a BA or BSc
degree by the end of the third year and can at that time graduate with either a BA
or BSc



9

If you have the grade point average to be eligible for an honours program (5.0),
you will be listed as an honours student for administrative purposes.  Only the
honours programs (with the exception of the minor) are accredited by the CSAC.

Specialized Honours
Students selecting this program take more courses in computer science and
mathematics than for other programs in Computer Science thereby achieving
greater specialization. However, a breadth in general education is maintained by
the requirement of a significant number of non-COSC and non-MATH courses..

Space and Communication Sciences Stream
This is a specialized honours BSc stream in computer science combined with a
concentration of courses in the Departments of Earth and Atmospheric Science,
and Physics and Astronomy.  Students select courses on knowledge-based
programming, numerical methods, data communications, electronics, space
communications and physics of the space environment.  Fourth year features
electives from an extensive list of topics from all three departments.

Entry is highly competitive, as the first year is limited to approximately 40 places.
Candidates are required to have an A average in high school.  It is also a very
demanding program, as students must maintain a Science grade point average
of 6.0.

BSc or BA Honours Double Major or Honours Major/Minor
The intention of a combined program is for students to major in two subjects
while maintaining a 5.0 average. In a double major program students complete
course work up to the 4000-level in each subject. In a major/minor program the
minor subject generally requires somewhat less course work than the major, but
still generally includes courses at the 4000-level. Such degrees may students to
take more than the minimum of 120-credits to satisfy the honours requirements of
each subject.  Consult advisors in both departments if you are planning a
combined program.

Inter-Faculty Honours Double Major
It is also possible to combine a computer science major as a student in the
Faculty of Arts with a major in the Faculty of Pure and Applied Science, and vice
versa, as a student in the Faculty of Pure and Applied Science to combine a
computer science major with a major in the Faculty of Arts. The former case leads
to a BA(Hons) and the latter leads to a BSc(Hons). Not all combinations of two
majors are permitted.

BA Honours Double Major Program in Computer Science and Mass
Communications Studies
This double major program differs from a standard double major program in that
the second major is in an interdisciplinary program.  In this double major
program, students are required to complete at least 7 Computer Science courses
(i.e. 42 credits), two of which must be at the 4000 level.  Students are also
required to complete 6 courses in Mass Communications Studies, one of which
must be at the 4000 level.



10

BA Honours Double Major Program in Computer Science and Women's
Studies
The requirements of this program are similar to those stated for the double major
in mass communications studies except the second major is in women's studies.

Elective Courses

Students in Computer Science sometimes feel their study in this discipline is quite
isolated from the other programs in their Faculty, and place little emphasis on
their choice of other courses, even though about a quarter of their courses are
electives.  This is a mistake – computer science supports applications in every
information-using discipline.  In order to make creative and effective use of your
skills in computing, you need to know much more of the natural world, the man-
made world, and the world of ideas, than can be learned in courses in
computing.

There are many choices for elective courses.  For example courses in
economics, philosophy (logic), psychology, linguistics, physics and chemistry to
name just a few whose announced content meshes with issues and problems
studied in computer science.

Not only should you consider taking individual courses in other subjects but you
should also consider taking a concentration of courses that together form a
coherent or complementary package.  Such a concentration may come from one
discipline (one of the sciences, for example, because of their hierarchical
structure) but it may also come from two or three disciplines on related concepts
presented from different perspectives.  It may also be necessary to take specific
prerequisites before you can take a desired elective course; such combinations
also form coherent concentrations.

To further emphasize the importance of elective courses, all honours programs,
except the BA minor, now require at least 30 credits from non-COSC and non-
MATH courses.

Industrial Internship Program

The internship program offers qualified undergraduate and graduate Computer
Science students the opportunity to take part in a program that alternates
academic studies with related work experience in either the private or public
sectors.  An Internship normally lasts sixteen months but students spend a
minimum of four months at an employers work location. There is considerable
flexibility in the duration of individual Internships and the length of an Internship
can vary from 4 to 16 months.  For a sixteen-month placement, students at York
University on average earn about $45,000.

The Internship program begins in the third year of study for undergraduates and
first year for graduates.  Students in either the BA(Hons), BSc(Hons), MSc or PhD
programs can enroll.  For undergraduates a minimum average of B is required



11

and students must be full time students at York University in order to be
considered for the Internship program.  Students enrolled in the Internship option
normally go on the Internship between their 3rd and 4th years. Interested
students should inquire about the program after their second year of study.

The department maintains an Internship Office to assist students seeking
internship employment and to assist employers wishing to hire York University
Internship students. The Internship office coordinates recruitment activity on
campus. Internship students receive assistance in identifying relevant and
interesting internship opportunities, formulating the employer application
package and sharpening the interview skills. Students are placed at a wide
range of companies including IBM Canada Ltd., Nortel Networks, and
Microforum.

BA Information Technology Program

The Faculty of Arts Information Technology Programme (ITEC) is designed to
provide students with the ability to examine how information and computer
technology interact with culture and society. The multi-disciplinary core of the
program combines the applied aspects of computer systems with the historical,
social, and ethical contexts of computing and information processing and
dissemination.

Drawn from the various components of the program, the skills the ITEC program
fosters include computing, problem solving, analytical, research, and critical
writing skills. The program offerings are structured around both technology
related courses - which develop the applied aspects of computer systems - and
non-technology related courses - which focus on understanding the implications
of technology across a broad range of activities within our society.

Broadly speaking ITEC focuses on the application of computer systems and their
impact on society and culture whereas computer science focuses more on the
creation of those computer systems.

Because the ITEC program requires the introductory computer science (major)
courses it is feasible for students to change their major either from COSC to ITEC
or from ITEC to COSC. In either case there is some deficit (courses not taken) that
would have to be made up during the first term or so in the new program.



12

Admission to the Graduate Program in Computer Science

Admission to the MSc program is highly competitive.

The ideal preparation for graduate studies in Computer Science is the
completion of the Specialized Honours Program in Computer Science in the
Faculty of Pure and Applied Science at York University (please consult the
Computer Science degree requirements, the degree checklist, and the course
descriptions), or its equivalent (including senior level courses in theoretical
computer science).  Your grade point average in the last two years, should be at
least B+ to enter the competition for admission.  Of course, the higher your
grades the more likely you will be a  successful candidate.

To request an application kit send e-mail to gradinfo@yorku.ca requesting an
application package for computer science. Include a physical (street, city etc) mail
address in your e-mail message.

Need to upgrade a degree?
If you already have a Computer Science degree then, if necessary, you would
upgrade your background to be equivalent to the Specialized Honours Program
in Computer Science. A comparison of the degree program you completed with
the Specialized Honours program will show you what you are missing.  If you
have a 90-credit degree, then you will need to upgrade your degree to the
Honours level.

It is recommended that you become familiar with the Unix, C/C++ and the X-
window system environment.

How to upgrade a degree
Obtain the Undergraduate Program Supplemental Calendar and the Graduate
Program FAQ sheet from CCB125 (or the web site).  Compare the courses you
have taken in your previous degree(s) with the descriptions of Computer Science
courses at York University, checking off on the Specialised Honours degree
checklist form those courses that you think are very similar to ones you have
already taken as part of your previous degree(s).

Count how many Computer Science courses you would need to take for the
Specialised Honours degree. If this number is greater than 4 go to the York
Admissions Office (Atkinson College building, room 150) and apply for admission
to the undergraduate degree program. If the number is 4 or less go to the York
Admissions Office and apply for admission as a special undergraduate student.

There is no need to make an appointment with the Undergraduate Program
Director or the Graduate Program Director. Neither person can officially tell you
how many courses in the undergraduate program you will get credit for, and they
cannot estimate it any better than you can yourself.

The Service Program



13

The Department also offers a variety of courses at the 1000-level that are of
interest to students wanting to learn about computers and computer use without
majoring in Computer Science.  In some cases degree programs offered by other
departments may require these courses in their programs.

The starting courses for non-majors are COSC1520 3.0, COSC1530 3.0,
Introduction to Computer Use I & II and COSC1540 3.0, Computer Use for the
Natural Sciences.  The course COSC1530 3.0, Introduction to Computer Use II is
an introduction to computer programming and may be taken as preparation for
COSC1020 3.0 if the student lacks background in this area.  Students taking the
1500 series courses are not eligible to take the 2000-level Computer Science
courses without successful completion of COSC1020 3.0 and COSC1030 3.0.

York University Computer Club

The York University Computer Club (YUCC) is an organization of students in the
Department of Computer Science. They nominate students to serve on
department committees, sponsor informational and social events and facilitate
communications among computer science students and faculty members.  They
can be reached by electronic mail at yucc@ariel.cs.yorku.ca.

Computer Facilities

Undergraduate students use the Ariel Lab, the Department of Computer Science
undergraduate computing laboratories.  The lab servers can be accessed
remotely by dial-up and through the Internet. In the lab itself irst and second year
students have access to 37 colour NCD X-terminals, and 23 Sun Ultra 10
workstations.  Third and fourth year students are granted access to the Senior
Lab consisting of 20 Sun Ultra 10 workstations. Senior students may also use a
variety of specialty laboratories in their courses including the Robotics
Laboratory, the Real-Time Laboratory, and the Multimedia Laboratory.

§ The Robotics Laboratory consists of a CRS+ robot arm, an RWI B12 mobile
robot and 6 Sun Ultra 10 workstations equipped with multimedia hardware
including video and audio facilities.

§ The Digital Logic Laboratory provides hands-on experience in computer
design.

§ The Real-Time Laboratory provides a high-performance Sun Ultra 60
workstation,  a PC and industry-standard software tools for the design and
analysis of real time systems.  The laboratory has a Marklin digital train set with
computer controlled and monitored locomotives, turnouts and position
sensors.  The Sun workstation and the PC are used to control the set.

§ The Multi-media Laboratory supports 3d graphics, audio input/output, virtual
reality hardware and a large screen projector. The lab consists of five SGI/NT
Visual workstations and is shortly to include Macintosh G4 workstations.



14

All workstations and computers in the Department are connected up to the
campus network backbone, providing access to all significant systems in the
University, as well as computers around the world via Internet.

Access to the Ariel Lab machines requires an authorized account and a
password, as issued by the Department. Each student receives an Ariel account,
providing a personal space for storing files, electronic mail, and course work.
Students are automatically given access to the machines required to do their
course work. However, students who would like to work on a project outside of
assigned class work may ask a faculty member to act as their supervisor, and if
necessary, a special account can be arranged for that project.

Students can also use the Maxwell and Newton computer labs maintained by the
Faculty of Pure and Applied Science. These contain (respectively) 17 and 22
NCD colour X-terminals and are open for longer hours than Ariel. Maxwell is
open 24 hours and Newton is open approximately 8am to 11pm. Although
physically separate from the Ariel facility these labs provide seamless access to
the Ariel environment.

Computer Use Policy

Working in a laboratory situation requires cooperative behaviour that does not
harm other students by making any part of the department’s computer systems
unusable such as locking out terminals, running processes that require lots of
network traffic (such as playing games on multiple terminals), or using the
facilities to work on tasks that are not related to computer science course work.
Essentially, all users of common facilities need to ask themselves whether or not
their behaviour adversely affects other users of the facility and to refrain from
engaging in "adverse behaviour".  Good manners, moderation and
consideration for others are expected from all users.  Adverse behaviour
includes such things as excessive noise, occupying more space than
appropriate, harassment of others, creating a hostile environment and the
displaying of graphics of questionable taste.  Lab monitors are authorized to
ensure that no discomfort is caused by such practices to any user.

The department policy on computer use prohibits attempting to break into
someone else's account, causing damage by invading the system or abusing
equipment, using electronic mail or file transfer of abusive or offensive materials,
or otherwise violating system security or usage guidelines.  As well, we expect
you to follow Senate policies (see the link Official York Policies, under
Administrative Services at www.yorku.ca)

The department computer system coordinator, in conjunction with the
department and York Computing Services, will investigate any suspected
violation of these guidelines and will decide on appropriate penalties.  Users
identified as violating these guidelines may have to make monetary restitution
and may have their computing privileges suspended indefinitely.  This could



15

result in your being unable to complete computer science courses, and a change
in your major.

Adverse behaviour may also violate University, Provincial and Federal laws; for
example duplication of copyrighted material and theft of computer services are
both criminal offenses.  In such cases the University, Provincial or Federal
authorities may act independently of the Department.  The police may be asked
to investigate and perpetrators may be liable for civil and/or criminal prosecution.
The Department of Computer Science does not assume any liability for damages
caused by such activities.

Computer Science Awards

Unless otherwise stipulated students in both the Faculty of Pure and Applied
Science and the Faculty of Arts are eligible for these awards.  Plaques
commemorating the achievement awards are maintained by the department.

Mark A. Levy Computer Science Award
Up to five prizes will be awarded to outstanding Faculty of Pure and Applied
Science students enrolled in third or fourth year computer science courses.

Nancy Waisbord Memorial Award
This is a cash award presented annually to a graduating student who has
consistently demonstrated excellence in Computer Science.

Computer Science Academic Achievement Award
Up to two cash awards will be presented to outstanding graduating students in
an Honours program. These awards are funded by contributions from faculty
members in the Department.

Other Awards
Students in the Department are encouraged to apply for Summer Science
awards.  These awards pay students a salary over the summer while they are
working on a research project under the supervision of a faculty member.
Normally students who have completed at least their 2nd year may apply and
typically a grade average of B+ is required.

In addition, faculty sometimes employ undergraduate research assistants over
the summer period.  While not an award administered by NSERC, such positions
are only offered to the best students in the Department.

Prestigious Awards
The Faculties of Arts and Pure and Applied Science also award various medals to
their top graduating students.  These include the Governor General's Silver
Medal (Faculty of Arts) and the Gold Medal of Academic Excellence (Faculty of
Pure and Applied Science).

