
Table of Contents ..Page
Preface .. 2
The Department... 2
Faculty ... 3
CSAC Accreditation ... 3
A Note on Terminology .. 4
Admission to the Computer Science Major.. 4
Access to Courses... 4
Recent Academic Changes ... 6
Programs Offered .. 9
Elective Courses.. 10
Industrial Internship Program... 10
Admission to the Graduate Program in Computer Science 11
The Service Program... 11
York University Computer Club ... 12
The Student Ombuds Service.. 12
Computer Facilities .. 12
Computer Use Policy ... 13
Computer Science Awards .. 14
Academic Policies.. 15
Appeal Procedures .. 17
Grading System ... 18
Course Fees .. 19
Course Weights ... 19
Course Descriptions: 1000-Level... 19
Course Descriptions: 2000-Level... 25
Course Descriptions: 3000-Level... 28
Course Descriptions: 4000-Level... 40
Required Mathematics Courses .. 62
Advice for Atkinson Faculty Students .. 63
Upper Level Computer Science Requirements—All Faculties................................. 65
Exceptions to Course Numbering .. 65
Normal Order of Study... 66
Prerequisites for Computer Science Courses.. 67

The official most up-to-date version is available on the web at
http://www.cs.yorku.ca/undergrad/csCalendars.html

 1

http://www.cs.yorku.ca/undergrad/csCalendars.html

Preface

In choosing to study Computer Science you have chosen a career in an exciting and
rapidly changing discipline. As a computer scientist you may become involved in
many of the great changes in the future, for the computer will play a central role in
these changes.

It is important, therefore, that you not only develop the practical and theoretical skills
of a professional computer scientist but that you also try to obtain an understanding
of the impact of computers on society. For that reason we would strongly encourage
you to select your elective courses outside Computer Science in areas where you
will broaden your knowledge of society. One way to do this is to select isolated
courses that catch your interest; however, a more productive approach is to
consider taking a concentration of courses in an area outside of Computer Science.

So in planning your course selection you should be thinking ahead and asking
yourself not only which courses will give you a good Computer Science degree, but
which courses will make you a good professional computer scientist. That implies a
sound technical background, a broad education, professional ethics and a social
conscience. You can't get all that in your first year but you can at least make a start.

Lastly we would like to remind you that Computer Science is an art as well as a
science that means you cannot learn it entirely from a book — you must also
practice it.

The Department

Computer Science and Engineering Department
1003 Computer Science & Engineering Building (CSEB)

York University
4700 Keele Street

Toronto, Ontario M3J 1P3
http://www.cs.yorku.ca/

Office hours 10:00 am – 12:00 noon and 2:00 pm – 4:00 pm

(Fridays during June-August: 10:00 am – 12:00 noon and 2:00 pm – 3:00 pm)

George Tourlakis, Undergraduate Director Tel. (416) 736-5334
 Email: enquiries@cs.yorku.ca
 http://www.cs.yorku.ca/undergrad

Yves Lesperance, Graduate Director Tel. (416) 736-5053
 http://www.cs.yorku.ca/grad/

Peter Cribb, Chair Tel. (416) 736-5053
 Fax: (416) 736-5872

 2

http://www.cs.yorku.ca/
http://www.cs.yorku.ca/cspeople/faculty/gt/index.html
mailto:enquiries@cs.yorku.ca
http://www.cs.yorku.ca/undergrad
http://www.cs.yorku.ca/cspeople/faculty/lesperan/index.html
http://www.cs.yorku.ca/grad/
http://www.cs.yorku.ca/cspeople/faculty/peterc/index.html

 3

Faculty
 Telephone email Telephone email
 Extension @cs.yorku.ca Extension @cs.yorku.ca

Aboelaze, Mokhtar 40607 aboelaze Mirzaian, Andy 70133 andy
Allison, Robert 20192 allison Nguyen Uyen 33274 utn
Amanatides, John 44782 amana Ostroff, Jonathan 77882 jonathan
An, Aijun 44298 aan Paige, Richard (leave) paige
Arjomandi, Eshrat 70130 eshrat Roosen-Runge, Peter 77844 peter
Asif, Amir 70128 asif Roumani, Hamzeh 66146 roumani
Baljko, Melanie 33348 mb Ruppert, Eric 33979 ruppert
Cribb, Peter 70127 peterc Spetsakis, Minas 77886 minas
Datta, Suprakash 77875 datta Stachniak, Zbigniew 77877 zbigniew
Dymond, Patrick 33948 dymond Stuerzlinger, Wolfgang (sabb) 33947 wolfgang
Edmonds, Jeff 33295 jeff Toptsis, Anestis 66675 anestis
Godfrey, Parke 66671 godfrey Tourlakis, George 66674 gt
Gotshalks, Gunnar 33350 gunnar Tsotsos, John 70135 tsotsos
Gryz, Jarek (sabb) 70150 jarek Tzerpos, Vassilios 33341 bil
Hornsey, Richard 33265 hornsey van Breugel, Franck (sabb) 77880 franck
Jenkin, Michael 33162 jenkin Vlajic, Natalija 77878 vlajic
Jiang, Hui 33346 hj Wallis, Anthony 77874 wallis
Lesperance, Yves 70146 lesperan Wharton, Michael 33978 michael
Liu, Joseph 33928 joseph Wildes, Richard (sabb) 40203 wildes
Mackenzie, Scott 40631 mack Xu, Jia 77879 jxu
Mandelbaum, Marvin 40630 mandel

CSAC Accreditation

The Computer Science Accreditation Council (CSAC) accredits all Computer
Science honours programs offered by the department, with the exception of the BA
and BSc honours minor.
The Computer Science Accreditation Council is an autonomous body established by
the Canadian Information Processing Society (CIPS). The purpose of accreditation
is to identify those institutions that offer computer programs worthy of recognition.
The objectives of the Council are:

� To formulate and maintain high educational standards for Canadian universities
offering computer and information science programs, and to assist those
institutions in planning and carrying out education programs.

� To promote and advance all phases of computer and information science
education with the aim of promoting public welfare through the development of
better educated computer professionals.

� To foster a cooperative approach to computer and information science education
between industry, government, and educators to meet the changing needs of
society.

Graduation from an accredited Computer Science Program simplifies the process of
professional certification as an Information Systems Professional of Canada or ISP.

 4

The provinces of Ontario and Alberta recognized the ISP designation. More
information on professional accreditation and the accreditation process can be
found on the CIPS web page at http://www.cips.ca/.

A Note on Terminology

In this document BA or BSc degree refers to the 90-credit bachelor degree. BA
Honours or BSc Honours degree refers to the 120-credit degree.

Admission to the Computer Science Major
Please go to http://www.yorku.ca/admissio/undergrad/type.asp to find out about the
various University and Faculty level Admissions Requirements pertaining to your
situation. There are two general Admission Categories:

1. Entry with only secondary school background
Requirements under this category, by Faculty, are detailed at
http://www.yorku.ca/admissio/undergrad/high_school.asp

2. Entry with post-secondary academic background
Please follow http://www.yorku.ca/admissio/undergrad/univ_coll.asp to find a
detailed description of general University and Faculty-specific policies for gaining
admission under this category.

In particular, York University students who want to change their major to be, or to
include, computer science will need to meet the following minimum requirement:

� Completion of at least 24 credits with an average of C+ or better if transferring to
the honours computer science programs (minimum average of C is needed to
transfer into the Bachelor degree programs)1

Once transferred to a computer science program, students will need to satisfy all
specific and general prerequisites of computer science courses they wish to take.

Access to Courses

York Enrolment System
Students enrol in courses using the Registration and Enrollment Module (REM), via
a Web interface, typically in the few months prior to the start of each term. Computer
Science courses frequently reach their class size maximum, in which case the
following procedures are followed.

See http://www.cs.yorku.ca/undergrad/guides/enroll.html for an expanded
description and interpretation of the enrolment policy outlined below.

1 All attempted university courses will be included in the calculation of your cumulative grade
point average.

http://www.cips.ca/
http://www.yorku.ca/admissio/undergrad/type.asp
http://www.yorku.ca/admissio/undergrad/high_school.asp
http://www.yorku.ca/admissio/undergrad/univ_coll.asp
http://www.cs.yorku.ca/undergrad/guides/enroll.html

 5

These are required in all degree programs in Computer Science. Core computer
science courses include all 1000- and 2000-level Computer Science major courses,
COSC3101 3.0, COSC3221 3.0, and COSC3311 3.0. Core mathematics courses

Application for Normal progress
We are committed to ensuring that students can make timely progress towards
meeting degree requirements. However, students who wish to take more COSC
courses than they need or who wish to repeat a course they either dropped or failed
in the immediately preceding term can only be accommodated if space permits.
Normal progress is consistent with completion times of four and three years for full-
time students in the 120 credit and 90 credit degree programs respectively. This
entails

� Normally taking 1000-level courses in calendar year one, 2000-level in calendar
year two, etc.

� Taking up to a total of three courses per term that is any combination of 2000-
3000- and 4000-level courses that the prerequisite structure permits.

� When close to graduation being able to take necessary courses within the limits
specified above.

Limits on Course Enrolment
A maximum combined number of three 2000- 3000- or 4000-level courses are
permitted in any given fall or winter term, subject to prerequisites being met. In the
summer term students are not permitted to take more than two courses in
Computer Science.
Removal from Courses
If any student enrols in more than the allowed number of courses per term they will
be removed from whichever courses the department requires space. The
Department also reserves the right to move students from a course in one term to
the same course in the next term should such steps be necessary to ensure
equitable access to courses.
Prerequisites
Students are responsible for ensuring they enrol only in courses for which they meet
the prerequisites. Prerequisites include a minimum GPA over computer science
courses. Students may be removed from a course if they do not meet the
prerequisites, at any time before or during the course.
Courses Outside the Department
Students wishing to take Computer Science courses at another institution should
submit a Letter of Permission (LOP) form. For the purpose of satisfying
departmental degree requirements, the number of computer science course (COSC
courses) credits taken outside the Department of Computer Science may not
exceed 6 credits in core computer science courses and 12 credits in total. Advanced
standing credit is included as credit taken outside the Department.

Definition of Core Courses

include MATH1300 3.0, MATH1310 3.0, COSC/MATH1019 3.0 and MATH1090 3.0.
(COSC1019 3.0 replaces MATH2090 3.0 in the core as of FW2004/5)

Recent Academic Changes

1. New Department Name. As approved by Senate and the University’s Board
of Governors, the department name will be as of 2004 the “Department of
Computer Science and Engineering”. Subsequent to this change the
course rubric will be changed from COSC to CSE for all courses offered by
the department. The implementation of course rubric change is set for
FW2005/6.

2. New Degree Programs. Two new degree programs in Software
Engineering have been approved by the Faculty of Science and
Engineering. Once these receive Senate approval they will be available to
the students of this Faculty. One program is a Computer Science specialised
honours degree program (BSc SP H) and the other is a Bachelor of Applied
Science (BASc) honours degree program that is added as a 5th Stream
under Engineering.

3. New Streams. The admission requirements for these streams are consistent
with those of the current Computer Science programs offered within Arts,
Atkinson and FSE and are open to students in honours major (and
specialised honours) programs. Admission will add no additional
requirements and will not deviate from the requirements stipulated by the
honours degree upon which the stream is based. Students in a Computer
Science honours degree program (where computer science is not the minor
subject) who plan to proceed in one of these streams may so declare after
completing at least 24 credits in their studies, provided that they are in good
standing (honours). For details see Degree Checklists for 2004/05.

• Intelligent Systems Stream (available as of fall 2004/05)

• Interactive Systems Stream (available as of fall 2004/05)

• Communication Networks Stream (available as of fall 2005/06)
4. Recent Changes to Degree Requirements

• Beginning fall 2004, all the COSC degree programs require
COSC/MATH1019 3.0 instead of MATH2090 3.0. MATH1090 3.0 remains a
requirement, but students are asked to take it no later than year three.
However please note that core courses such as COSC3101 3.0 and
COSC3311 3.0 have MATH1090 3.0 as a prerequisite, which means that
normally MATH1090 3.0 must be completed prior to year three.

• Beginning fall 2004, all the specialised honours degree programs allow
COSC4115 3.0 as one of three ways to fulfil the 4th year theory requirement
(before that the choice was between COSC4101 3.0 and COSC4111 3.0).

 6

http://www.cs.yorku.ca/undergrad/04-05/checklists04-5.pdf

This choice is open to all students in a specialised honours program,
regardless of year of entry in the program.

• Beginning fall 2003, all the honours degree programs require COSC3002
1.0.

• Beginning summer 2002, the honours degree programs require MATH2030
3.0, and COSC3401 3.0, as partial fulfilment of the 3000-level COSC
breadth requirement.

• Beginning fall 2002, students may not take either of AK/AS/ITEC 1010 3.0 or
AK/AS/ITEC 1011 3.0 if they have taken or are taking any computer science
course at the 2000 level or higher.

• Beginning summer 2001, the Bachelor degree programs require MATH2090
3.0 (instead of MATH2320 3.0), and COSC3101 3.0, COSC3221 3.0 and
COSC3311 3.0 as partial fulfilment of the 3000-level COSC breadth
requirement.

• Beginning summer 2001, all the degree programs require COSC2031 3.0 in
addition to those 2000-level COSC courses previously required. We reduced
by 3.0 the required 3000-level computer science credit total for the honours
degrees.

• Beginning summer 2001, all the honours degree programs require the
following specific courses at the 3000-level to satisfy breadth: COSC3101
3.0, COSC3221 3.0, COSC3311 3.0, and one Applications area (Group A)
COSC34xx 3.0 course. For 90-credit degrees the 3000-level COSC breadth
requirement was unchanged.

5. New Courses and Course Changes as of FW2005/06
• NEW: COSC 4161 3.0, Introduction to Cryptography (cross listed with MATH

4161 3.0).
• NEW: COSC 4210 3.0, Architecture and Hardware for Digital Signal

Processing.
• NEW: COSC 4215 3.0, Mobile Communications.1
• NEW: COSC 4452 3.0, Digital Signal Processing: Theory and Applications.
• NEW: COSC 1550 3.0, Computer Use: Web and Database Systems

Programming (not for COSC major credit).
• COSC 1520 3.0 will be titled “Computer Use: Fundamentals”
• COSC 1530 3.0 will be titled “Computer Use: Programming”

6. New Courses and Course Changes as of FW2004/05
• COSC 1019 3.0 (cross-listed with MATH1019 3.0), Discrete Mathematics for

Computer Science.
• COSC 2550 1.0, Introduction to C# Programming (not for COSC major

credit).2

1 Offered in 2005/06.

2 Offered in 2005/06.

7

• COSC 2560 1.0, C# Programming Tools for Graphical User Interfaces (not
for COSC major credit).1

• COSC 4471 3.0, Introduction to Virtual Reality.2
• COSC 4081 6.0, Intelligent Systems Project. This project course is only open

to students in the Intelligent Systems Stream.
• COSC 4082 6.0, Interactive Systems Project. This project course is only

open to students in the Interactive Systems Stream.
• COSC 4084 6.0, Communication Networks Project. This project course is

only open to students in the Communication Networks Stream.
• COSC2021 4.0, Computer Organisation: revised description, credit weight

change from 3.0.
• COSC3122 3.0. Prerequisite change (MATH2270 3.0 deleted).
• COSC3101 3,0, 3311 3.0, 3341 3.0, 3401 3.0, 3402 3.0. Prerequisite

changes: MATH2090 is no longer required as a prerequisite, but MATH1090
is in its place. Students already in-stream will satisfy the MATH prerequisites
for these 3rd year courses either by completing MATH2090 (which
presupposes completion of MATH1090), or by completing MATH1090 3.0
and COSC1019 3.0 (because of item 7 below).

• COSC 4080 3.0, Computer Science Project now (as of Fall 2004) has a
required and graded final seminar (or poster) presentation component.