Atkinson College awards
Students whose home Faculty is Atkinson College are also eligible for the
following scholarships and bursaries:



16

§ Computer Science Major Program Scholarships
§ Atkinson College Students' Association Scholarship
§ Hany Salama Bursary
§ Sally Murray Findley Memorial Scholarship
See the Atkinson College Calendar for details.

Academic Policies

Advising
Academic advising is available on an individual or a group basis in the
Department of Computer Science.  Group advising provides help in choosing
courses to fulfil degree requirements.  Individual faculty advising is available to
discuss academic issues relevant to computer science such as recommended
mathematical skills, theoretical versus applications oriented courses, areas of
specialization, graduate studies and career paths.

It is ultimately the responsibility of each student to ensure that they meet all
degree requirements of both the Department, and the Faculty of Pure and
Applied Science, or the Faculty of Arts, or Atkinson College.  Written information
and program check lists are provided to assist you in making appropriate
choices.  It is recommended that you take advantage of advising opportunities to
answer any questions you may have.

Group advising is scheduled by year level during March and early April.  In
addition, individual advising appointments may be made through the
Undergraduate Office.

Academic Honesty
The Faculty of Arts, Faculty of Pure and Applied Science, Atkinson College, and
the Department have policies on academic honesty and their enforcement is
taken very seriously.  Academic honesty is essentially giving credit where credit is
due. When a piece of work is submitted by a student it is expected that all
unquoted and uncited ideas (except for common knowledge) and text are
original to the student. Uncited and unquoted text, diagrams, etc., which are not
original to the student, and which the student presents as their own work is
academically dishonest. The deliberate presentation of part of another student's
program text or other work as your own without acknowledgment is academically
dishonest, and renders you liable to the disciplinary procedures instituted by the
Faculty of Pure and Applied Science.

The above statement does not imply that students must work, study and learn in
isolation.  The Department encourages students to work, study and learn
together, and to use the work of others as found in books, journal articles,
electronic news and private conversations. In fact, most pieces of work are
enhanced when relevant outside material is introduced. Thus faculty members
expect to see quotes, references and citations to the work of others.  This shows
the student is seeking out knowledge, integrating it with their own work, and



17

perhaps more significantly, reducing some of the drudgery in producing a piece
of work.

As long as appropriate citation and notice is given students cannot be accused of
academic dishonesty.

A piece of work, however, may receive a low grade because it does not contain a
sufficient amount of original work. In each course, instructors describe their
expectations regarding cooperative work and define the boundary of what is
acceptable cooperation and what is unacceptable.  When in doubt it is the
student’s responsibility to seek clarification from the instructor. Instructors
evaluate each piece of work in the context of their course and given instructions.

You should refer to the appropriate sections of the York University
Undergraduate Calendar and Senate policies for further information and the
penalties when academic dishonesty occurs.

Concerns about Fairness
The Department's faculty members are committed to treating all students fairly,
professionally, and without discrimination on nonacademic grounds including a
student’s race or sex.  Students who have concerns about fair treatment are
encouraged to discuss the matter with their instructor or the course director.  If
this is not possible or does not resolve the problem, the matter should be brought
to the attention of the Undergraduate Director, and if necessary, the Department
Chair, for a departmental response.

Moving to New Program Requirements
Whenever new program requirements are introduced the following policies
apply:

§ The starting year in computer science is defined as the first academic year in
which you took or will take COSC1020 3.0, if you take courses in consecutive
years.  If you have a break in your studies then your starting year changes to
the year in which you are readmitted.

§ If requirements change you may continue with your studies using the
requirements in effect in your starting year.  In this case the degree checklists
in this calendar may not apply to you.  You should use the degree checklists
from your starting year.

§ If requirements change you may elect to graduate under the new
requirements but you must meet all of them.  You are not permitted to mix and
match old and new requirements.

Appeal Procedures

The Department expects a student's disagreement with an evaluation of an item
of course work (assignment report, class test, non-final examination, oral
presentation, laboratory presentation, class participation) to be settled with the
instructor informally, amicably and expeditiously.



18

With respect to a formal appeal, there are different procedures for course work
and for final examinations and final grades.  Of necessity, a formal appeal must
involve only written work.

Course Work
An appeal against a grade assigned to an item of course work must be made
within 14 days of the grade being made available. 

In the case of a multi-sectioned course (where the instructor is not the course
director), a second appeal may be made to the course director within 14 days of
the decision of the instructor.

If a student feels that their work has not been fairly reappraised by the course
director, then they may appeal for a reappraisal by the departmental petitions
committee.  Such a request is made in writing using the appropriate form
obtained from the Undergraduate Office.  The request must be made within 14
days of the decision of the course director.

Final Exams and Final Grades
An appeal for reappraisal of a final grade must be made in writing on a standard
departmental form, obtained from the Undergraduate Office, within 21 days of
receiving notification of the grade.

The departmental petitions committee will discuss the appeal with the course
director to ensure that no grade computation, clerical or similar errors have been
made.  If such an error is discovered, a correction will be made and the student
and the Registrar's Office will be notified.

If a final examination is to be reappraised then the departmental petitions
committee will select a second reader for the examination paper.  The petitions
committee will consider the report of the second reader and recommend a final
grade, which may be lower than the original grade.  The student will receive the
report of the petitions committee and the Registrar's Office will be informed of any
grade change.  The decision of the department petitions committee can only be
appealed on procedural grounds to the Executive Committee of the Faculty.

Grading System

Grading at York University is done on a letter scale.  The following table shows
the grading scale used.  The number in parenthesis is the grade point which is
used to determine the grade point average.  The grade point average is a credit
weighted average of all relevant courses.
§ A+ (9) Exceptional - Thorough knowledge of concepts and/or techniques and

exceptional skill or great originality in the use of those concepts and
techniques in satisfying the requirements of a piece of work or course.
§ A  (8) Excellent - Thorough knowledge of concepts and/or techniques together

with a high degree of skill and/or some elements of originality in satisfying the
requirements of a piece of work or course.



19

§ B+ (7) Very Good - Thorough knowledge of concepts and/or techniques
together with a fairly high degree of skill in the use of those concepts and
techniques in satisfying the requirements of a piece of work or course.
§ B  (6) Good - Good level of knowledge of concepts and/or techniques together

with a considerable skill in using them in satisfying the requirements of a piece
of work or course.
§ C+ (5) Competent - Acceptable level of knowledge of concepts and/or

techniques together with considerable skill in using them to satisfy the
requirements of a piece of work or course.
§ C  (4) Fairly Competent - Acceptable level of knowledge of concepts and/or

techniques together with some skill in using them to satisfy the  requirements of
a piece of work or course.
§ D+ (3) Passing - Slightly better than minimal knowledge of required concepts

and/or techniques together with some ability to use them in satisfying the
requirements of a piece of work or course.
§ D  (2) Barely Passing - Minimum knowledge of concepts and/or techniques

needed to satisfy the requirements of a piece of work or course.
§ E  (1) Marginally failing.
§ F  (0) Failing.



20

Course Descriptions : 1000-Level

Courses in Computer Science have three class hours a week for one term (3
credit–course numbers end in "3.0"), unless otherwise indicated. Courses with
second digit 5 (e.g. 1520, 1530, 1540, 3530) may be taken to satisfy Faculty
degree requirements but do not count as Computer Science major credit, and
the grades from such courses are not included in calculating the Computer
Science prerequisite grade point average.

COSC 1020 3.0
Introduction to Computer Science I (same as AS/ITEC1020 3.0)
Introduction to computation, computing machinery, algorithms and programming
via theoretical concepts and practical skills.  Problem solving via the structure,
design and analysis of algorithms and their implementation as effective, correct
and efficient programs. Control and data structures of a structured programming
language (Java).

This course is introductory to the discipline in that it is the first in a hierarchy of
courses; it is not a survey course. The emphasis is on the development of a
theoretical conceptual basis and the acquisition of the intellectual and practical
skills required for further study.  The course is intended for prospective computer
science majors, i.e. those with a well-developed interest in computing as an
academic field of study and with strong mathematical, analytical and language
abilities; it is not intended for those whose interest is casual, nor for those who
require remedial work in the necessary background.

Warning:  The work for this course includes a substantial number of exercises
which require problem analysis, program preparation, testing, analysis of results,
documentation, and submission of written reports.  The course is demanding in
terms of time, and requires the student to put in many hours of work per week
outside of lectures.  During the first few weeks there is a scheduled laboratory.
After that students book time in the computer laboratory on an as needed basis.

Recommendation: You will benefit if you have prior practical experience with
programming as well as using a computer.  Students who wish to take a one-
course exposure to the practical aspects of computing should consider enrolling
in COSC1520 3.0 and COSC1530 3.0 instead (see the following descriptions).

Prerequisites: If no university-level mathematics: OAC Calculus and one other
OAC in mathematics (normally Finite Mathematics or Algebra and Geometry) with
an average grade of 75 percent in all OAC mathematics and no grade less than
65 percent; otherwise: at least 6 credits of university-level mathematics with a
grade average over all MATH credits of C+ or better [B+ or better if it is a service
course (second digit is 5) or AK/MATH1710 6.0].
Strongly Recommended: Previous programming experience; for example, a high
school programming course or SC/AS/COSC1530 3.0.
Degree Credit Exclusion: AK/COSC2410 6.0, AK/COSC2411 3.0



21

COSC 1030 3.0
Introduction to Computer Science II (same as AS/ITEC1030 3.0)
This course is a continuation of COSC1020 and covers some of the fundamentals
of software development, various data structures (arrays, queues, stacks, trees,
lists), and algorithms that use these structures (sorting, searching).  An object
oriented approach will be introduced.  Students will use the Unix operating
system with the X Window System.

Prerequisites: COSC1020 3.0
Degree Credit Exclusion: AK/COSC2410 6.0, AK/COSC2412 3.0

COSC 1520 3.0
Introduction to Computer Use I
This course is appropriate for students who are not majoring in Computer
Science , but who would like an introduction to the use of the computer as a
problem-solving tool.  No previous computing experience is assumed, but the
course does involve extensive practical work with computers, so some facility with
problem-solving and symbolic operations will be very helpful.

An introduction to the use of computers focusing on concepts of computer
technology and organization (hardware and software), and the use of
applications and information retrieval tools for problem solving.

Topics to be studied include:  the development of information technology and its
current trends; analysis of problems for solution by computers, report generation,
file processing; spreadsheets; database; numeric and symbolic calculation; the
functions of an operating system; interactive programs.

Students should be aware that like many other computer courses, this course is
demanding in terms of time, and should not be added to an already heavy load.
There is scheduled and unscheduled time in the Glade laboratory.  The course is
not appropriate for students who want more than an elementary knowledge of
computing and it cannot be used as a substitute for  COSC1020  3.0/1030 3.0:
Introduction to Computer Science.

Note:  This course is not open to students who have passed or are taking
COSC1020 3.0.  This course counts as elective credits towards satisfying Faculty
degree requirements but does not count as Computer Science major credits.

Prerequisites:  none



22

COSC 1530 3.0
Introduction to Computer Use II
Concepts of computer systems and technology - e.g. software engineering,
algorithms, programming languages, theory of computation. Practical work
focuses on problem solving using a high-level programming language. The
course requires extensive laboratory work.

Note : This course is designed for students who are not Computer Science
majors. However, it may be used as preparation by those who wish to major in
Computer Science but lack programming background. Students who plan to
major in Computer Science must also take SC/AS/COSC1020 3.0 and
SC/AS/COSC1030 3.0.  This course does not count as a Computer Science major
credit.

Prerequisites: none
Degree Credit Exclusions: SC/AS/COSC1540 3.0. This course is not open to any
student who has passed or is taking SC/AS/COSC1020 3.0.

COSC 1540 3.0
Computer Use for the Natural Sciences
Introduction to problem solving using computers - top down and modular design;
implementation in a procedural programming language - control structures, data
structures, subprograms; application to simple numerical methods, modelling
and simulation in the sciences; use of library subprograms. This course is
intended for students in the Faculty of Pure and Applied Science.

Note: This course is not open to any student who has passed or is taking
COSC1020 3.0.  This course counts as elective credits towards satisfying Faculty
degree requirements but does not count as Computer Science major credits.

Suggested Reading:  
• Nyhoff and Leestma, Fortran 77 for Engineers and Scientists, 3rd Edition,

Maxwell Macmillan
• Keiko Pitter et. al., Every Student's Guide to the Internet (Windows version),

McGraw-Hill (1995)

Prerequisites:  none.
Degree Credit Exclusions:  COSC1530 3.0, SC/ACMS 1010 2.0.



23

Course Descriptions: 2000-Level

General Prerequisites
Before enrolment is permitted in any 2000-level computer science course the
following must be met.

• COSC1030 3.0 completed.
• MATH1090 3.0 completed
• A cumulative grade point average of 4.5 or better over completed

Computer Science courses (including only the most recent grades in
repeated courses for Science students).

Specific prerequisites may also apply to individual courses. Taking more than two
2000-level Computer Science courses per term is not permitted.

COSC 2001 3.0
Introduction to Theory of Computation
The course introduces different theoretical models of computers.  Topics covered
may include the following.
§ Finite automata and regular expressions. Practical applications ie.  text editors.
§ Pushdown automata and context-free grammars. Practical applications e.g.

parsing and compilers.
§ Turing machines.  Turing machines as a general model of computers.

Introduction to the halting problem  and NP completeness.

Prerequisites: general prerequisites.

COSC 2011 3.0
Fundamentals of Data Structures (same as AS/ITEC2011 3.0)
This course discusses the fundamental data structures commonly used in the
design of algorithms.  At the end of this course, students will know the classical
data structures, and master the use of abstraction, specification and program
construction using modules.  Furthermore, students will be able to apply these
skills effectively in the design and implementation of algorithms.