• COSC4211 3.0. Prerequisite change (COSC3408 3.0 no longer required).
7. 2000-level general prerequisites (Changes effective FW2004/5 underlined)

• COSC1030 3.0, completed with a grade of C+ or better
• COSC1019 3.0 (same as MATH1019 3.0)

8. 3000-level general prerequisites (Changes effective FW2004/5 underlined)
• COSC2011 3.0
• One of COSC2001 3.0 or COSC2021 4.0 or COSC2031 3.0
• A cumulative gpa of at least 4.5 over completed Computer Science courses

(including only the most recent grades in repeated courses)
• MATH1300 3.0 and MATH1310 3.0
• One of MATH1090 3.0 or MATH1025 3.0

9. 4000-level general prerequisites (Changes effective FW2004/5 underlined)
• Completed COSC2001 3.0, COSC2011 3.0, COSC2021 4.0, COSC2031 3.0
• Completed at least 12 credits in COSC courses at the 3000-level
• A cumulative gpa of at least 4.5 over completed Computer Science courses

(including only the most recent grades in repeated courses)
• Completed MATH1090 3.0

1 Offered in 2005/06.

2 Offered in 2005/06.

8

Programs Offered

For detailed information you are advised to first read the appropriate sections of the
York University Undergraduate Calendar (click on the related York University’s web
page http://calendars.registrar.yorku.ca/calendars/index.htm). Secondly, read this
supplemental Calendar, and thirdly, see an advisor in the Department of Computer
Science.

Computer Science is available as a major program leading to an Honours or a
Specialised Honours (120-credit) degree in the Faculty of Arts, the Faculty of Pure
and Applied Science and the Atkinson Faculty of Liberal and Professional Studies.
It may also be combined with most subjects in both Arts and Science leading to a
four-year double major or major-minor degree. These degree types are BA Honours
or BSc Honours.

The recommended courses in computer science and mathematics are identical in
most programs in the first two years of study so that students can make their final
decision as to which program to graduate in after they have more exposure to the
discipline.
Bachelor (90-credit) vs. Honours (120-credit) Programs
A BA or BSc program requires 90-credits (normally completed in three years of
study) and a minimum grade point average of 4.0 over all courses is required for
graduation. A BA Honours or BSc Honours program requires 120-credits (normally
completed in four years of study), more specialization, a higher minimum
performance (a grade-point-average of 5.0 to proceed—i.e., continue in the
program—and to graduate), and in some cases different courses than a BA or BSc
degree.

All programs are structured in such a way that a student who embarks on a BA
Honours or BSc Honours program can meet the requirements for a BA or BSc
degree by the end of the third year and can at that time graduate with either a BA or
BSc

If you have the grade point average to be eligible for an honours program (5.0), you
will be listed as an honours student for administrative purposes. Only the honours
programs (with the exception of the minor) are accredited by the CSAC.
Specialised Honours
Students selecting this program take more courses in computer science and
mathematics than for other programs in Computer Science thereby achieving
greater specialization. However, a breadth in education is maintained by the
requirement of a significant number of non-COSC and non-MATH courses.
BSc or BA Honours Double Major or Honours Major/Minor
The intention of a combined program is for students to major in two subjects while
maintaining a 5.0 average. In a double major program, students complete course
work up to the 4000-level in each subject. In a major/minor program the minor
subject generally requires somewhat less course work than the major, but still

 9

http://calendars.registrar.yorku.ca/calendars/index.htm

generally includes courses at the 4000-level. Such degrees may require students to
take more than the minimum of 120-credits to satisfy the honours requirements of
each subject. Consult advisors in both departments if you are planning a combined
program.

Elective Courses

Students in Computer Science sometimes feel their study in this discipline is quite
isolated from the other programs in their Faculty, and place little emphasis on their
choice of other courses, even though about a quarter of their courses are electives.
This is a mistake — computer science supports applications in every information-
using discipline. In order to make creative and effective use of your skills in
computing, you need to know much more of the natural world, the man-made world,
and the world of ideas, than can be learned in courses in computing.

There are many choices for elective courses. For example courses in economics,
philosophy (logic), psychology, linguistics, physics and chemistry to name just a few
whose announced content meshes with issues and problems studied in computer
science.

Not only should you consider taking individual courses in other subjects but you
should also consider taking a concentration of courses that together form a coherent
or complementary package. Such a concentration may come from one discipline
(one of the sciences, for example, because of their hierarchical structure) but it may
also come from two or three disciplines on related concepts presented from different
perspectives. It may also be necessary to take specific prerequisites before you can
take a desired elective course; such combinations also form coherent
concentrations.

To further emphasize the importance of elective courses, all honours programs
require at least 30 credits from non-COSC and non-MATH courses.

Industrial Internship Program
The internship program offers qualified undergraduate Computer Science students
the opportunity to take part in a program that alternates academic studies with
related work experience in either the private or public sectors. There is considerable
flexibility in the duration of individual Internships and the length of an Internship can
vary from four to sixteen months. During the work placement students earn a salary
typical of entry-level positions in the IT sector.

Students in the BA Honours, and BSc Honours programs are eligible to apply. A
minimum GPA of 6.0(B) over COSC and MATH courses taken is required, along
with the completion of 12.0 COSC credits including COSC3311 3.0. Applicants must
be full time students at York University in order to be considered for the Internship
program. Students enrolled in the Internship option normally take the work
placement between their 3rd and 4th years. Interested students should inquire about
the program after their second year of study.

 10

Students enrolled in the Internship option are required to enrol in COSC3900 0.0
(Internship Co-op Term) in each term of their internship.

The department maintains an Internship Office to assist students seeking internship
employment and to assist employers wishing to hire York University Internship
students. The Internship office coordinates recruitment activity on campus.
Internship students receive assistance in identifying relevant and interesting
internship opportunities, formulating the employer application package and
sharpening their interview skills. Students are placed at a wide range of companies
including IBM Canada Ltd., Nortel Networks, and Microforum.

For additional information please visit the link http://www.cs.yorku.ca/intern/ or e-
mail intern@cs.yorku.ca

Admission to the Graduate Program in Computer Science

Admission to the graduate program is highly competitive. The ideal preparation for
graduate studies in Computer Science is the completion of the Specialized Honours
Program in Computer Science (please consult the Computer Science degree
requirements, the degree checklist, and the course descriptions), or an equivalent
degree (including senior level courses in theoretical computer science). Your grade
point average in the last two years should be at least B+ to enter the competition for
admission. Of course, the higher your grades the more likely you will be a
successful candidate. For more information please visit http://www.cs.yorku.ca/grad

The Service Program

The Department also offers a variety of courses at the 1000-level and 2000-level
that are of interest to students wanting to learn about computers and computer use
without majoring in Computer Science. In some cases degree programs offered by
other departments may require these courses in their programs.

The starting courses for non-majors are COSC1520 3.0, COSC1530 3.0,
Introduction to Computer Use I & II, and COSC1540 3.0, Computer Use for the
Natural Sciences. The course COSC1530 3.0, Introduction to Computer Use II, is
an introduction to computer programming and may be taken as preparation for
COSC1020 3.0 or for COSC2501 1.0, if the student lacks background in this area.
Students taking the 1500 series courses are not eligible to take the 2000-level
Computer Science courses for majors without successful completion of COSC1020
3.0 and COSC1030 3.0.

At the 2000-level the Department offers the course COC2501 1.0, Fortran and
Scientific Computing, which covers computer-based problem solving in a variety of
scientific and engineering settings.

 11

http://www.cs.yorku.ca/intern/
mailto:intern@cs.yorku.ca
http://www.cs.yorku.ca/grad

York University Computer Club

The York University Computer Club (YUCC) is an organization of students in the
Department of Computer Science. They nominate students to serve on department
committees, sponsor informational and social events and facilitate communications
among computer science students and faculty members. They can be reached by
electronic mail at yucc@yucc.yorku.ca

The Student Ombuds Service
The Student Ombuds Service (SOS) is a peer-advising service designed to help
York students — especially those in Bethune College and the Faculty of Pure and
Applied Science — find university-related information that they need. The SOS
office is staffed with knowledgeable upper-level students and serves as a resource
center and the hub of a referral network, assisting students to find answers to any
questions about York University policies and procedures, giving general academic
help, and advice about University life. SOS resources include departmental mini-
calendars, graduate and professional school information, a tutor registry, and a
study group registry. The SOS office is located in 214 Bethune College and holds
drop-in hours between 10:00 a.m. and 4:00 p.m., Monday to Friday. No appointment
is necessary. SOS can also be reached on the web, http://www.yorku.ca/sos, by e-
mail at sos@yorku.ca, or by phone at 416-736-5383.

Computer Facilities

Undergraduate students use the Prism Lab, the Department of Computer Science
and Engineering undergraduate computing laboratories. The Unix servers of the
labs can be accessed remotely by dial-up, through the Internet or through the X-
terminals in the labs. Students can also access the Unix or Windows workstations
in the labs through scheduled lab sessions, terminal reservation system or first
come first serve basis. All students can access the 24-hour Maxwell Lab consisting
of colour X-terminals. All labs are equipped with printing facilities. Senior students
may also use a variety of specialty laboratories in their courses including the
Robotics, the Real-Time, The Digital Logic, and The Embedded Systems
Laboratories.

� The Robotics Laboratory consists of two CRS robot arms, an autonomous
mobile robot, four Unix and one Windows workstations equipped with multimedia
hardware including video and audio facilities.

� The Digital Logic Laboratory provides hands-on experience in digital logic
design connecting discrete components such as gates, flip-flops and registers on
integrated circuit chips.

� The Real-Time lab provides hands-on experience on design, construction and
verification of real-time systems, utilizing four Unix workstations where students
experiment with Real Time Application Interface (RTAI), and learn how to perform
kernel programming and make changes to an operating system kernel such as

 12

mailto:yucc@yucc.yorku.ca
http://www.yorku.ca/sos
mailto:sos@yorku.ca

the Linux kernel in order to create a real-time platform in which hard timing
constraints of time-critical tasks are guaranteed to be satisfied, while at the same
time allow both time-critical and non time-critical tasks to coexist in the system,
and still provide all the highly desirable services of a general purpose operating
system.

� The Embedded Systems Laboratory consists of Windows workstations,
embedded microcontroller boards, FPGA boards, logic analysers, oscilloscopes
to provide students with hands-on experience on design and implementation of
embedded systems.

� The Software Engineering Laboratory consists of a project meeting area and a
work area with Unix and Windows workstations equipped with modern software
development tools to provide students experience with various phases of the
software development life cycle such as requirements, analysis and design,
implementation, testing, delivery, and maintenance.

All workstations and computers in the Department are connected up to the campus
network backbone, providing access to all significant systems in the University, as
well as computers around the world via the Internet.

Access to the Prism Lab computers requires an authorised account and a
password, as issued by the Department. Each student receives a Prism account,
providing a personal space for storing files, electronic mail, web publishing, course
work, and access to printing facilities.

Students can also access their accounts remotely from other designated labs on
campus or from home computers.

Computer Use Policy

Working in a laboratory situation requires cooperative behaviour that does not harm
other students by making any part of the department’s computer systems unusable
such as locking out terminals, running processes that require lots of network traffic
(such as playing games on multiple terminals), or using the facilities to work on
tasks that are not related to computer science course work. Essentially, all users of
common facilities need to ask themselves whether or not their behaviour adversely
affects other users of the facility and to refrain from engaging in "adverse
behaviour". Good manners, moderation and consideration for others are expected
from all users. Adverse behaviour includes such things as excessive noise,
occupying more space than appropriate, harassment of others, creating a hostile
environment and the displaying of graphics of questionable taste. Lab monitors are
authorized to ensure that no discomfort is caused by such practices to any user.

The department policy on computer use prohibits attempting to break into someone
else's account, causing damage by invading the system or abusing equipment,
using electronic mail or file transfer of abusive or offensive materials, or otherwise
violating system security or usage guidelines. As well, we expect you to follow

 13

Senate policies (please follow the link on the related Senate Policy
http://www.yorku.ca/secretariat/legislation/senate/computng.htm)

The department computer system coordinator, in conjunction with the department
and York Computing Services, will investigate any suspected violation of these
guidelines and will decide on appropriate penalties. Users identified as violating
these guidelines may have to make monetary restitution and may have their
computing privileges suspended indefinitely. This could result in your being unable
to complete computer science courses, and a change in your major.

Adverse behaviour may also violate University, Provincial and Federal laws; for
example duplication of copyrighted material and theft of computer services are both
criminal offences. In such cases the University, Provincial or Federal authorities
may act independently of the Department. The police may be asked to investigate
and perpetrators may be liable for civil and/or criminal prosecution. The Department
of Computer Science does not assume any liability for damages caused by such
activities.

Computer Science Awards

Unless otherwise stipulated students in the Faculty of Pure and Applied Science,
Atkinson Faculty of Liberal and Professional Studies, and the Faculty of Arts are
eligible for these awards. The department maintains plaques commemorating the
achievement awards.
Mark A. Levy Computer Science Award
Up to five prizes will be awarded to outstanding Faculty of Pure and Applied Science
students enrolled in third or fourth year computer science courses.
Nancy Waisbord Memorial Award
This is a cash award presented annually to a graduating student who has
consistently demonstrated excellence in Computer Science.
Computer Science Academic Achievement Award
Up to two cash awards will be presented to outstanding graduating students in an
Honours program. These awards are funded by contributions from faculty members
in the Department.
Other Awards
Students in the Department are encouraged to apply for Summer Science awards
such as the NSERC Undergraduate Summer Research Award. These awards pay
students a salary over the summer while they are working on a research project
under the supervision of a faculty member. Normally students who have completed
at least their 2nd year may apply and typically a grade point average of at least
7.0(B+) is required.

In addition, faculty sometimes employ undergraduate research assistants over the
summer period. While not an award administered by NSERC, such positions are
only offered to the best students in the Department.

 14

http://www.yorku.ca/secretariat/legislation/senate/computng.htm

 15

Prestigious Awards
The Faculties of Arts and Pure and Applied Science also award various medals to
their top-graduating students. These include the Governor General's Silver Medal
(Faculty of Arts) and the Gold Medal of Academic Excellence (Faculty of Pure and
Applied Science).
Atkinson Faculty awards
Students whose home Faculty is Atkinson Faculty of Liberal and Professional
Studies are also eligible for the following scholarships and bursaries:

� Computer Science Major Program Scholarships

� Atkinson Faculty Students' Association Scholarship

� Hany Salama Bursary

� Sally Murray Findley Memorial Scholarship
See the Atkinson Faculty Calendar for details.

Academic Policies

Advising
Academic advising is available on an individual or a group basis in the Department
of Computer Science. Group advising provides help in choosing courses to fulfil
degree requirements. Individual faculty advising is available to discuss academic
issues relevant to computer science such as recommended mathematical skills,
theoretical versus applications oriented courses, areas of specialization, graduate
studies and career paths.

It is ultimately the responsibility of each student to ensure that they meet all degree
requirements of both the Department and their home Faculty (i.e., Pure and Applied
Science, Arts, or Atkinson). Written information and program check lists are
provided to assist you in making appropriate choices. It is recommended that you
take advantage of advising opportunities to answer any questions you may have.

Group advising is scheduled by year level during March and early April. In addition,
individual advising appointments may be made through the Undergraduate Office.
Academic Honesty
The Faculty of Arts, Faculty of Pure and Applied Science, Atkinson Faculty of
Professional and Liberal Studies, and the Department have policies on academic
honesty and their enforcement is taken very seriously. Academic honesty is
essentially giving credit where credit is due. When a student submits a piece of work
it is expected that all unquoted and unacknowledged ideas (except for common
knowledge) and text are original to the student. Unacknowledged and unquoted text,
diagrams, etc., which are not original to the student, and which the student presents
as their own work is academically dishonest. The deliberate presentation of part of
another student's program text or other work as your own without acknowledgment
is academically dishonest, and renders you liable to the disciplinary procedures
instituted by the Faculty of Pure and Applied Science.