Topics covered may include the following.
§ Review of primitive data types and abstract data type – arrays, stacks, queues

and lists.
§ Searching and sorting.  A mixture of review and new algorithms.
§ Priority queues.
§ Trees: threaded, balanced (AVL-, 2-3-, and/or B-trees), tries
§ Graphs: representations; transitive closure; graph traversals; spanning trees;

minimum path; flow problems

Prerequisites: general prerequisites.



24

COSC 2021 3.0
Computer Organization (same as AS/ITEC2021 3.0)
Computers can be usefully viewed as having a structure organized into several
levels, ranging from high-level programming languages such as Java to digital
logic circuits. Each level provides specific resources and abstractions for the
programmer which are created by the level beneath it.

This course provides students with basic understanding of computers at the low-
lying levels of this structure.  This includes programming in assembly / machine
language, computer organization (CPU, DRAM, I/O, and busses), CPU structure
(Datapath and Control), and Digital Logic.  The presentation is centered around
performance and covers topics like caching, pipelining, and parallel processing.
The course presents theoretical concepts as well as concrete implementations
on a modern, RISC processor.

Required Textbook:
• Patterson, D. and Hennessy, J.,  Computer Organization and Design: The

Hardware / Software Interface, 2nd Edition, Morgan Kaufmann Publishers
(1997).

Suggested Reading:
• Tanenbaum, A.S., Structured Computer Organization, 5th ed., Prentice-Hall,

1999.
• Stallings, Wm., Computer Organization and Architecture,  5th ed.,

Macmillan, 2000.

Prerequisites: general prerequisites.

COSC 2031 3.0
Software Tools
This course introduces software tools that are used for building applications and
in the software development process.  It covers the following topics:
§ Ansi-C (stdio, pointers, memory management, overview of Ansi-C libraries)
§ Shell programming
§ Filters and pipes (shell redirection, grep, sort & uniq, tr, sed, awk, pipes in C)
§ Version control systems and the "make" mechanism
§ Debugging and testing
All the above tools will be applied in practical programming assignments and/or
small-group projects.

Suggested Readings:
• Kernighan and Ritchie, The C Programming Language (ANSI C Edition).
• Kernighan and Pike, The Practice of Programming

Prerequisites: general prerequisites.

Course Descriptions: 3000-Level



25

General Prerequisites
§ COSC2011 3.0 completed.
§ One of COSC2001 3.0 or COSC2021 3.0 or COSC2031 3.0 completed.
§ A cumulative grade point average of 4.5 or better over completed

Computer Science courses (including only the most recent grades in
repeated courses for Science students).
§ MATH1300 3.0 and MATH1310 3.0 completed.
§ One of MATH2090 3.0, MATH2221 3.0, or MATH2320 3.0 completed.

Specific prerequisites may also apply to individual courses.

Warning: Although Java is used in introductory courses, some upper level
courses assume students have a working knowledge of C++, and/or the C
programming language; therefore students may want to plan on completing
COSC2031 3.0 before entering third year.

COSC 3001 1.0
Organization and Management Seminar in Space and Communication
Sciences
(same as SC/EATS3001 1.0 and SC/PHYS3001 1.0)
A seminar course taught by guest speakers from industry, government and the
university.  Content changes from year to year, but includes such topics as
professional ethics, communications regulations, space law, space science
policy, project management, privacy and security issues in computing.

Prerequisites: Eligibility to proceed in the Specialized Honours stream in SCS
beyond the 2000-level requirements.
Degree Credit Exclusions:  EATS 3001 1.0, PHYS 3001 1.0, COSC3002 1.0

COSC3002 1.0
Organization and Management Seminar
A seminar course taught by guest speakers from industry, government and the
university. Content changes from year to year, but includes topics such as
professional ethics, communications regulations, project management, privacy
and security, legal issues in computing.

Prerequisites: general 3000-level prerequisites
Degree Credit Exclusions:  EATS 3001 1.0, PHYS 3001 1.0, COSC3001 1.0

COSC 3101 3.0
Design and Analysis of Algorithms
This course is intended to teach students the fundamental techniques in the
design of algorithms and the analysis of their computational complexity.  Each of
these techniques are applied to a number of widely used and practical problems.
At the end of this course, a student will be able to: choose algorithms appropriate
for many common computational problems; to exploit constraints and structure to
design efficient algorithms; and to select appropriate tradeoffs for speed and
space.



26

Topics covered may include the following:
§ Review: fundamental data structures, asymptotic notation, solving recurrences.
§ Sorting and order statistics: heapsort and priority queues, randomized

quicksort and its average case analysis, decision tree lower bounds, linear-
time selection.
§ Divide-and-conquer: binary search, quicksort, mergesort, polynomial

multiplication, arithmetic with large numbers.
§ Dynamic Programming: matrix chain product, scheduling, knapsack problems,

longest common subsequence, some graph algorithms.
§ Greedy methods: activity selection, some graph algorithms.
§ Amortization: the accounting method, eg, in Graham's Scan convex hull

algorithm.
§ Graph algorithms: depth-first search, breadth-first search, biconnectivity and

strong connectivity, topological sort, minimum spanning trees, shortest paths.
§ Theory of NP-completeness.

Suggested reading:  
• T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms,

McGraw-Hill and The MIT Press, 1991.
• P. Gloor, S. Dynes, I. Lee, Animated Algorithms CD-ROM, The MIT Press

1993.
• D.E. Knuth, The Stanford GraphBase: A platform for combinatorial

computing, Addison-Wesley  & The ACM Press, 1993.

Prerequisites: general prerequisites, including MATH2320 3.0 (SCS students
may enrol without MATH2320 3.0 or concurrently with MATH2320 3.0)

NOTE:  This course is required of all specialized honours students in computer
science – except those in the SCS stream.

COSC 3121 3.0
Introduction to Numerical Computations I
(same as AS/SC/MATH 3241 3.0)
This course is concerned with an introduction to matrix computations in linear
algebra for solving the problems of linear equations, non-linear equations,
interpolation and linear least squares.  Errors due to representation, rounding
and finite approximation are studied.  Ill-conditioned problems versus unstable
algorithms are discussed. The Gaussian elimination with pivoting for general
system of linear equations, and the Cholesky factorization for symmetric systems
are explained.  Orthogonal transformations are studied for computations of the
QR decomposition and the Singular Values Decompositions (SVD).  The use of
these transformations in solving linear least squares problems that arise from
fitting linear mathematical models to observed data is emphasized.  Finally,
polynomial interpolation by Newton's divided differences and spline interpolation
are discussed as special cases of linear equations.  The emphasis of the course
is on the development of numerical algorithms, the use of intelligent
mathematical software and the interpretation of the results obtained on some
assigned problems.



27

Topics covered may include the following:

§ Preliminaries - linear algebra, computer programming and mathematical
software
§ Number systems and errors - machine representation of numbers, floating-

point arithmetic, simple error analysis, ill-conditioned problems and unstable
algorithms
§ Solution of systems of linear equations - Gaussian elimination and its

computational complexity, pivoting and stability, special structures (Cholesky's
factorization for positive definite systems, banded systems, storage and
computational complexities) error analysis, condition number and iterative
refinement
§ Solution of overdetermined systems of linear equations by linear least squares

approximations - linear least squares problems, normal equations, orthogonal
transformations (Given's and Householder's), QR and singular value
decompositions (SVD), SVD and rank-deficient problems, computational
complexities versus robustness
§ Interpolation - Newton's divided differences spline interpolation; banded linear

systems, error analysis for interpolation.  Other interpolations (rational, B-
splines)

Prerequisites: for Computer Science majors - general prerequisites,
including MATH2221 3.0;

for others -   COSC1540 3.0 or COSC2011 3.0 or COSC2031 3.0;
MATH1010 3.0 or MATH1014 3.0 or MATH1310 3.0;
MATH1025 3.0 or MATH2021 3.0 or MATH2221 3.0.

Degree Credit Exclusion:  MATH3241 3.0

COSC 3122 3.0
Introduction to Numerical Computations II
(same as AS/SC/MATH3242 3.0)
The course includes a study of algorithms and computer methods for
differentiation, integration, and solution of ordinary differential equations.
Nonlinear equations of one variable, systems of nonlinear equations,
optimization of functions of one and several variables and their relation to
nonlinear equations are also covered.  The emphasis of the course is on the
development of numerical algorithms, the use of intelligent mathematical
software and the interpretation of the results obtained on some assigned
problems.

Topics covered may include the following:
§ Solution of nonlinear equations and unconstrained optimization - single

nonlinear equation; systems of nonlinear equations; unconstrained 
optimization.

§ Numerical differentiation and integration - methods of estimating derivatives;
error analysis for differentiation; the rectangle and trapezoid rule for
integration; Simpson's rule; Romberg's integration; adaptive quadrature
routines; truncation and round-off errors in integration; improper integrals.



28

§ Solution of ordinary differential equations - introduction; analytical versus
numerical solutions; basic numerical methods; Euler's, Heun's methods; Taylor
series methods; order of a method; local and global errors; Runge-Kutta
methods; Predictor-corrector methods; systems of differential equations;
boundary value problems.

Prerequisites:  COSC3121 3.0; MATH2270 3.0
Degree Credit Exclusion: MATH3242 3.0

COSC 3201 3.0
Digital Logic Design
§ Boolean algebra and logic gates.  How complex functions on data at the bit-

representation level can be built up from simple primitives such as And, Or and
Not (or just Nand or Nor).  Implementation of logic functions using these
primitives.  Families of logic circuits.
§ Combinatorial circuits, implementing functions whose output depends only on

their inputs. Canonical forms of Boolean functions and their simplification using
Karnaugh maps and the Quine-McClusky method. Complex combinatorial
units, such multiplexers, encoders, arithmetic-logic units(ALU), read-only
memory(ROM), and programmable arrays.
§ Sequential circuits, implementing functions whose output depends on their

history as well as their current input.  Construction of basic, clocked, master-
slave, and edge-triggered flip-flops.  Higher level (register-transfer) constructs
such as registers, counters and read-write memory (RAM).
§ Theoretical design concepts, such as finite state machines.
§ Hands-on digital logic hardware laboratory.

Suggested readings:
• John Hays, Introduction to Logic Design, Addison Wesley, 1993.
• M.M. Mano, Digital Design, Prentice Hall, 1991.

Prerequisites:   general prerequisites, including COSC2021 3.0.

COSC 3211 3.0
Data Communication
§ Physical and Electrical.  How complex periodic signals propagate through

guided media such as twisted pairs, co-axial cable, point-to-point microwave
links, and fibre optics, and through the unguided medium of broadcast
electromagnetic radiation.  Frequency-domain (Fourier, spectral) analysis.
Noise.  Limiting relationship between signal-rate and bandwidth (Nyquist) and
between data-rate and bandwidth and signal-to-noise ratio (Shannon).
§ Data encoding.  How analogue and digital data are carried in some encoded

form by analogue and digital signals.
Data Signal

    Analogue Analogue : amplitude, frequency, phase modulation.
     Digital Analogue : amplitude, frequency, phase shift keying.
     Analogue Digital  : sampling, quantisation, pulse code 

modulation.



29

     Digital Digital  : NRZ-L, NRZI, Bipolar-AMI and Manchester.
§ Data Link.  How frames of data bits are transmitted in a controlled and reliable

way between physically (i.e. directly) linked nodes in a network.  Protocols for
flow control, and error detection and control.
§ Multiplexing and switching.  How unrelated data streams may share common

pathways.  Time-division and frequency-division multiplexing.  Circuit
switching.  Space-division switching.  Packet switching.

§ Networks.  LAN (local area networks).  Ethernet (CSMA/CD), token bus and
token ring.  Virtual circuits and datagrams.

§ Basics of the TCP/IP protocol suite.

Prerequisites:  general prerequisites, including  COSC2021 3.0 and  MATH2090
3.0

COSC 3212 3.0
Computer Networks
This course covers the upper layers in the OSI(TCP/IP) reference models.  Topics
covered include:
§ Introduction: Local area networks, high speed local area networks,

Metropolitan Area networks, and wireless networks.
§ Network layer: Routing, congestion control, traffic shaping, Internetworking, IP,

IPv6, and network layer in ATM networks.
§ Transport layer: Transport protocols, transport connection management, TCP,

UDP, and the ATM Adaptation Layer (AAL) protocols.
§ Application layer: Remote Procedure Calling (RPC), network security, Abstract

Syntax Notation (ASN), multimedia and data compression.

Prerequisites:  general prerequisites; COSC3211 3.0

COSC 3221 3.0
Operating System Fundamentals
(formerly COSC3321 3.0 - before S2000)
This course is intended to teach students the fundamental concepts that underlie
operating systems, including multiprogramming, concurrent processes, CPU
scheduling, deadlocks, memory management, file systems, protection and
security. Many examples from real systems are given to illustrate the application
of particular concepts.  At the end of this course, a student will be able to
understand the principles and techniques required for understanding and
designing operating systems.

Prerequisites:  general prerequisites, including COSC2021 3.0; COSC 2031 3.0
Degree Credit Exclusion: COSC3321 3.0, AK/COSC3470 3.0

COSC 3301 3.0
Programming Language Fundamentals
The topic of programming languages is an important and rapidly changing area
of computer science. This course introduces students to the basic concepts and
terminology used to describe programming languages. Instead of studying



30

particular programming languages, the course focuses on the "linguistics" of
programming languages, that is, on the common, unifying themes that are
relevant to programming languages in general. The algorithmic, or procedural,
programming languages are particularly emphasized. Examples are drawn from
early and contemporary programming languages, including Fortan, Algol 60,
PL/I, Algol 68, Pascal, C, C++, Eiffel, Ada 95, and Java.