The above statement does not imply that students must work, study and learn in
isolation. The Department encourages students to work, study and learn together,
and to use the work of others as found in books, journal articles, electronic news
and private conversations. In fact, most pieces of work are enhanced when relevant
outside material is introduced. Thus faculty members expect to see quotes,
references and citations to the work of others. This shows the student is seeking
out knowledge, integrating it with their work, and perhaps more significantly,
reducing some of the drudgery in producing a piece of work.

As long as appropriate citation and notice is given students cannot be accused of
academic dishonesty.

A piece of work, however, may receive a low grade because it does not contain a
sufficient amount of original work. In each course, instructors describe their
expectations regarding cooperative work and define the boundary of what is
acceptable cooperation and what is unacceptable. When in doubt it is the student’s
responsibility to seek clarification from the instructor. Instructors evaluate each piece
of work in the context of their course and given instructions.

You should refer to the appropriate sections of the York University Undergraduate
Calendar

http://calendars.registrar.yorku.ca/calendars/index.htm

and Senate policies

http://www.yorku.ca/secretariat/legislation/senate/acadhone.htm

for further information and the penalties when academic dishonesty occurs.
Concerns about Fairness
The Department's faculty members are committed to treating all students fairly,
professionally, and without discrimination on non-academic grounds including a
student’s race or sex. Students who have concerns about fair treatment are
encouraged to discuss the matter with their instructor or the course director. If this
is not possible or does not resolve the problem, the matter should be brought to the
attention of the Undergraduate Director, and if necessary, the Department Chair, for
a departmental response.
Moving to New Program Requirements and new prerequisites
Computer Science is a relatively young and rapidly changing discipline. To ensure
that our students graduate with current degree programs that are informed by the
latest advances in the field, the department has determined the following principles
governing the applicability of new degree program requirements:

� If you have been taking courses in consecutive years then the starting year in
computer science is the year in which you take your first major COSC course,
and it normally coincides with the year you were admitted into the program. If you
have a break in your studies then your starting year changes to the year in which
you start taking major COSC courses again. Since most Senate approved

 16

http://calendars.registrar.yorku.ca/calendars/index.htm
http://www.yorku.ca/secretariat/legislation/senate/acadhone.htm

 17

degree program regulations become effective in the fall term following approval,
your starting year is the current academic year if you start in the fall, winter, or the
immediately following summer terms. For example: starting in fall 2001 you follow
the 2001-02 program requirements; starting in winter 2002 or summer 2002 you
also follow the 2001-2002 program requirements.

� If program requirements change you may continue with your studies using the
program requirements in effect in your starting year. In this case the degree
checklists in this calendar may not apply to you. You should use the degree
checklists applicable to your starting year.

� If program requirements change you may elect to graduate under the new
requirements—that is, those in effect in the year of your graduation—but you
must meet all of them. You are not permitted to mix and match old and new
requirements, or to pick and choose from among various requirements that were
in effect between your starting year and graduation year.

� Changes in prerequisites to courses or to groups of courses are not changes in
degree requirements, and apply to all students regardless of their year of entry or
re-entry to the program. Prerequisite changes normally are effective starting with
the term immediately following their approval.

Appeal Procedures

The Department expects a student's disagreement with an evaluation of an item of
course work (e.g., final examination, assignment report, class test, oral presentation,
laboratory presentation, class participation) to be settled with the instructor
informally, amicably and expeditiously.

If however a formal appeal becomes necessary due to lack of an informal
settlement, there are distinct procedures to follow for term work on one hand and for
final examinations and final grades on the other. Of necessity, a formal appeal must
involve only written work.
Term Work
An appeal against a grade assigned to an item of term work must be made to the
instructor within 14 days of the grade being made available.
In the case of a multi-sectioned course (where the instructor is not the course
director), a second appeal may be made to the course director within 14 days of
the decision of the instructor.
If a student feels that their work has not been fairly reappraised by the course
director, then they may appeal for a reappraisal by the departmental petitions
committee. Such a request is made in writing using the appropriate form obtained
from the Undergraduate Office. The request must be made within 14 days of the
decision of the course director.
Final Exams and Final Grades
An appeal for reappraisal of a final grade must be made in writing on a standard

departmental form, obtained from the Undergraduate Office, within 21 days of
receiving notification of the grade (see
http://www.registrar.yorku.ca/services/policies/grade.htm for more details on
the University’s reappraisal policies).
The departmental petitions committee will discuss the appeal with the course
director to ensure that no grade computation, clerical or similar errors have been
made. If such an error is discovered, a correction will be made and the student and
the Registrar's Office will be notified.

If a final examination is to be reappraised then the departmental petitions committee
will select a second reader for the examination paper. The petitions committee will
consider the report of the second reader and recommend a final grade, which may
be lower than the original grade. The student will receive the report of the petitions
committee and the Registrar's Office will be informed of any grade change. The
decision of the department petitions committee can only be appealed on procedural
grounds to the Executive Committee of the Faculty.

Grading System

Grading at York University is done on a letter scale. The following table shows the
grading scale used. The number in parenthesis is the grade point that is used to
determine the grade point average. The grade point average is a credit weighted
average of all relevant courses.

� A+ (9) Exceptional — Thorough knowledge of concepts and/or techniques and
exceptional skill or great originality in the use of those concepts and techniques in
satisfying the requirements of a piece of work or course.

� A (8) Excellent — Thorough knowledge of concepts and/or techniques together
with a high degree of skill and/or some elements of originality in satisfying the
requirements of a piece of work or course.

� B+ (7) Very Good — Thorough knowledge of concepts and/or techniques
together with a fairly high degree of skill in the use of those concepts and
techniques in satisfying the requirements of a piece of work or course.

� B (6) Good — Good level of knowledge of concepts and/or techniques together
with a considerable skill in using them in satisfying the requirements of a piece of
work or course.

� C+ (5) Competent — Acceptable level of knowledge of concepts and/or
techniques together with considerable skill in using them to satisfy the
requirements of a piece of work or course.

� C (4) Fairly Competent — Acceptable level of knowledge of concepts and/or
techniques together with some skill in using them to satisfy the requirements of a
piece of work or course.

 18

http://www.registrar.yorku.ca/services/policies/grade.htm

� D+ (3) Passing — Slightly better than minimal knowledge of required concepts
and/or techniques together with some ability to use them in satisfying the
requirements of a piece of work or course.

� D (2) Barely Passing — Minimum knowledge of concepts and/or techniques
needed to satisfy the requirements of a piece of work or course.

� E (1) Marginally failing.

� F (0) Failing.

Course Fees

All computer science courses have an associated fee of $10.00, with the following
exceptions: All 4000-level courses; all service courses; COSC1019 3.0, COSC3001
1.0, COSC3002 1.0, COSC3121 3.0, COSC3122 3.0 and COSC3900 0.0. This fee
is to offset consumable costs associated with operating the PRISM lab. This
includes paper, toner, and maintaining and servicing printers within the lab.

The cost of these fees will be reviewed from year to year and adjusted accordingly.
The associated course fee will not normally be refunded, but will be refunded if you
withdraw from the course before the first lecture or because of Departmentally
initiated de-enrolment.

Course Weights
Courses in Computer Science normally meet for three class hours a week for one
term (these are 3 credit–courses whose numbers end in "3.0"). Some courses have
required one-hour labs per week (e.g., COSC1020 3.0 and COSC1030 3.0).
Catalogue numbers are assigned to the labs rather than the lectures and students
use the REM to enrol by selecting an appropriate lab. Other courses have a similar
registration system and lab requirements, but the associated labs are three hours
per week, which entails a 4.0 weight for the course (e.g., COSC 2021, 3201, 3215
are “4.0 courses”). Many of the 3.0 courses at the 2000 and 3000 levels have
optional tutorials. All COSC courses put heavy demands on the student’s time by
requiring the completion of take-home assignments or projects.
On the other hand, COSC3002, a course required of all honours students, has a
weight of 1.0. This is a seminar course and meets once every second week for one
hour each time, throughout two successive terms (Fall and Winter).