This course is not designed to meet the needs of the student who wishes to learn
to program in a particular programming language. However, any student who
completes this course should be able to learn any new programming language
with relative ease.

Topics covered may include the following:
§ Classification of programming languages: language levels, language

generations, language paradigms.
§ Programming language specification: lexical, syntactic, and semantic levels of

language definition.
§ Data, data types, and type systems; simple types, structured types, type

composition rules.
§ Control primitives, control structures, control composition rules.
§ Subprograms: functions and procedures; argument-parameter binding;

overloading.
§ Global program structure: modules, generic units, tasks, exceptions.
§ Object-oriented language features: classes, encapsulation, inheritance,

polymorphism.
§ Critical and comparative evaluation of programming languages.

Prerequisites:  general prerequisites, including COSC 2001 3.0.

COSC 3311 3.0
Software Design
A study of design methods and their use in the correct construction,
implementation, and maintenance of software systems. Topics include design,
implementation, testing, documentation needs and standards, support tools.

This course focuses on design techniques for both small and large software
systems. Techniques for the design of components (e.g., modules, classes,
procedures, executables) as well as complex architectures will be considered.
Principles for software design and rules for helping to ensure software quality will
be discussed.  The techniques will be applied in a set of small assignments, and
a large-scale project, where students will design, implement, and maintain a
non-trivial software system.

Specific topics to be discussed may include the following:
§ software design principles: coupling and cohesion, information hiding, open-

closed, interface design.
§ abstract data types
§ seamless software construction and process models; a rational design process



31

§ design-by-contract and its implementation in programming languages and
design methods; writing and testing contracts; debugging contracts.
§ abstraction and data design; choosing data structures.
§ the Business Object Notation (BON) for modeling designs; alternative modeling

languages like UML, data-flow diagrams, structure charts, etc.
§ static software modeling; dynamic modeling and behavioural modeling.
§ case studies in design: designing architectures; comparisons; design of OO

inheritance hierarchies; class library design.
§ methods for finding classes; designing class interfaces
§ CASE tools: forward and reverse engineering of code from models.
§ software testing.
§ design patterns; applications of patterns; implementing patterns.

Prerequisites:  general prerequisites, including COSC 2001 3.0 and MATH2090
3.0 and COSC2031 3.0

COSC 3331 3.0
Object-Oriented Programming and Design
Introduction to the theoretical and practical methods of object-oriented software
construction. Topics include single and multiple inheritance, type hierarchies,
polymorphism, operator overloading, object persistence, class library design,
generic classes, and design by contract.

This course is a detailed introduction to the methodology of object-oriented
software construction, one of the major areas of software engineering practice
and research.

An object-oriented program is based on classes. Instances of classes, called
objects, are created as the program runs and interact through message passing.
Messages that are acceptable to an object are defined by the interface of the
class. Use of interfaces promotes the reuse of reliable code and can make it
easier to carry out maintenance and extension.

The course will introduce the theoretical concepts of object-oriented
programming and design, and present examples using the object-oriented
programming language Eiffel. Eiffel will be compared to other OO languages, like
C++, Java, Smalltalk, Python, and Delphi. The course will cover more OO
techniques in far more detail than in previous courses, and the students will
apply these techniques in a large group design and programming project.

Topics to be covered in the course will include the following:
§ Abstract data types as a basis for information hiding and as a theory for OO

software construction.
§ Other software engineering principles such as the open-closed principle and

the single choice principle.
§ Information hiding; secret vs. public vs. selectively available information.
§ Single inheritance: subtyping; substitutability; subcontracting.



32

§ Feature adaptation: changing export status; renaming methods; ambiguity in
inheritance; overriding; redefinition of behaviour; breaking the subtype
relationship.
§ Design by contract: preconditions, postconditions, class invariants, and their

use in designing software systems. Debugging using contracts. Testing using
contracts.
§ Documenting OO programs; automatic documentation tools.
§ Exception handling.
§ Generic (parameterized) classes as a mechanism for code reuse.
§ Polymorphism, dynamic binding, and static binding.
§ Type checking: static vs. dynamic checking.
§ Principles for inheritance: inheritance vs. use.
§ Multiple inheritance for class library design. Repeated inheritance.
§ Persistence. Linking OO programs with a database.
§ Class interfaces: partial implementations vs. full implementations.

Prerequisites:  general prerequisites
Degree Credit Exclusion: COSC3010A 3.0; AK/COSC3650 3.0

COSC 3341 3.0
Introduction to Program Verification
 (formerly COSC3111 3.0 - before S2000)
Every program implicitly asserts a theorem to the effect that if certain input
conditions are met then the program will do what its specifications or
documentation says it will. Making that theorem true is not merely a matter of luck
or patient debugging; making a correct program can be greatly aided by a
logical analysis of what it is supposed to do, and for small pieces of code a proof
that the code works can be produced hand-in-hand with the construction of the
code itself. Good programming style works in part because it makes the
verification process easier and this in turn makes it easier to develop more
complex algorithms from simple ones.

The course will provide an introduction to the basic concepts of formal verification
methods.  It will also include the use of simple tools to aid in verification.

Topics covered will include the following:

§ The role of formal verification in the software life-cycle; verification vs. testing
and validation.
§ Introduction to propositional calculus; checking for tautologies and

contradictions; annotating code with assertions.
§ Symbolic execution; proving relative correctness for small code segments;

establishing termination.
§ Creating specifications with quantifiers; translating specifications into code.

Suggested readings:  
• Gries and Schneider, A Logical Approach to Discrete Mathematics,

Springer-Verlag, 1993.
• R. Backhouse, Program Construction and Verification, Prentice-Hall, 1986



33

Prerequisites:  general prerequisites, including MATH 2090.03
Degree Credit Exclusion: COSC3111 3.0

COSC 3401 3.0
Introduction to Symbolic Computation
The course will introduce and explore programming concepts used in symbolic
and knowledge-based computing. It is intended to give the student a
programming background which will be useful for further work in logic
programming, expert systems, and artificial intelligence.

The programming language Prolog will be considered in detail.  Prolog is a
declarative programming language based on the concept of a logical assertion.
It is widely used for constructing knowledge-based and expert systems.

The course will develop the following concepts.
§ Terms as representations of facts
§ Logical clauses as rules
§ Recursive programming techniques
§ Backward-chaining vs. forward-chaining
§ Goal search through backtracking
§ Building logical databases for knowledge-based problem-solving
§ Representing mathematical knowledge by rewrite rules
§ Natural language processing using grammar rules

Prerequisites:  general prerequisites, including MATH 2090 3.0

COSC 3402 3.0
Introduction to Concepts of Artificial Intelligence
Artificial Intelligence (AI) deals with building a system which can operate in an
intelligent fashion.  Neat as this simple definition is, it obscures the complex
nature of intelligence.  At the time of the Dartmouth Conference (1956), regarded
by many as the start of AI, some researchers believed it would be possible to
create a "thinking machine" in a matter of a few years.  That was close to 40 years
ago, and we are still far from our goal, but we have learned a lot on the way.

In this course, we begin by discussing differing definitions of artificial intelligence
and go on to examine fundamental concepts in AI, building on material
introduced in COSC3401 3.0: Introduction to Symbolic Computation.  Topics to be
covered include reasoning under uncertainty, search, constraint propagation,
planning and problem solving.

Prerequisites:  general prerequisites; COSC3401 3.0; MATH2320 3.0

COSC 3408 3.0
Simulation of Discrete Systems
Simulation is a technique for dealing with problems that do not admit exact (or
"analytic") solutions via mathematical analysis.  A model of the system to be
studied is constructed, and then the model is run to see how it performs, either to
predict how the system will behave, or, if the behaviour of the system is known, to



34

test the validity of the model of the system.  A computer is a tool for supporting a
large amount of activity in the running of the model.

A "discrete system" simulation is one which admits a discrete-event model that
can be run in discrete steps that match the structure of the model.  (For simulation
of continuous systems see COSC 3418 3.0)

Examples of discrete systems studied by simulation include games and other
dynamic systems involving small populations where it is feasible to model
individual's behaviour.  Major sub-topics include the generation and use of
random numbers, queuing systems, and the visual presentation of behaviour.

Prerequisites:  general prerequisites; MATH2560 3.0.
Degree Credit Exclusion:  MATH4930B 3.0

COSC 3418 3.0
Simulation of Continuous Systems
Simulation is a technique for dealing with problems that do not admit exact (or
"analytic") solutions via mathematical analysis.  A model of the system to be
studied is constructed, and then the model is run to see how it performs, either to
predict how the system will behave, or, if the behaviour of the system is known, to
test the validity of the model of the system.  A computer is a tool for supporting a
large amount of activity in the running of the model.

A "continuous system" may either be presumed to be inherently continuous or it
may, at a fine enough scale, be actually composed of discrete events.  However,
in simulation, a "continuous system" is one for which the model, due to practical
necessity, is described by continuous variables regardless of its physical
structure.  However, the running of a continuous model involves, also of
necessity, discrete steps.  Thus central to continuous system simulation is the
problem of approximation.  (For simulation of discrete systems see COSC 3408
3.0)

Examples of continuous systems studied by simulation include dynamic systems
involving very fine variations or large populations.  Major sub-topics include
chaotic behaviour, the numerical solution of differential equations by finite
methods, and related issues of stability and errors.

Prerequisites:  general prerequisites; MATH2560 3.0.

COSC 3421 3.0 (same as AS/ITEC3421 3.0)
Introduction to Database Systems
Concepts, approaches and techniques in database management systems
(DBMS).  Logical model of relational databases.  An introduction to relational
database design.  Other topics such as query languages, crash recovery and
concurrency control.

The purpose of this course is to introduce the fundamental concepts of database
management, including aspects of data models, database languages, and
database design.  At the end of this course, a student will be able to understand



35

and apply the fundamental concepts required for the design and administration
of database management systems.

Topics may include the following:
§ Overview of Database Management Systems
§ Relational Model
§ Entity-Relational Model and Database Design
§ SQL
§ Integrity Constraints
§ Crash Recovery
§ Concurrency Control

Prerequisite: ITEC/COSC2011 3.0
Degree Credit Exclusion: AS/SC/COSC3412 3.0

COSC3461 3.0 (same as AS/ITEC3461 3.0)
User Interfaces
This course introduces the concepts and technology necessary to design,
manage and implement user interfaces UIs. Users are increasingly more critical
towards poorly designed interfaces. Consequently, for almost all applications
more than half of the development effort is spent on the user interface.

The first part of the course concentrates on the technical aspects of user
interfaces (UIs). Students learn about event-driven programming, windowing
systems, widgets, the Model-view-controller concept, UI paradigms, and
input/output devices.

The second part discusses how to design and test user interfaces. Topics include
basic principles of UI design, design guidelines, UI design notations, UI
evaluation techniques, and user test methodologies

The third part covers application areas such as groupware (CSCW), multi-modal
input, UIs for Virtual Reality, and UIs for the WWW.

Students work in small groups and utilize modern toolkits and scripting
languages to implement UIs. One of the assignments focuses on user interface
evaluation.

Prerequisites: ITEC/COSC2011 3.0 or COSC2031 3.0
Degree Credit Exclusion: Not open to students who successfully completed
AS/SC/COSC4341 3.0 or AS/SC/COSC4361 3.0 before FW99.

COSC 3530 3.0 (x-listed BC3030 3.0)
Technical and Professional Writing
This writing-intensive course is for upper-year students enrolled in Computer
Science programs.  Students will develop confidence and competence in
professional and technical writing.  Focus is on communication of complex
information in a clear, sensible style.  Articles, end-user documentation and
technical reports will be critically evaluated in class.  Outside speakers from
industry will be invited to provide a real-world perspective on needs.



36

Note: This course counts as elective Science credits toward satisfying Faculty
degree requirements but does not count as Computer Science major credit.  The
grade for this course is not included in the calculation of the Computer Science
grade point average (GPA). However, this course is recommended by the
Computer Science department for students who wish to pursue a professional
career.

This course may be taken using the Pass/Fail grading option.  Science students
who wish to take it on a Pass/Fail basis must have completed at least 24 credits
and have taken no more than 9 previous Pass/Fail credits for Honours programs
or 3 for the Bachelor program.
Web site:  www.yorku.ca/bethune/courses/3030.html

Prerequisite: at least 6 non-science general education credits
Corequisite: concurrent enrolment in at least one course in the third or fourth
year of Computer Science, Physics, other applied science or permission of the
instructor.
Degree Credit Exclusions: SC/BC3050 3.0, SC/BC3030 3.0



37

Course Descriptions: 4000-Level

General Prerequisites
Before enrolment is permitted in any 4000-level computer science course the
following requirements must be met.

• COSC2001 3.0, COSC2011 3.0, COSC2021 3.0, COSC2031 3.0
completed.

• at least 12 credits in COSC courses at the 3000-level completed.
• a cumulative grade point average of 4.5 or better over completed

computer science courses (including only the most recent grades in
repeated courses for Science students).

• MATH2090 3.0 completed

Specific prerequisites may apply to individual courses.

COSC 4001 6.0 (same as SC/EATS4001 6.0 and SC/PHYS4001 6.0)
Space and Communication Sciences Workshop
Individual projects will be assigned by mutual agreement between the student
and a faculty member.  The work may be done under supervision by the faculty
member or under supervision of an industrial associate to that faculty member.
The projects will be self-contained problems of a design nature, and will be
pursued in the manner of a space project.  Thus, the first step is to define the
requirements of the design, the second to carry out a review of previous work,
and the third to execute the design.  Following that, the design shall be tested,
normally through simulation, and conclusions drawn.  A report of professional
quality shall be written and submitted.

Prerequisites:  Satisfactory completion of the 3000-level courses in the Space
and Communication Science core

Degree Credit Exclusions: COSC4080 3.0, EATS4001 6.0, PHYS4001 6.0

COSC 4080 3.0
Computer Science Project
This is a course for advanced students, normally those in the fourth year of an
honours program, or students who have completed six full computer science
courses.  Students who have a project they wish to do, need to convince a
member of the faculty in the department that it is appropriate for course credit.
Alternatively, students may approach a faculty member in the department
(typically, one who is teaching or doing research in the area of the project) and
ask for project suggestions.  Whatever the origin of the project, a ‘contract’ is
required.  It must state the scope of the project, the schedule of work, the
resources required, and the criteria for evaluation. The contract must be signed
by the student and his/her project supervisor and be acceptable to the course
director.

Internship students may elect to receive credit for their internship as a project
course. This is outlined further at the beginning of this calendar.  A 'contract' is
still required.



38

Prerequisites:  general prerequisites; permission of the course director.
Restricted to students who have completed 36 credits in Computer Science.
Degree Credit Exclusion:  COSC 4001 6.0

COSC 4101 3.0 (x-listed COSC 5101 3.0)
Advanced Data Structures
The course discusses advanced data structures: heaps, balanced binary search
trees, hashing tables, red--black trees, B--trees and their variants, structures for
disjoint sets, binomial heaps, Fibonacci heaps, finger trees, persistent data
structures, etc.  When feasible, a mathematical analysis of these structures will be
presented, with an emphasis on average case analysis and amortized analysis.
If time permits, some lower bound techniques may be discussed, as well as NP-
completeness proof techniques and approximation algorithms.
The course may include the following topics:
§ Amortized and worst-case analysis of data structures.
§ Data structuring paradigms: self-adjustment and persistence.
§ Lists: self-adjustment with the move-to-front heuristic.
§ Search trees: splay trees, finger search trees.
§ Heaps: skew heaps, Fibonacci heaps.
§ Union-find trees.
§ Link-and-cut trees.
§ Multidimensional data structures and dynamization.

Prerequisites:  general prerequisites, including COSC 3101 3.0; MATH2320 3.0

COSC 4111 3.0 (x-listed COSC 5111 3.0)
Automata and Computability
This course is the second course in the theory of computing. It is intended to give
students a detailed understanding of the basic concepts of abstract machine
structure, information flow, computability, and complexity. The emphasis will be
on appreciating the significance of these ideas and the formal techniques used
to establish their properties. Topics chosen for study include: models of finite and
infinite automata, the limits to computation, and the measurement of the intrinsic
difficulty of computational problems.

Prerequisites:  general prerequisites, including COSC3101 3.0; MATH2320 3.0.

COSC 4201 3.0 (x-listed COSC 5501 3.0)
Computer Architecture
This course presents the core concepts of computer architecture and design
ideas embodied in many machines and emphasizes a quantitative approach to
cost/performance tradeoffs.  This course concentrates on uniprocessor systems.
A few machines are studied to illustrate how these concepts are implemented;
how various tradeoffs that exist among design choices are treated; and how
good designs make efficient use of technology.  Future trends in computer
architecture are also discussed.

Topics covered may include the following:



39

§ Fundamentals of computer design
§ Performance and cost
§ Instruction set design and measurements of use
§ Basic processor implementation techniques
§ Pipeline design techniques
§ Memory-hierarchy design
§ Input-output subsystems
§ Future directions

Prerequisites: general prerequisites, including COSC 3201 3.0, and COSC3221
3.0 (or COSC3321 3.0)

COSC 4211 3.0 (x-listed COSC5422 3.0)
Performance Evaluation of Computer Systems
Topics covered may include the following:
§ Review of Probability Theory - probability, conditional probability, total

probability, random variables, moments, distributions (Bernoulli, Poisson,
exponential, hyperexponential, etc.)
§ Stochastic Processes - Markov chains and birth and death processes
§ Queuing Theory - M/M/1 Queuing system in detail; other forms of queuing

systems including limited population and limited buffers.
§ Application - A case study involving use of the queuing theory  paradigm in

performance evaluation and modeling of computer systems such as open
networks of queues and closed queuing networks.  Use of approximation
techniques, simulations, measurements and parameter estimation.

Prerequisites:  general prerequisites, including COSC 3211 3.0 and COSC3408
3.0

COSC 4242 3.0 (x-listed COSC 5325 3.0)
Signals and Systems
The study of computer vision, graphics and robotics requires background in the
concept of discrete signals, filtering, and elementary linear systems theory.
Discrete signals are obtained by sampling continuous signals.

In this course, students review the concept of a discrete signal, the conditions
under which a continuous signal is completely represented by its discrete
version, linear time-invariant systems.
Topics covered may include the following:
§ Continuous and discrete signals
§ Linear time-invariant systems
§ Fourier analysis in continuous time
§ Fourier analysis in discrete time
§ Sampling
§ Filtering, image enhancement
§ Laplace transform
§ Z transform
§ Linear feedback systems



40

§ Random signals, image coding
§ Kalman filtering
§ Statistical pattern recognition

Prerequisites:  general prerequisites; COSC3121 3.0 or MATH3241 3.0.
Degree Credit Exclusions: EATS4020 3.0, MATH4130B 3.0, MATH4830 3.0,
PHYS4060 3.0.

COSC 4301 3.0 (x-listed COSC5423 3.0)
Programming Language Design
This course is a continuation of COSC3301 3.0 Programming Language
Fundamentals.  Like its predecessor, the course focuses on the linguistics of
programming languages; that is, on the common, unifying themes that are
relevant to programming languages in general.  Both algorithmic and
nonalgorithmic language categories are examined.  Current techniques for the
formal specification of the syntax and semantics of programming languages are
studied.  Skills are developed in the critical and comparative evaluation of
programming languages.

Prerequisites:  general prerequisites, including COSC 3301 3.0

COSC 4302 3.0 (x-listed COSC5424 3.0)
Compilers and Interpreters

Principles and design techniques for compilers and interpreters. Compiler
organization, compiler writing tools, scanning, parsing, semantic analysis, run-
time storage organization, memory management, code generation, and
optimization. Students will implement a  substantial portion of a compiler in a
project.

This course is a hands-on introduction to the design and construction of
compilers and interpreters. At the end of the course, you will understand the
architecture of compilers and interpreters, their major components, how the
components interact, and the algorithms and tools that can be used to construct
the components.  You will implement several components of a compiler or
interpreter, and you will integrate these components to produce a working
compiler or interpreter.

Specific topics to be covered may include the following:
§ Compiler architecture. Single-pass vs. multiple-pass translation.
§ Lexical analysis (scanning). Design of scanners using finite automata. Tabular

representations. Tools for building scanners.
§ Parsing (syntax analysis). Top-down vs. bottom-up parsing. Parse trees and

abstract syntax trees. Tabular representations for parsers. Parser generators.
§ Symbol tables. Efficient algorithms and data structures. Representing data

types in symbol tables.
§ Type checking. Scope control. Static vs. dynamic type checking.
§ Memory management. Static allocation, register allocation, stack allocation,

heap allocation. Garbage collection.



41

§ Code generation. Translating imperative programming constructs. Function
and procedure calls. Branching code. Translating object-oriented constructs
and modules.
§ Optimization. Local and global optimizations. Dead code removal. Control flow

analysis.

Prerequisites:  general prerequisites; COSC 3301 3.0 recommended.
Degree Credit Exclusions: AK/COSC3420 6.0

COSC 4311 3.0
System Development
System Development deals with the construction of systems of interacting
processes.  The course focuses on abstraction, specification, and analysis in
software system development.  Abstraction and specification can greatly enhance
the understandability, reliability and maintainability of a system.  Analysis of
concurrency and interaction is essential to the design of a complex system of
interacting processes.

The course is split into three parts.  The first part discusses a semiformal method,
Jackson System Development (JSD) by Michael Jackson.  JSD is used to build an
understanding of what system development entails and to develop a basic
method of constructing practical systems of interacting processes.  JSD gives
precise and useful guidelines for developing a system and is compatible with the
object oriented paradigm.  In particular, JSD is well suited to the following:
§ Concurrent software where processes must synchronize with each other.
§ Real time software.  JSD modeling is extremely detailed and focuses on time at

the analysis and design stages.
§ Microcode.  JSD is thorough, it makes no assumptions about the availability of

an operating system.
§ Programming parallel computers.  The JSD paradigm of many processes may

be helpful.

The second part of the course discusses the mathematical model CSP
(Communicating Sequential Processes by C.A.R. Hoare).  While CSP is not
suitable to the actual design and development of a system of interacting
processes, it can mathematically capture much of JSD.  Consequently, it is
possible to use formal methods in analyzing inter-process communication arising
out of JSD designs.

The third part of the course discusses Z notation and its use in the specification of
software systems.  Z has been successfully used in many software companies --
such as IBM and Texas Instruments -- to specify and verify the correctness of real
systems.

Prerequisites:  general prerequisites, including COSC 3311 3.0 or COSC3221
3.0 or COSC3321 3.0.

COSC 4321 3.0    (x-listed COSC 5421 3.0)
Operating System Design



42

An operating system has four major components: process management,
input/output, memory management, and the file system. This project - oriented
course puts operating system principles into action. This course presents a
practical approach to studying implementation aspects of operating systems.  A
series of projects is included, making it possible for students to acquire direct
experience in the design and construction of operating system components. A
student in this course must design and implement some components of an
operating system and have each interact correctly with existing system software.
The programming environment is C++ under Unix.  At the end of this course, a
student will be able to design and implement the basic components of operating
systems.

A solid background in operating systems concepts, computer architecture, C, and
UNIX is expected.

Prerequisites:  general prerequisites, including COSC 3221 3.0 or COSC3321
3.0.

COSC 4331 3.0 (x-listed COSC 5331 3.0)
Computer Graphics

This course introduces the fundamental concepts of three-dimensional computer
graphics. Algorithms for image generation and the components of interactive
graphics systems are presented. The course discusses also virtual reality
systems, how interactive entertainment systems, such as games, work and how
animations for film and TV are created.

The first half of the course concentrates on the fundamentals of image
generation: the graphics pipeline, modeling, graphics data structures,
transformations, camera & perspective, visibility, raster graphics, shading.

The second part covers more advanced techniques and application areas:
texturing, anti-aliasing, ray tracing, free-form surfaces, Interactive graphics
systems, virtual reality, animation.

The assignments use current graphics toolkits to implement interactive graphics
programs. Students work in small groups. Students are expected to be familiar
with C and UNIX and will be using the X window environment on the
undergraduate workstations.

Prerequisites:  general prerequisites; MATH2221 3.0

COSC 4341 3.0
Human Computer Interaction
§ Introduction (Goals, Motivation, Human Diversity)
§ Theory of Human-Computer Interaction (Golden Rules, Basic Principles,

Guidelines)
§ The Design Process (Methodologies, Scenario Development)
§ Expert Reviews, Usability Testing, Surveys and Assessments
§ Software Tools (Specification Methods, Interface-Building Tools)



43

§ HCI Techniques
§ Interaction Devices (Keyboards, Pointing Devices, Speech Recognition,

Displays, Virtual Reality Devices)
§ Windows, Menus, Forms and Dialog Boxes
§ Command and Natural Languages (Command Line and Natural Language

Interfaces)
§ Direct Manipulation and Virtual Environments
§ Manuals, Help Systems, Tutorials
§ Hypermedia and the World Wide Web (Design, Creation, Maintenance of

Documents)
§ Human Factors - Response Time and Display Rate; Presentation Styles -

Balancing Function and Fashion (Layout, Color); Societal Impact of User
Interfaces (Information Overload); Computer Supported Cooperative Work
(CSCW, Synchronous and Asynchronous); Information Search and
Visualization (Queries, Visualization, Data Mining)

The topics of this course will be applied in practical assignments and/or group
projects. The projects will consists of a design part, an implementation part and
user tests to evaluate the prototypes.

Suggested Reading:
• Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human-Computer

Interaction, 2nd ed, Prentice Hall, 1998.

Prerequisites: general prerequisites; COSC/ITEC3461 3.0 recommended

COSC 4351 3.0 (x-listed COSC5341 3.0)
Real-Time Systems Theory
In real-time computing systems the correctness of the system depends not only
on the logical result of the computation but also on the time at which the results
are produced. For example, a computer controlling a robot on the factory floor of
a flexible manufacturing system, must stop or turn the robot aside in time to
prevent a collision with some other object on the factory floor. Other examples of
current real-time systems include communication systems, traffic systems, nuclear
power plants and space shuttle and avionic systems.

Real-time programs in many safety-critical systems are more complex than
sequential programs or concurrent programs that do not have real-time
requirements.  This course will deal with the modeling, simulation, specification,
analysis, design and verification of such real-time programs.  The objective of the
course is to expose the student to current techniques for formally proving the
correctness of real-time behaviour of systems.

Topics covered may include the following:
§ Techniques for expressing syntax and semantics of real-time programming

languages
§ Modelling real-time systems with discrete event calculi (e.g. Petri net and state

machine formalisms)
§ Specification of concurrency, deadlock, mutual exclusion, delays and timeouts



44

§ Scheduling of tasks to meet hard time bounds.
§ CASE tools for analysis and design.  At the end of the course the student will be

able to model and specify real-time systems, design and verify correctness of
some real-time systems.

Prerequisites: general prerequisites, including COSC 3311 3.0 or COSC3221 3.0
(or COSC3321 3.0) or COSC3341 3.0 (or COSC3111 3.0).

COSC 4352 3.0 (x-listed COSC5342 3.0)
Real-Time Systems Practice
In real-time computing systems the correctness of the system depends not only
on the logical result of the computation but also on the time at which the results
are produced. For example, a computer controlling a robot on a factory floor
must stop the robot in time to prevent a collision. Other examples of real-time
systems include communication systems, traffic systems, nuclear power plants
and avionic systems. Real-time systems are complex and require a knowledge of
reactive programs for their design. A reactive program maintains an ongoing
non-terminating interaction with its environment rather than computing some
final value on termination.