Course Descriptions: 1000-Level

Courses with second digit 5 (e.g. 1520, 1530, 1540, 2501, 2550, 2560) may be
taken to satisfy Faculty degree requirements but do not count as Computer Science
major credit, and the grades from such courses are not included in calculating the
Computer Science prerequisite grade point average. In what follows, if a course is
referenced by its rubric (e.g., MATH, COSC) and number only, then the Faculty
prefix “AS/AK/SC/” is implied. If the prefix is different than this, then it will be
explicitly given, e.g., “AK/COSC3503 3.0”, “AS/AK/ITEC1620 3.0”.
 19

COSC 1019 3.0
Discrete Mathematics for Computer Science
(Cross listed with MATH 1019 3.0)
Introduction to abstraction. Use and development of precise formulations of
mathematical ideas. Informal introduction to logic; introduction to naïve set theory;
induction; relations and functions; big-O notation; recursive definitions, recurrence
relations and their solutions; graphs and trees. The detailed list of topics includes
1. Proof techniques (without using a formal system)

• proof by contradiction
• proof by cases
• proving implications
• proving statements with quantifiers
• mathematical induction on natural numbers

2. Naïve set theory
• proving that one set is a subset of another
• proving equality of two sets
• basic operations on sets (union, intersection, Cartesian product, power

sets, etc.)
• cardinality of sets (finite and infinite)
• strings

3. Functions and relations
• review of basic definitions (relation, function, domain, range,
• functions, 1-1 correspondence, function composition, closures of relations,

etc.)
• equivalence relations

4. Asymptotic notation
Ω• big-O, big- , big- notation Θ

• proving f is in O(g), proving f is not in O(g)
• classifying functions into a hierarchy of important classes, e.g.,

O(1), O(log n), O(n), O(n), O(n2), O(nO(1)), O(2n)
5. Recursive definitions and solving recurrences

• recursive definitions of mathematical objects
• solving simple recurrences
• bounding divide-and-conquer recurrences of the form

f (n) = af (n /b) + g(n), for constants a and b.
• using structural induction on recursively defined objects

6. Sums
• summation notation
• computing and bounding simple sums

7. Elementary graph theory
• basic definitions of graphs
• proving simple facts about graphs
• trees

 20

Prerequisites: MATH1190 3.0, or both of 12U Advanced Functions & Introductory
Calculus and 12U Geometry & Discrete Mathematics.
Course Credit Exclusion: MATH2320 3.0

COSC 1020 3.0
Introduction to Computer Science I
The course lays the conceptual foundation of object-oriented programming. Topics
include data types, control structures, API usage, encapsulation, and other
abstractions. The course also covers the software development process;
composition and inheritance; and exception handling. Implementation is done in
Java with emphasis on software engineering principles and coding style. Three
lecture hours and weekly laboratory sessions. The laboratory sessions form an
integral part of the lectures and may cover examinable material that is not covered
in class.

This course is an introduction to the discipline; it is not a survey course. As such the
emphasis is on the development of a theoretical conceptual foundation and the
acquisition of the intellectual and practical skills required for further courses in
computer science. The course is intended for prospective computer science and
computer engineering majors, i.e. those with a well-developed interest in computing
as an academic field of study and with strong mathematical, analytical and language
abilities; it is not intended for those who seek a quick exposure to applications or
programming (for this purpose any of COSC1520, COSC1530 or COSC1540 would
be more appropriate).
Warning: The work for this course includes a substantial number of exercises that
require problem analysis, program preparation, testing, analysis of results, and
documentation and submission of written reports. The course is demanding in
terms of time, and requires the student to put in many hours of work per week
outside of lectures.

Recommendation: You will benefit if you have prior practical experience with
programming as well as using a computer. Students who wish to take a one-course
exposure to the practical aspects of computing should consider enrolling in
COSC1520 3.0 and COSC1530 3.0 instead (see the following descriptions).

Prerequisites: One of (1) – (4) below must be met:

(1) (New high school curriculum): Advanced functions & introductory calculus,
and geometry & discrete mathematics with minimum mathematics average of
75% and no mathematics grade below 65%.

(2) (Old high school curriculum): OAC calculus and one other OAC in mathematics
(normally finite mathematics or algebra & geometry) with an average grade of
75% in all OAC mathematics and no grade less than 65%.

 21

(3) Completion of 6.0 credits from York University MATH courses (not including
AK/MATH1710 6.0 or courses with second digit 5) with a grade average of 5.0 (C+)
or better over these credits;

(4) Completion of AK/MATH1710 6.0, or 6.0 credits from York University
mathematics courses whose second digit is 5, with an average grade not below 7.0
(B+).
Strongly Recommended: Previous programming experience; for example, a high
school programming course or COSC1530 3.0.
Course Credit Exclusion: AK/AS/ITEC1620 3.0

COSC 1030 3.0
Introduction to Computer Science II
This course builds on COSC1020 and covers an introduction to object-oriented
programming and design. The emphasis is on class implementation and design.
Concepts of software reusability and software extensibility are introduced through
the object-oriented techniques of inheritance and polymorphism. Case studies
involving a collection of classes related by has-a and is-a relationships are designed
and implemented in detail during lectures and tutorials. Other topics include system
design, recursion, searching and sorting, and introductory data structures. Three
lecture hours and weekly laboratory sessions.

The workload includes a number of assignments, a midterm and a final exam.
Prerequisites: COSC1020 3.0
Course Credit Exclusion: AK/AS/ITEC2620 3.0

COSC 1520 3.0
Computer Use: Fundamentals
This course is appropriate for students who are not majoring in Computer
Science, but who would like an introduction to the use of the computer as a
problem-solving tool. No previous computing experience is assumed, but the
course does involve extensive practical work with computers, so some facility with
problem-solving and symbolic operations will be very helpful.

An introduction to the use of computers focusing on concepts of computer
technology and organization (hardware and software), and the use of applications
and information retrieval tools for problem solving.

Topics to be studied include: the development of information technology and its
current trends; analysis of problems for solution by computers, report generation, file
processing; spreadsheets; database; numeric and symbolic calculation; the
functions of an operating system; interactive programs.

Students should be aware that like many other computer courses, this course is
demanding in terms of time, and should not be added to an already heavy load.
There is scheduled and unscheduled time in the Glade laboratory. The course is
not appropriate for students who want more than an elementary knowledge of

 22

computing and it cannot be used as a substitute for COSC1020 3.0/1030 3.0:
Introduction to Computer Science.

Prerequisites: None
NCR Note: No credit will be retained if this course is taken after the successful
completion of or simultaneously with COSC1020 3.0.
Note: This course counts as elective credits towards satisfying Faculty degree
requirements but does not count as Computer Science major credits.

COSC 1530 3.0
Computer Use: Programming
Concepts of computer systems and technology — e.g. software engineering,
algorithms, programming languages and theory of computation are discussed.
Practical work focuses on problem solving using a high-level programming
language. The course requires extensive laboratory work.

Note: This course is designed for students who are not Computer Science majors.
However, those who wish to major in Computer Science but lack programming
background may use it as preparation. Students who plan to major in Computer
Science must also take COSC1020 3.0 and COSC1030 3.0. This course does not
count as a Computer Science major credit.

Prerequisites: None
Course Credit Exclusions: COSC1540 3.0.
NCR Note: No credit will be retained if this course is taken after the successful
completion of or simultaneously with COSC1020 3.0.

COSC 1540 3.0
Computer Use for the Natural Sciences
Introduction to problem solving using computers — top down and modular design;
implementation in a procedural programming language — control structures, data
structures, subprograms; application to simple numerical methods, modelling and
simulation in the sciences; use of library subprograms. This course is intended for
students in the Faculty of Pure and Applied Science and students in the BA Applied
Math program.

Note: This course is not open to any student who has passed or is taking
COSC1020 3.0. This course counts as elective credits towards satisfying Faculty
degree requirements but does not count as Computer Science major credits.