The course will focus on the design, construction and verification of soft and hard
real-time systems. Topics may include:
§ models of concurrent processes with access to a clock (e.g. by fair transition

systems with timeouts and clock variables),
§ semaphores and synchronization,
§ process communication and fairness,
§ temporal logic for specifying safety properties (e.g. freedom from deadlock),
§ liveness and real-time response,
§ verification of real-time systems using temporal logic model-checking tools

such as StateClock/SteP
§ examples from real-time programming languages (Ada and Java).

Prerequisites: general prerequisites, including COSC 3301 3.0 or COSC3311 3.0
or COSC3221 3.0 (or COSC3321 3.0).

COSC 4361 3.0
Hypermedia and Multimedia Technology
The course focuses this year on the design and implementation of hypermedia
presentation systems. "Hypermedia" refer to the non-linear organization of digital
information, in which items (such as a word in a text field or a region of an image)
are actively linked to other items. Users interactively select and traverse links in a
hypermedia presentation system in order to locate specific information or
entertainment, or to browse in large archives of text, sound, images, and video.
Well-structured hypermedia give users a way of coping with the "navigation"
problem created by availability of low-cost, fast access, high-density storage
media.

We will explore the following topics.



45

§ The historical roots of hypermedia: Bush, Engelbart, and Nelson;
§ The digital representation of media: rich text, sound, speech, images,

animation, and video;
§ Enabling technologies for creating hypermedia;
§ The role of scripting and markup languages;
§ Networked hypermedia (e. g. HTTP browsers); performance and compression

issues;
§ Development Tool Kits;
§ Distribution and Intellectual Property Issues.

Students will be expected to familiarize themselves quickly with the Macintosh
interface and basic features of the operating system. Students will be asked to
schedule themselves for at least six hours/week lab time in the Department's
Multimedia Lab (161 CCB), as the course work will involve a significant amount of
exploration and development of multimedia/hypermedia materials. Students will
be divided into small teams with specific responsibilities for individual exploration
and programming tasks assigned in connection with the course topics. Tasks
may take the form of constructing presentations, prototype applications, or the
programming of useful scripts. The teams will be asked to write short reports on
their work which will be presented in class.

Prerequisites:  general prerequisites, including ITEC/COSC3461 3.0.

COSC 4401 3.0 (x-listed COSC 5326 3.0)
Artificial Intelligence
This course will be an in-depth treatment of one or more specific topics within the
field of Artificial Intelligence. Possible topics include the following:
§ Machine learning: deduction, induction, abduction, explanation-based

learning, learning k-DNF.
§ Statistical learning: reinforcement learning, genetic learning algorithms,

connectionist learning systems, supervised and unsupervised.
§ Statistical and structural pattern recognition.
§ Speech recognition.
§ Artificial intelligence programming paradigms: search, pattern-directed

inference, logic- and object-oriented programming, symbolic mathematics,
constraint satisfaction and symbolic relaxation, building problem solvers,
efficiency issues.
§ Sensor-based robotics: path planning, position estimation, map-building,

object recognition, robotic sensor and actuator hardware, software, and
interfacing.

Contact the course director for information regarding the focus of the course this
year.

Prerequisites:  general prerequisites, including COSC 3402 3.0

COSC 4402 3.0 (x-listed COSC 5311 3.0)
Logic Programming



46

Logic programming has its roots in mathematical logic and it provides a view of
computation that contrasts in interesting ways with conventional programming
languages.  Logic programming approach is rather to describe known facts and
relationships about a problem, than to prescribe the sequence of steps taken by
a computer to solve the problem.

One of the most important problems in logic programming is the challenge of
designing languages suitable for describing the computations which these
systems are designed to achieve.  The most commonly recognized language is
PROLOG.

When a computer is programmed in PROLOG, the actual way the computer
carries out the computation is specified partly by the logical declarative semantics
of PROLOG, partly by what new facts PROLOG can "infer" from the given ones,
and only partly by explicit control information supplied by the programmer.
Computer Science concepts in areas such as artificial intelligence, database
theory, software engineering knowledge representation, etc., can all be
described in logic programs.

Topics covered may include the following:
§ Logical preliminaries: syntax and semantics of first order predicate logic and its

Horn logic fragment;
§ Logical foundations of logic programming: unification, the resolution rule, SLD-

resolution and search trees;
§ PROLOG as a logic programming system;
§ Programming  techniques and applications of PROLOG;
§ Constrained logic programming systems.

At the end of this course a student will be familiar with fundamental logic
programming concepts and will have some programming expertise in PROLOG.

Prerequisites:  general prerequisites, including COSC 3401 3.0, and COSC3101
3.0 or COSC3341 3.0 (or COSC3111 3.0).

COSC 4411 3.0 (x-listed COSC5411 3.0)
Database Management Systems
This course is the second course in database management.   It introduces
concepts, approaches, and techniques required for the design and
implementation of database management systems.

Topics may include the following:
§ Query Processing
§ Transactions
§ Concurrency Control
§ Recovery
§ Database System Architectures
§ Distributed Databases
§ Object-Oriented Databases

Suggested Readings:  



47

• R. Elmasri and S.B. Navathe, Fundamentals of Database Systems, 2nd Ed.,
Benjamin Cummings, 1994.

Prerequisites: general prerequisites, SC/AS/COSC3421 3.0

COSC 4421 3.0    (x-listed COSC 5324 3.0)
Introduction to Robotics
The course introduces the basic concepts of robotic manipulators and
autonomous systems.  After a review of some fundamental mathematics the
course examines the mechanics and dynamics of robot arms, mobile robots, their
sensors and algorithms for controlling them. A Robotics Laboratory is available
equipped with a manipulator and a moving platform with sonars, several
workstations and an extensive collection of software.

Prerequisites:  general prerequisites; MATH2221 3.0

COSC 4422 3.0    (x-listed COSC 5323 3.0)
Computer Vision
Computer Vision is a very challenging problem with wide applications.  It spans
several disciplines within science and engineering: computer science, computer
engineering, photogrammetry, telecommunications, robotics, medicine and the
list goes on.  This course introduces the fundamental concepts of vision with
emphasis on computer science.

In particular the course covers the image formation process, color analysis,
image processing, enhancement and restoration, feature extraction and
matching, 3-D parameter estimation and applications.  A Vision Laboratory is
available where students can gain practical experience.  The Lab includes
several workstations equipped with video cameras, digitizers and image
processing software.

Prerequisites: general prerequisites, including COSC3121 3.0

Required Mathematics Courses

The introductory courses MATH1090 3.0, MATH1300 3.0, and MATH1310 3.0
are required of all Computer Science majors.  Students who have not taken OAC
calculus should consult advisors in the Mathematics Department to determine
which courses they should take before attempting MATH1300 3.0.  In addition
some combination, or all of, the following courses are also required, depending
on the degree program - MATH2090 3.0, MATH2221 3.0, and MATH2320 3.0.

Mathematics Substitute Course List

Course Acceptable Substitutions
for COSC degree requirements

MATH1025 3.0 MATH2021 3.0, MATH2221 3.0
MATH1300 3.0 MATH1000 3.0, MATH1013 3.0
MATH1310 3.0 MATH1010 3.0, MATH1014 3.0



48

MATH2221 3.0 MATH1025 3.0, MATH2021 3.0

Although not formally required for a computer science degree many other areas
of mathematics are relevant to computer science. They include
§ Probability and statistics: MATH1131 3.0, MATH1132 3.0, MATH2030 3.0,

MATH2131 3.0, MATH3131 3.0, MATH3132 3.0
§ (more) algebra: MATH2222 3.0, MATH2022 3.0, MATH3020 6.0, MATH3140

6.0
§ combinatorics and graph theory: MATH2260 3.0, MATH3260 3.0

But in selecting mathematics courses please remember that most computer
science honours degrees require you to take at least 30 credits that are not
COSC and not MATH. The breadth of education implied by such a requirement is
important for a computer science professional.

Messages for Atkinson College Students

Prerequisite and new-degree-requirement substitutes
Old Atkinson Computer Science courses will be accepted as prerequisites for
courses in the combined AK/AS/SC/COSC course list according to the following
table of prerequisite substitutes.  The same substitutes will also be accepted in
cases in which specific courses are required under the new degree
requirements or for satisfying breadth requirements:



49

Current AK/AS/SC/COSC
courses

substitute old AK/COSC

1020/1030 2411/2412
2001 3431
2011 3501
2021 3411
2031 no substitute
3101 3432
3111 no substitute
3121 3511
3122 3512
3201 no substitute
3211 3409A
3212 3409B
3301 no substitute
3311 no substitute
3321 3470
3331 3650
3401 3551
3402 3551
3408 3451
3418 4071
3421 3503
3461 no substitute
3530 no substitute
4101 no substitute
4111 4021

for current AK/AS/SC/MATH
courses

substitute old AK/MATH

1090 2441
2320 2442



50

Old-degree-requirement substitutes
For continuing Atkinson Computer Science students who choose to graduate
under the old degree requirements that were in effect when they were admitted
to the Computer Science major, new AK/AS/SC/COSC courses will be accepted as
substitutes for specific old degree requirements that have not yet been
completed, according to the following table:

for old AK/COSC course substitute current AK/AS/SC/COSC
course

3411 2021
3431 2001
3460 3201
3501 2011
3502 any 32xx or 33xx course
3511 3121
3512 3122

for old AK/MATH course Substitute current AK/AS/SC/MATH
course

2441 1090
2442 2320

Computer Science Requirements - All Faculties

Breadth requirement
We have partitioned our courses into four areas.  For the BA or BSc (90-credit)
degree students must take at least one 3000-level course identified as a Group
A course from each area.  Group A courses have odd course numbers. For the
BA(Hons) or BSc(Hons) students must take COSC3101 3.0, COSC3221 3.0,
COSC3311 3.0 (thereby satisfying  Group A courses from the first three areas),
and one Group A course from the Applications area.

4000-level courses are also partitioned into the same four areas but they are not
further partitioned into groups A and B.  Thus, whether the course number is
even or odd has no significance for 4000-level courses.

The four areas are as follows:
§ Theory and Numerical Computation – Course numbers COSC31xx 3.0,

COSC41xx 3.0; topics: algorithms, data structures and complexity, automata
and computability, program verification, scientific and numerical computing.
§ Systems – Course numbers COSC32xx 3.0, COSC42xx 3.0; topics: digital logic,

architecture, operating systems, and data communication networks.
§ Software Development – Course numbers COSC33xx 3.0, COSC43xx 3.0;

topics: programming languages, software systems design and verification.



51

§ Applications – Course numbers COSC34xx 3.0, COSC44xx 3.0; topics: artificial
intelligence, expert systems, logic programming, databases, simulation,
machine learning, robotics and computer vision.

Exceptions to Course Numbering
Service courses at all levels have the second digit 5.  These courses do not
satisfy requirements in Computer Science and grades will not be included in the
Computer Science prerequisite grade-point-average calculation.

Other courses falling outside the course numbering conventions are the
following.

• COSC3001 1.0 -- restricted to SCS stream students
• COSC3010 3.0 -- Special Topics course
• COSC4001 6.0 -- restricted to SCS stream students
• COSC4010 3.0 -- Special Topics course
• COSC4080 3.0 -- Computer Science Project

Normal Order of Study
This section presents a summary of the Department's course requirements, by
suggesting the normal order in which courses should be taken. There are also
checklists for each program type at the back of this calendar.

Note: the Specialized Honours Space and Communication Sciences Stream has
exceptions from the general requirements; the exceptions are noted.  The course
requirements of the SCS stream are described in the section on Program
Checklists.

The indication of first year, second year, etc., indicates the year of study for
normal progress by full-time students.

1000-level – first year

• Fall – COSC1020 3.0, MATH1090 3.0, MATH1300 3.0

• Winter – COSC1030 3.0, MATH1310 3.0.

• 15 additional credits satisfying general education, faculty, second major
program, or elective requirements

2000-level – second year

• COSC2001 3.0, COSC2011 3.0, COSC2021 3.0, COSC2031 3.0

• Specialized Honours: MATH2090 3.0, MATH2221 3.0, MATH2320 3.0

other Honours programs: MATH2090 3.0; MATH2221 3.0 or  MATH2320
3.0 

BA and BSc (90-credit) programs: MATH2320 3.0

• 9 to 15 additional credits satisfying general education, faculty, second
major program, or elective requirements



52

3000-level – third year

• 12 COSC credits at the 3000-level satisfying the breadth requirement

• 6 additional 3000-level COSC credits for the BA or BSc 90-credit programs
and Specialized Honours programs

• 9 to 15 credits additional credits satisfying general education, Faculty,
second major program, or elective requirements

4000-level – fourth year, honours programs only

• 12 COSC credits at the 4000-level (except for the Honours Minor BA
degree which requires 6 credits at the 4000-level), including one of
COSC4111 3.0 or COSC4101 3.0 for the Specialized Honours program
(except SCS).

• 6 additional COSC credits at the 3000- or 4000-level for Specialized
Honours programs (except SCS)

• 12 to 18 additional credits satisfying general education, Faculty, second
major program, or elective requirements

Prerequisites for Computer Science Courses
1

It is absolutely essential that students fulfill the prerequisites for courses they wish
to take.

There are both general prerequisites which are required for all COSC courses at
the specified level and specific prerequisites for each course which are in
addition to the general prerequisites.  Both types of prerequisites include
computer science courses and mathematics courses, and in all cases there are
grade requirements in the prerequisite courses. The prerequisites are listed after
each course description and summarized in the following table.

The prerequisites table is useful to determine what courses must be taken in
order to enrol in a particular course, or to determine if you are permitted to enrol
in a course.

Course Title                                                                                        Prerequisite(s)

1000-Level

COSC1020 3.0 Intro. to Computer Science I Refer to course
description
COSC1030 3.0 Intro. to Computer Science II COSC1020 3.0

                                                                        
1 In exceptional circumstances some prerequisites or corequisites may be waived at the
discretion of the undergraduate director in consultation with the course director.  All petitions
to have pre- and corequisites waived must be submitted to the undergraduate office.  Course
directors may not waive prerequisites.



53

2000-Level
General Prerequisites:

• completed COSC1030 3.0
• completed MATH1090 3.0
• a cumulative GPA of 4.5 or better for completed Computer Science courses.

COSC2001 3.0 Intro. to Theory of Computation General prerequisites
COSC2011 3.0 Fundamentals of Data Structures General prerequisites
COSC2021 3.0 Computer Organization General prerequisites
COSC2031 3.0 Software Tools General prerequisites

3000-Level
General Prerequisites (except 35xx x.x courses)

• completed COSC2011 3.0, and one of COSC2001 3.0 or COSC2021 3.0 or
COSC2031 3.0

• completed MATH1300 3.0 and MATH1310 3.0
• completed one of MATH2090 3.0, MATH2221 3.0 or MATH2320 3.0
• have a cumulative GPA of 4.5 or better over all completed Computer

Science courses.

Theory and Numerical Computation - Group A Prerequisites
COSC3101 3.0 Design and Analysis of
Algorithms

General prerequisites including
MATH2320 3.0 (SCS students may
enrol without MATH2320 3.0 or
concurrently with MATH2320 3.0)

COSC3121 3.0 Intro. to Numerical
Computations I

General prerequisites including
MATH2221 3.0

Theory and Numerical Computation - Group B
COSC3122 3.0 Intro. to Numerical
Computations II

COSC3121 3.0; MATH2270 3.0

Systems - Group A
COSC3201 3.0 Digital Logic Design General prerequisites including

COSC2021 3.0
COSC3211 3.0 Data Communication General prerequisites including

COSC2021 3.0; MATH2090 3.0
COSC3221 3.0 Operating System
Fundamentals

General prerequisites including
COSC2021 3.0; COSC2031 3.0

Systems - Group B
COSC3212 3.0 Computer Networks COSC3211 3.0
Software Development - Group A
COSC3301 3.0 Programming General prerequisites including



54

Language Fundamentals COSC2001 3.0
COSC3311 3.0 Software Design General prerequisites including

COSC2001 3.0; COSC 2031 3.0,
MATH2090 3.0

COSC3331 3.0  Object-oriented
Programming and Design

General prerequisites

COSC3341 3.0 Intro. to Program
Verification

General prerequisites including
MATH2090 3.0

Applications - Group A Prerequisites
COSC3401 3.0 Introduction to Symbolic
Computation

General prerequisites including
MATH2090 3.0

COSC3421 3.0 Introduction to Database
Systems

ITEC/COSC2011 3.0

COSC3461 3.0 User Interfaces ITEC/COSC2011 3.0 or COSC2031
3.0

Applications - Group B
COSC3402 3.0 Intro. to Concepts of
Artificial Intell.

COSC3401 3.0; MATH2320 3.0

COSC3408 3.0 Simulation of Discrete
Systems

General prerequisites; MATH2560
3.0

COSC3418 3.0 Simulation of Continuous
Systems

General prerequisites; MATH2560
3.0

Other Courses:
COSC3001 1.0 Org. & Management
Seminar in SCS

In 3rd year of SCS stream

COSC3010 3.0 Special Topics in
Computer Science

Varies depending on the topic

4000-Level

General Prerequisites:
• completed COSC2001 3.0; COSC2011 3.0; COSC2021 3.0; COSC2031 3.0
• completed MATH2090 3.0
• completed at least 12 credits in computer science 3000-level courses.
• a cumulative GPA of 4.5 or better over all completed computer science

courses

Theory Courses Specific Prerequisites
COSC4101 3.0 Advanced Data Structures COSC3101 3.0; MATH2320 3.0
COSC4111 3.0 Automata and Computability COSC3101 3.0; MATH2320 3.0



55

Systems Courses
COSC4201 3.0 Computer Architecture COSC3201 3.0; COSC3221 3.0
COSC4211 3.0 Performance Evaluation of
Computer Systems

COSC3211 3.0; COSC3408 3.0

COSC4242 3.0 Signals and Systems COSC3121 3.0 (MATH3241 3.0)

Software Courses
COSC4301 3.0 Programming Language
Design

COSC3301 3.0

COSC4302 3.0 Compilers and Interpreters (COSC3301 3.0 recommended)
COSC4311 3.0 System Development COSC3311 3.0 or COSC3221

3.0
COSC4321 3.0 Operating System Design COSC3221 3.0
COSC4331 3.0 Computer Graphics MATH2221 3.0
COSC4341 3.0 Human Computer Interaction COSC3461 3.0
COSC4351 3.0 Real-Time Systems Theory COSC3341 3.0 or COSC3311

3.0 or COSC3221 3.0
COSC4352 3.0 Real-Time Systems Practice COSC3301 3.0 or COSC3311

3.0 or COSC3221 3.0
COSC4361 3.0 Hypermedia and Multimedia
Technologies

COSC3461 3.0

Knowledge-Based Computing
COSC4401 3.0 Artificial Intelligence COSC3402 3.0
COSC4402 3.0 Logic Programming COSC3401 3.0; COSC3101 3.0

or COSC3341 3.0
COSC4411 3.0 Database Management
Systems

COSC3421 3.0

COSC4421 3.0 Introduction to Robotics MATH2221 3.0
COSC4422 3.0 Computer Vision COSC3121 3.0 (MATH3241 3.0)

Other Courses
COSC4001 6.0Space and Comm. Sciences
Workshop

3000-level of SCS core

COSC4080 3.0 Computer Science Project permission of course director, 36
COSC credits

COSC4010 3.0 Special Topics in Computer
Science

Varies depending on the topic



56

Degree Checklists

FPAS:  BSc Degree Checklist1

Computer Science Requirements   Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
COSC2031 3.0 MATH2320 3.0 6

3000-level One Group A course (odd numbered) from each area

Theory COSC31_____ 3 0 Software  COSC33____ 3.0 6

Systems COSC32_____ 3.0 Applications  COSC34____ 3.0 6

Two more courses  COSC3______ 3.0  COSC3______ 3.0 6

Faculty Requirements

General Education Courses                                    12

One of BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0
EATS1010 6.0 PHYS1010 6.0 PHYS1410 6.0 6

At least 3 additional credits from the following:
BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0
EATS1010 6.0 EATS1010 3.0 EATS1011 3.0
PHYS1010 6.0 PHYS1070 3.0 PHYS1410 6.0 3
BC1800 3.0 MATH1025 3.0

9 more SC credits                                                                 6
(for a total of 66 SC credits)

                              3

12 more credits                                                                 6

                                                                6

Total credits:   90

                                                                        
1 A minimum cumulative grade point average of 4.0 over all courses is required to graduate.  In
addition, the Departmental prerequisite GPA over COSC courses must be met to proceed in the
program.



57

FPAS:    BSc Hons Double Major Degree Checklist
BSc Hons. Major/Minor (COSC Major) Degree Checklist1

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 or MATH1013 3.0 9
COSC1030 3.0 MATH1310 3.0 or MATH1014 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 3.0 12
MATH2090 3.0 MATH2221 3.0 or MATH1025 3.0 or MATH2320 3.0 6

3000-level One Group A course (odd numbered) from each area

Theory COSC3101 3.0 Software COSC3311 3.0 6

Systems   COSC3221 3.0 Applications  COSC34____ 3.0 6

4000-level Four courses COSC4______ 3.0 COSC4______ 3.0 6

COSC4______ 3.0 COSC4______ 3.0 6

Faculty Requirements

General Education courses: ______________ _______________ 12

One of BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0
EATS1010 6.0 PHYS1010 6.0 PHYS1410 6.0 6

At least 3 additional credits from the following:
BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0
EATS1010 6.0 EATS1010 3.0 EATS1011 3.0
PHYS1010 6.0 PHYS1070 3.0 PHYS1410 6.0 3

BC1800 3.0 (MATH1025 3.02)

Other Honours Subject and Other Courses (total 42 more credits)
Including 1. non-COSC/non-MATH credit for a total of 30,

2. additional 3000- and 4000-level credit for a total of 42.

____________     ____________     ____________     ____________     ____________

____________     ____________     ____________     ____________     ____________

____________     ____________     ____________     ____________     ____________         42

   Total credits   120

                                                                        
1 A minimum cumulative grade-point-average of 5.0 over all courses is required to proceed in
each year of the program and to graduate. If the second major is BIOL a minimum cumulative
grade-point-average of 6.0 over all SC courses is also required. In addition, the Departmental
prerequisite GPA over COSC courses must be met to proceed in the program.
2 This course may satisfy both the 2000-level COSC requirements and this category, but the
credit cannot be counted twice. The total credit required  for other courses, shown below as
42, becomes 45 in this case.



58

FPAS: BSc Honours Major/Minor (COSC Minor) Degree Checklist1

Computer Science (Minor) Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 or MATH1013 3.0 9
COSC1030 3.0 MATH1310 3.0 or MATH1014 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 3.0 12
MATH2090 3.0 MATH1025 3.0 or MATH2221 3.0 or MATH2320 3.0 6

3000-level One Group A course (odd numbered) from each area

Theory COSC3101 3.0 Software COSC3311 3.0 6

Systems   COSC3221 3.0 Applications  COSC34____ 3.0 6

4000-level Two half courses: COSC4______ 3.0 COSC4______ 3.0 6

Faculty Requirements

General Education courses: ______________ _______________ 12

One of BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0
EATS1010 6.0 PHYS1010 6.0 PHYS1410 6.0 6

At least 3 additional credits from the following:
BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0
EATS1010 6.0 EATS1010 3.0 EATS1011 3.0
PHYS1010 6.0 PHYS1070 3.0 PHYS1410 6.0 3

BC1800 3.0 (MATH1025 3.02)

Other Honours Subject and Other Courses (total 48 more credits)
Including 1. additional 3000- and 4000-level credit for a total of 42.

____________     ____________     ____________     ____________     ____________

____________     ____________     ____________     ____________     ____________

____________     ____________     ____________     ____________     ____________         48

   Total credits   120

                                                                        
1 A minimum cumulative grade-point-average of 5.0 over all courses is required to proceed in
each year of the program and to graduate. If the major is BIOL a minimum cumulative grade-
point-average of 6.0 over all SC courses is also required. In addition, the Departmental
prerequisite GPA over COSC courses must be met to proceed in the program.
2 This course may satisfy both the 2000-level COSC requirements and this category, but the
credit cannot be counted twice. The total credit required  for other courses, shown below as
48, becomes 51 in this case.



59

FPAS:  BSc Specialized Honours Degree Checklist1

Computer Science Requirements   Credit Count

1000-level: COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level: COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 3.0 12
MATH2090 3.0 MATH2221 3.0 or MATH1025 3.0 MATH2320 3.0 9

3000-level: One Group A course (odd numbered) from each area

Theory     COSC3101 3.0 Software COSC3311 3.0 6

Systems  COSC3221 3.0 Applications COSC34____ 3.0 6

Two more courses:

COSC3______ 3.0 COSC3______ 3.0 6

4000-level: COSC4101 3.0   or   COSC4111 3.0 3

COSC4______ 3.0 COSC4______ 3.0 COSC4______ 3.0 9

Two courses (3000- or 4000-level)

COSC_______ 3.0 COSC_______ 3.0 6

Faculty Requirements

General Education Courses _____________ ______________ 12

One of BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0
EATS1010 6.0 PHYS1010 6.0 PHYS1410 6.0 6

At least 3 additional credits from the following:
BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0
EATS1010 6.0 EATS1010 3.0 EATS1011 3.0
PHYS1010 6.0 PHYS1070 3.0 PHYS1410 6.0 3

BC1800 3.0 (MATH1025 3.02)

Additional courses totalling 27 credits and satisfying
1. More SC credits (as required for a total of 90)
2. More non-COSC, non-MATH credits (as required for a total of 30)
3. More 3000- or 4000-level credit (as required for a total of 42)

____________     ____________     ____________     ____________

____________     ____________     ____________     ____________         27

   Total credits:
120

                                                                        
1 A minimum cumulative grade-point-average of 5.0 over all courses is required to proceed in
each year of the program and to graduate.  In addition, the Departmental prerequisite GPA
over COSC courses must be met to proceed in the program.
2 This course may satisfy both the 2000-level COSC requirements and this category, but the
credit cannot be counted twice. The total credit required  for other courses, shown below as
48, becomes 51 in this case



60

 FPAS: BSc Specialized Honours Degree, SCS Stream1

Computer Science Requirements
Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1013 3.0 9
COSC1030 3.0 MATH1014 3.0 MATH1025 3.0 9
PHYS1010 6.0 CHEM1000 6.0  or  EATS1010 6.0 12

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2015 3.0 MATH2090 3.0 MATH2270 3.0 9
PHYS2020 3.0 PHYS2040 3.0 PHYS2211 1.0 7

One of PHYS2010 3.0     or EATS2470 4.0    3  or 4
One of CHEM2011 3.0    or COSC2031 3.0    or EATS2010 3.0   or 3

EATS2030 3.0     or PHYS1070 3.0     or PHYS2060 3.0

3000-level COSC3121 3.0 COSC3211 3.0 COSC3221 3.0 9
COSC/EATS/PHYS/3001 1.0 EATS/PHYS3280 3.0 4
PHYS3050 3.0 PHYS3250 3.0 6

One of COSC3201 3.0     or COSC3212 3.0     or COSC3311 3.0
or COSC3331 3.0 3

One of any 3000-level COSC course not already taken (without second digit 5)
or EATS3020 3.0 or EATS3030 3.0    or MATH3271 3.0
or MATH3410 3.0     or PHYS3020 3.0   or PHYS3070 3.0
or PHYS3080 3.0      or PHYS3150 3.0   or PHYS4120 3.0
or other approved courses 3

4000-level COSC4001 6.0 6

One of COSC4201 3.0      or COSC4351 3.0      or COSC4352 3.0 3

One of COSC4301 3.0      or COSC4302 3.0      or COSC4321 3.0
or COSC4341 3.0 3

Two of COSC4242 3.0      or COSC4331 3.0      or COSC4421 3.0
or COSC4422 3.0 6

Two of 4000-level COSC courses not already taken as listed above
            or  EATS4220 3.0  or EATS4230 3.0     or PHYS3070 3.0
            or PHYS4060 3.0   or PHYS4110 3.0     or PHYS4270 4.0 6
            or PHYS4450 3.0

Faculty Requirements

General Education Courses                                                                              12

   Total credits:  122 or
123

                                                                        
1 A minimum cumulative grade-point-average of 6.0 over all SC courses and 5.0 over ALL
courses is required to proceed in each year of the program and to graduate.  In addition, the
Departmental prerequisite GPA over COSC courses must be met to proceed in the program.