Suggested reading:
• Nyhoff and Leestma, Fortran 77 for Engineers and Scientists, 3rd Edition,

Maxwell Macmillan.
• Keiko Pitter et. al., Every Student's Guide to the Internet (Windows version),

McGraw-Hill, 1995.
Prerequisites: None.
Course Credit Exclusion: COSC1530 3.0.

 23

NCR Note: No credit will be retained if this course is taken after the successful
completion of or simultaneously with COSC1020 3.0.

COSC 1550 3.0
Computer Use: Web and Database Systems
This course offers a practical way of learning the basics of how information is

specified, acquired, and managed using database technology. It therefore
incorporates four core practices:

� determining the information requirements for a system

� specifying those requirements

� developing a relational database to store the information

� using SQL to manipulate databases

These topics are introduced in a realistic context to promote understanding of how

information is used to support business and other organizations. In particular, the
course examines the use of database management systems to manage the
information content of Web sites. Students also learn to:

• construct web pages in HTML
• design interactive web sites
• design and implement dynamic Web applications

The content for the course is organized in a modular fashion:
1. Introduction to Information Technology and the WWW

A. Introduction to Information and Database Systems
B. Internet Information Systems (Web Pages and HTML and Web

Servers)
2. Designing and Specifying Information Systems

A. Data Models
B. Entity-Relationship Diagrams

3. Designing and Creating Relational Databases
A. Developing Relational Models
B. Defining Relational Databases in MS Access
C. Improving Designs

4. Manipulating Relational Information
A. Using MS Access
B. Using SQL

5. Creating Interactive Web Sites
A. Presenting information with HTML
B. Introduction to ASP and JavaScript

Database Applications for the Web.

Prerequisites: None

 24

NCR Note: No credit will be retained if this course is taken after the successful
completion of, or simultaneously with, COSC3421 3.0 or ITEC3220 3.0.
Note. This course does not count for Computer Science major credit.

Course Descriptions: 2000-Level

General Prerequisites
� COSC1030 3.0 with a grade of C+ or better

� COSC1019 3.0

Specific prerequisites may also apply to individual courses. Normally a maximum of
three COSC courses may be taken in any one of the fall or winter terms at any level
higher than 1000 provided that prerequisites are met.

COSC 2001 3.0
Introduction to the Theory of Computation
The course introduces different theoretical models of computers. Topics covered
may include the following.

• Finite automata and regular expressions; practical applications, e.g., text
editors

• Pushdown automata and context-free grammars; practical applications, e.g.,
parsing and compilers

• Turing machines as a general model of computers; introduction to
unsolvability: the halting problem

Prerequisites: General prerequisites

COSC 2011 3.0
Fundamentals of Data Structures
This course discusses the fundamental data structures commonly used in the
design of algorithms. At the end of this course, students will know the classical data
structures, and master the use of abstraction, specification and program
construction using modules. Furthermore, students will be able to apply these skills
effectively in the design and implementation of algorithms.

Topics covered may include the following.
• Review of primitive data types and abstract data type — arrays, stacks,

queues and lists
• Searching and sorting; a mixture of review and new algorithms
• Priority queues
• Trees: threaded, balanced (AVL-, 2-3-, and/or B-trees), tries
• Graphs: representations; transitive closure; graph traversals; spanning trees;

minimum path; flow problems

Prerequisites: General prerequisites

 25

COSC 2021 4.0
Computer Organization
This course provides a description of how computers work by following the
abstraction trail from the high-level programming layer down to the digital-logic
component layer. By understanding how the features of each abstraction layer are
implemented in the one beneath it, one can grasp the tapestry of the
software/hardware interface.

Topics include programming in assembly language, machine instructions and their
encoding formats, translating and loading high-level programs, computer
organization and performance issues, CPU structure, single/multi-cycle datapath
and control, pipelining, and memory hierarchy. The course presents theoretical
concepts as well as concrete implementations on a modern RISC processor.

The lab sessions (3 hours/week) involve experiments on assembly and machine
language, hardware description languages and simulators, processor architectures,
cache memories.

Suggested reading:

• Patterson, D. and Hennessy, J., Computer Organization and Design: The
Hardware / Software Interface, 2nd Edition, Morgan Kaufmann Publishers,
1997.

• Tanenbaum, A.S., Structured Computer Organization, 5th ed., Prentice-Hall,
1999.

• Stallings, Wm., Computer Organization and Architecture, 5th ed., Macmillan,
2000.

Prerequisites: General prerequisites

COSC 2031 3.0
Software Tools
This course introduces software tools that are used for building applications and in
the software development process. It covers the following topics:

• ANSI-C (stdio, pointers, memory management, overview of ANSI-C libraries)
• Shell programming
• Filters and pipes (shell redirection, grep, sort & uniq, tr, sed, awk, pipes in C)
• Version control systems and the "make" mechanism
• Debugging and testing
• All the above tools will be applied in practical programming assignments

and/or small-group projects.

Suggested reading:
• Kernighan and Ritchie, The C Programming Language (ANSI C Edition).
• Kernighan and Pike, The Practice of Programming.

Prerequisites: General prerequisites

 26

COSC 2501 1.0
Fortran and Scientific Computing
Covers computer-based problem solving in a variety of scientific and engineering
settings. Introduces the FORTRAN programming language and its interface with
scientific libraries
The first third of the course (4 weeks) is in lecture format (3 hours per week)
covering the following topics.

• Data types, control structures and program structure
• Functions and subroutines
• Arrays
• I/O
• Errors in computations
• For the remainder of the term students work on their own on various

projects. Project applications are drawn mainly from the following scientific
areas.

• Numerical methods: linear systems; curve fitting; non-linear equations;
optimisation; differential equations; Fourier transform

• Simulation: random numbers; distributions; queues
• Monte Carlo method
• Processing experimental data
• Data visualization
• Chaos and fractals

Prerequisites: COSC1020 3.0 or COSC1530 3.0
Course Credit Exclusion: COSC1540 3.0

COSC 2550 1.0
Introduction to C# Programming
Introduction to the C# programming language: programming constructs analogous
to those taught in COSC1030 3.0; basic data structures if time permits.
[1 hour] Orientation
[2 hours] Comparison of C# vs. Java and C, C++. The VisualStudio.NET
development environment. C# program structure.
[1 hour] Control structures (if/else, while, for, switch, break, continue)
[1 hour] Operator overloading
[2 hours] Arrays, strings
[1 hour] Exception handling
[5 hours] Classes, methods, namespaces, parameter passing, method and
constructor overloading, inheritance, polymorphism, interfaces, abstract classes.

Prerequisites: COSC1030 3.0 or ITEC2620 3.0
Note: This course does not count for major credit towards a Computer Science
degree.

 27

COSC 2560 1.0
C# Programming Tools for Graphical User Interfaces
Introduction to programming graphical user interfaces (GUI) in the C# programming
language: building GUIs in C# under the VisualStudio.NET IDE; the major GUI
components and event handling mechanism of C#.
[1 hour] Orientation and general introduction
[2 hours] GUI development: General, C# and .NET specific
[3 hours] Events
[1 hour] Building Windows applications: Forms
[6 hours] GUI components of C#: Labels, TextBoxes, Buttons, GroupBoxes, Panels,
CheckBoxes, RadioButtons, PictureBoxes, Menus, LinkLabels, ListBoxes. More
advanced features as time permits (for example, colour control, font control,
drawing, imaging, animation).
Prerequisite: COSC2550 1.0
Note: This course does not count for major credit towards a Computer Science
degree

Course Descriptions: 3000-Level

General Prerequisites
� COSC2011 3.0

� One of COSC2001 3.0 or COSC2021 4.0 or COSC2031 3.0

� A cumulative grade point average of 4.5 or better over completed Computer
Science courses (including only the most recent grades in repeated courses)

� MATH1300 3.0 and MATH1310 3.0

� One of MATH1090 3.0 or MATH1025 3.0

Specific prerequisites may also apply to individual courses.
Notes:

• Normally a maximum of three COSC courses may be taken in any one of the
fall or winter terms at any level higher than 1000 provided that prerequisites
are met.