61

Faculty of Arts: BA Degree Checklist1

Computer Science Requirements
Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 3.0 12
MATH2320 3.0 3

3000-level One Group A half course (odd numbered) from each area

Theory COSC31_____ 3.0 Software COSC33____ 3.0 6

Systems COSC32_____ 3.0 Applications  COSC34____ 3.0 6

Two more half courses:
COSC3_______ 3.0 COSC3______ 3.0 6

Faculty Requirements

General education
1000-level: NATS__________ 6.0 6

One of HUMA__________ 9.0         or SOSC__________ 9.0 9

2000-level:
(must be HUMA if a 1000-level SOSC was chosen; or SOSC if a 1000-level HUMA was chosen)

One of HUMA__________ 9.0         or SOSC__________ 9.0 9

Electives 18 credits outside COSC requirements

_____________ _____________ _____________ 18

Total Credits     90

                                                                        
1 A cumulative grade point average of 4.0 over all courses is required to graduate.  In addition,
the Departmental prerequisite GPA over COSC courses must be met to proceed in the program.



62

Faculty of Arts: BA Honours Major Degree Checklist1

Computer Science Requirements
Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 3.0 12
MATH2090 3.0 MATH2221 3.0  or  MATH2320 3.0 6

3000-level One Group A half course (odd numbered) from each area

Theory COSC3101 3.0 Software COSC3311 3.0 6

Systems COSC3221 3.0 Applications COSC34_____ 3.0 6

4000-level Four half courses COSC4______ 3.0 COSC4______ 3.0 6

COSC4______ 3.0 COSC4______ 3.0 6

Faculty Requirements

General education
1000-level NATS__________ 6.0 6

One of HUMA__________ 9.0     or SOSC__________ 9.0 9

2000-level
(must be HUMA if a 1000-level SOSC was chosen; or SOSC if a 1000-level HUMA was chosen)

One of HUMA__________ 9.0     or SOSC__________9.0 9

Electives: 18 credits outside COSC requirements

_____________ _____________ _____________ 18

Additional courses: totaling 21 credits and satisfying
1. More 4000-level credits (as required for a total of 18)
2. More 3000- or 4000-level credits (as required for a total of 36)

____________     ____________     ____________     ____________

____________     ____________     ____________     ____________         21

 Total Credits:    120

                                                                        
1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year
of the program. In addition, the Departmental prerequisite GPA over COSC courses must be
met to proceed in the program.  To graduate requires a cumulative grade-point-average of 5.0
over all courses.



63

Faculty of Arts: BA Honours Minor Degree Checklist1

Computer Science Requirements
Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 3.0 12
MATH2090 3.0 MATH2221 3.0 or MATH2320 3.0 6

3000-level One Group A half course (odd numbered) from each area

Theory COSC3101 3.0 Software COSC3311 3.0 6

Systems COSC3221 3.0 Applications COSC34_____ 3.0 6

4000-level Two half courses COSC4______ 3.0 COSC4______ 3.0 6

Faculty Requirements

General education
1000-level NATS__________ 6.0 6

One of HUMA__________ 9.0     or SOSC__________ 9.0 9

2000-level
(must be HUMA if a 1000-level SOSC was chosen; or SOSC if a 1000-level HUMA was chosen)

One of HUMA__________ 9.0     or SOSC__________9.0 9

Honours Major subject and other courses
 (To satisfy requirements of the honours major, and upper-level requirements.)

____________ ____________ ____________

____________ ____________ ____________

____________ ____________ ____________

____________ ____________ ____________ 45

 Total Credits:     120

                                                                        
1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year
of the program. In addition, the Departmental prerequisite GPA over COSC courses must be
met to proceed in the program. To graduate requires a cumulative grade-point-average of 5.0
over all courses.



64

Faculty of Arts: BA Specialized Honours Degree Checklist1

Computer Science Requirements
Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 12
MATH2090 3.0 MATH2221 3.0 MATH2320 3.0 9

3000-level One Group A half course (odd numbered) from each area

Theory COSC3101 3.0 Software COSC3311 3.0 6

Systems COSC3221 3.0 Applications COSC34_____ 3.0 6

Two more courses:
COSC3______ 3.0 COSC3______ 3.0 6

4000-level Four coursesCOSC4101 3.0  or  COSC4111 3.0 3

COSC4______ 3.0 COSC4______ 3.0 COSC4______ 3.0 9

Two courses (3000- or 4000-level)

COSC_______ 3.0 COSC_______ 3.0  6

Faculty Requirements

General education
1000-level NATS__________ 6.0 6

One of HUMA_________ 9.0      or SOSC_________ 9.0 9

2000-level
(must be HUMA if a 1000-level SOSC was chosen; or SOSC if a 1000-level HUMA was chosen)

One of HUMA__________ 9.0     or SOSC__________ 9.0 9

Electives (3 courses outside COSC requirements)

______________ ______________ ______________ 18

Additional courses: totaling 6 credits and satisfying
1. More 4000-level credits (as required for a total of 18)

     ____________     ____________     6

     Total Credits:    120

                                                                        
1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year
of the program. In addition, the Departmental prerequisite GPA over COSC courses must be
met to proceed in the program.  To graduate requires a cumulative grade-point-average of 5.0
over all courses.



65

Faculty of Arts: BA Honours Double Major Degree Checklist1

Computer Science Requirements
Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 3.0 12
MATH2090 3.0 MATH2221 3.0  or  MATH2320 3.0 6

3000-level One Group A half course (odd numbered) from each area

Theory COSC3101 3.0 Software COSC3311 3.0 6

Systems COSC3221 3.0 Applications COSC34_____ 3.0 6

4000-level Four half courses COSC4______ 3.0 COSC4______ 3.0 6

COSC4______ 3.0 COSC4______ 3.0 6

Faculty Requirements

General education
1000-level NATS__________ 6.0 6

One of HUMA__________ 9.0  orSOSC__________ 9.0 9

2000-level
(must be HUMA if a 1000-level SOSC was chosen; or SOSC if a 1000-level HUMA was chosen)

One of HUMA__________ 9.0  orSOSC__________ 9.0 9

Other Honours Major Subject and Other Courses
(To satisfy requirements of the other honours major, and upper-level requirements.)

_____________ _____________ _____________

_____________ _____________ _____________

_____________ _____________ _____________ 39

         Total Credits:    120

                                                                        
1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year
of the program. In addition, the Departmental prerequisite GPA over COSC courses must be
met to proceed in the program.  To graduate requires a cumulative grade-point-average of 5.0
over all courses.



66

Atkinson College: BSc Degree Checklist1

Computer Science Requirements   Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
COSC2031 3.0 MATH2320 3.0 6

3000-level One Group A course (odd numbered) from each area

Theory COSC31_____ 3 0 Software  COSC33____ 3.0 6

Systems COSC32_____ 3.0 Applications  COSC34____ 3.0 6

Two more courses  COSC3______ 3.0  COSC3______ 3.0 6

Faculty Requirements

General education (24 credits)
1000-level: MATH1710 6.0 or MATH17____ 6.0 or MODES_________ 6.0 6

HUMA__________ 6.0 SOSC__________ 6.0          12

one of:
BIOL1010  6.0, BIOL1410 6.0, CHEM1000 6.0, EATS1010 6.0,
PHYS1010 6.0, PHYS1410 6.0 6

At least 3 additional credits from the following:
BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0 EATS1010 60
EATS1010 3.0 EATS1011 3.0 MATH1025 3.0
PHYS1010 6.0 PHYS1070 3.0 PHYS1410 6.0 3

Electives:  1.  6 credits in Science (courses cross listed as SC) at the 2000-level or above
            2.  9 additional credits

_____________ _____________ _____________

_____________ _____________ 15

Total credits:   90

                                                                        
1 A cumulative grade point average of 4.0 over all courses is required to proceed in each year of
the program and to graduate.  In addition, the Departmental general prerequisite cumulative
grade point average over all COSC courses must be met to proceed in the program.



67

Atkinson College: BSc Honours Degree Checklist1

Computer Science Requirements   Credit Count

1000-level: COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level: COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 3.0 12
MATH2090 3.0 MATH2221 3.0 MATH2320 3.0 9

3000-level: One Group A course (odd numbered) from each area

Theory     COSC3101 3.0 Software COSC3311 3.0 6

Systems  COSC3221 3.0 ApplicationsCOSC34____ 3.0 6

Two more courses:

COSC3______ 3.0 COSC3______ 3.0 6

4000-level: COSC4101 3.0   or   COSC4111 3.0 3

COSC4______ 3.0 COSC4______ 3.0 COSC4______ 3.0 9

Two courses (3000- or 4000-level)

COSC_______ 3.0 COSC_______ 3.0 6

Faculty Requirements

General education (24 credits)
1000-level: MATH1710 6.0 or MATH17____ 6.0 or MODES_________ 6.0 6

HUMA__________ 6.0 SOSC__________ 6.0          12

one of:
BIOL1010  6.0, BIOL1410 6.0, CHEM1000 6.0, EATS1010 6.0,
PHYS1010 6.0, PHYS1410 6.0 6

At least 3 additional credits from the following:
BIOL1010 6.0 BIOL1410 6.0 CHEM1000 6.0 EATS1010 60
EATS1010 3.0 EATS1011 3.0 MATH1025 3.0
PHYS1010 6.0 PHYS1070 3.0 PHYS1410 6.0 3

Electives:   1. 6 credits in Science (courses cross listed as SC) at the 2000-level or above
             2.  3 credits at the 3000-level or above (as required for a total of 39)
             3.  more non-COSC, non-MATH credits (as required for a total of 30)
             4. more credits (as required for a total of 120)

_____________ _____________ _____________ _____________

_____________ _____________ _____________ 21

Total credits:
120

                                                                        
1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year of
the program and to graduate.  In addition, the Departmental prerequisite GPA over COSC
courses must be met to proceed in the program.



68

Atkinson College: BA Degree Checklist1

Computer Science Requirements
Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
COSC2031 3.0 MATH2320 3.0 6

3000-level One Group A course (odd numbered) from each area

Theory COSC31_____ 3 0 Software  COSC33____ 3.0 6

Systems COSC32_____ 3.0 Applications  COSC34____ 3.0 6

Two more courses  COSC3______ 3.0  COSC3______ 3.0 6

Faculty Requirements

General education (24 credits)
1000-level: MATH1710 6.0 or MATH17____ 6.0 or MODES_________ 6.0 6

 HUMA__________ 6.0          SOSC__________ 6.0 12

 NATS __________ 6.0          6

Electives:  1.  6 credits outside COSC requirements
                 2.  12 credits at the 3000-level or above

_____________ _____________ _____________

_____________ _____________ _____________ 18

Total credits:
90

                                                                        
1 A cumulative grade point average of 4.0 over all courses is required to graduate.  In addition,
the Departmental general prerequisite cumulative grade point average over all COSC courses
must be met to proceed in the program.



69

Atkinson College: BA Specialized Honours Degree Checklist1

Computer Science Requirements    Credit Count

1000-level: COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level: COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 COSC2031 3.0 12
MATH2090 3.0 MATH2221 3.0 MATH2320 3.0 9

3000-level: One Group A course (odd numbered) from each area

Theory     COSC3101 3.0 Software COSC3311 3.0 6

Systems  COSC3221 3.0 Applications COSC34____ 3.0 6

Two more courses:

COSC3______ 3.0 COSC3______ 3.0 6

4000-level: COSC4101 3.0   or   COSC4111 3.0 3

COSC4______ 3.0 COSC4______ 3.0 COSC4______ 3.0 9

Two courses (3000- or 4000-level)

COSC_______ 3.0 COSC_______ 3.0 6

Faculty Requirements
General education (24 credits)

1000-level: MATH1710 6.0 or MATH17____ 6.0 or MODES_________ 6.0 6

 HUMA__________ 6.0          SOSC__________ 6.0 12

 NATS __________ 6.0          6

Electives:  1.  9 credits outside COSC requirements at 3000-level or above
(or if MATH at the 2000-level or above)

                 2. more credits outside COSC and MATH (as required for a total of 30 credits)
            3.  more credits (as required for a total of 120)

_____________ _____________ _____________

_____________ _____________ _____________

_____________ _____________ 24

Total credits:  120

                                                                        
1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year
of the program. In addition, the Departmental general prerequisite cumulative grade-point-
average over all Computer Science  courses must be met to proceed in the program.  To
graduate requires a cumulative grade-point-average of 5.0 over all courses.