• Although Java is used in introductory courses, some upper level courses
assume students have a working knowledge of C++, and/or the C
programming language; therefore students may want to plan on completing
COSC2031 3.0 before entering third year.

 28

COSC 3001 1.0
Organization and Management Seminar in Space and Communication
Sciences
(Cross listed with SC/EATS3001 1.0 and SC/PHYS3001 1.0)
This is a seminar course taught by guest speakers from industry, government and
the university. Content changes from year to year, but includes such topics as
professional ethics, communications regulations, space law, space science policy,
project management, privacy and security issues in computing.

Prerequisites: Eligibility to proceed in the Specialized Honours stream in SCS
beyond the 2000-level requirements
Course Credit Exclusions: EATS 3001 1.0, PHYS 3001 1.0, COSC3002 1.0

COSC 3002 1.0
Organization and Management Seminar
This is a seminar course taught by guest speakers from industry, government and
the university. Content changes from year to year, but includes topics such as
professional ethics, communications regulations, project management, privacy and
security, legal issues in computing.

Prerequisites: General prerequisites
Course Credit Exclusions: EATS 3001 1.0, PHYS 3001 1.0, COSC3001 1.0

COSC 3101 3.0
Design and Analysis of Algorithms
This course is intended to teach students the fundamental techniques in the design
of algorithms and the analysis of their computational complexity. Each of these
techniques is applied to a number of widely used and practical problems. At the end
of this course, a student will be able to: choose algorithms appropriate for many
common computational problems; to exploit constraints and structure to design
efficient algorithms; and to select appropriate tradeoffs for speed and space.

Topics covered may include the following:
• Review: fundamental data structures, asymptotic notation, solving

recurrences
• Sorting and order statistics: heapsort and priority queues, randomised

quicksort and its average case analysis, decision tree lower bounds, linear-
time selection

• Divide-and-conquer: binary search, quicksort, mergesort, polynomial
multiplication, arithmetic with large numbers

• Dynamic Programming: matrix chain product, scheduling, knapsack
problems, longest common subsequence, some graph algorithms

• Greedy methods: activity selection, some graph algorithms

29

• Graph algorithms: depth-first search, breadth-first search, biconnectivity and
strong connectivity, topological sort, minimum spanning trees, shortest paths

• Amortization: the accounting method, e.g., in Graham's Scan convex hull
algorithm

• Theory of NP-completeness

Suggested reading:
• T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms,

McGraw-Hill and The MIT Press, 1991.
• P. Gloor, S. Dynes, I. Lee, Animated Algorithms CD-ROM, The MIT Press

1993.
• D.E. Knuth, The Stanford GraphBase: A platform for combinatorial computing,

Addison-Wesley & The ACM Press, 1993.

Prerequisites: General prerequisites, including COSC2001 3.0 and MATH1090 3.0

COSC 3121 3.0
Introduction to Numerical Computations I
(Cross listed with AS/SC/MATH 3241 3.0)
This course is concerned with an introduction to matrix computations in linear
algebra for solving the problems of linear equations, non-linear equations,
interpolation and linear least squares. Errors due to representation, rounding and
finite approximation are studied. Ill-conditioned problems versus unstable
algorithms are discussed. The Gaussian elimination with pivoting for general system
of linear equations, and the Cholesky factorisation for symmetric systems are
explained. Orthogonal transformations are studied for computations of the QR
decomposition and the Singular Values Decompositions (SVD). The use of these
transformations in solving linear least squares problems that arise from fitting linear
mathematical models to observed data is emphasized. Finally, polynomial
interpolation by Newton's divided differences and spline interpolation are discussed
as special cases of linear equations. The emphasis of the course is on the
development of numerical algorithms, the use of intelligent mathematical software
and the interpretation of the results obtained on some assigned problems.

Topics covered may include the following:
• Preliminaries—linear algebra, computer programming and mathematical

software
• Number systems and errors—machine representation of numbers, floating-

point arithmetic, simple error analysis, ill-conditioned problems and unstable
algorithms

• Solution of systems of linear equations—Gaussian elimination and its
computational complexity, pivoting and stability, special structures
(Cholesky's factorisation for positive definite systems, banded systems,
storage and computational complexities) error analysis, condition number
and iterative refinement

• Solution of over determined systems of linear equations by linear least
squares approximations—linear least squares problems, normal equations,
orthogonal transformations (Given's and Householder's), QR and singular
value decompositions (SVD), SVD and rank-deficient problems,
computational complexities versus robustness

 30

• Interpolation—Newton's divided differences spline interpolation; banded
linear systems, error analysis for interpolation. Other interpolations (rational,
B-splines)

Prerequisites: COSC1540 3.0 or COSC2031 3.0; MATH1010 3.0 or MATH1014 3.0
or MATH1310 3.0; MATH1025 3.0 or MATH1021 3.0 or MATH2021 3.0 or
MATH2221 3.0

COSC 3122 3.0
Introduction to Numerical Computations II
(Cross listed with AS/SC/MATH3242 3.0)
The course is a continuation of COSC3121 3.0. The main topics include numerical
differentiation, Richardson's extrapolation, elements of numerical integration,
composite numerical integration, Romberg integration, adaptive quadrature
methods, Gaussian quadrature, numerical improper integrals; fixed points for
functions of several variables, Newton's method, Quasi-Newton methods, steepest
descent techniques, and homotopy methods; power method, Householder method
and QR algorithms.

The final grade will be based on assignments, tests and a final examination.

Prerequisite: COSC3121 3.0

COSC 3201 4.0
Digital Logic Design
Theory and design of logic circuits used in digital systems. This is an intermediate
level course that uses a Hardware Design Language to illustrate modern design
techniques and is supplemented by hardware laboratory exercises (2 hours per
week).

The topics covered will include:
• Review of number systems, Boolean algebra, logic gates and their electrical

characteristics.
• Analysis and design of Combinational Circuits including arithmetic units,

multiplexers, data selectors, parity checkers etc.
• Hardware Description Languages (HDL). Use of VHDL in logic circuit design

and simulation.
• Analysis and design of Sequential Circuits. Flip flops, synchronous and

asynchronous circuits. Design using Algorithmic State Machines.
• Memory systems, programmable logic and their applications. Register

transfer techniques, Bus concepts.
• Design examples.

Recommended Texts:
• M.Morris Mano, Digital Design, (Third Edition), Prentice Hall, 2002.

31
• R.S. Sandige, Digital Design Essentials, Prentice Hall.

• S.Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design,
McGraw Hill, 2001.

Prerequisites: General prerequisites, including COSC2021 4.0; PHYS3150 3.0
strongly recommended

COSC 3213 3.0
Computer Networks I
This course is an introduction to communications and networking. Topics covered
include:

• Distinction between information and data, between signal and data, between
symbol and data, and between analogue and digital data

• Transmission media; time domain and frequency domain
• Fundamental limits due to Shannon and Nyquist
• Protocol hierarchies; the OSI model
• Encoding of analogue/digital data as analogue/digital signals
• Data link protocols; error and flow control
• Medium access; Ethernet and token passing systems in LANs
• Routing of packets in networks, congestion control
• Internetworking
• Transport services and protocols
• High-level applications and their protocols, e.g. WWW(HTTP), e-mail

(SMTP), Internet names (DNS)

Prerequisites: General prerequisites
Course Credit Exclusions: COSC3211 3.0

COSC 3215 4.0
Embedded Systems
Introduction to the design of embedded systems using both hardware and software.
Topics include microcontrollers; their architecture, and programming; design and
implementation of embedded systems using field programmable gate arrays.
The following is a detailed list of topics to be covered:

• Introduction to specific microcontroller architecture, its assembly language,
and programming

• Input/Output ports, Interrupts, and timers
• Memory systems
• Analog to digital and digital to analog conversion
• Parallel and Serial Interfacing
• Hardware Modelling
• Structural specification of hardware
• Synthesis of combinational circuits using a Hardware Description Language
• Synthesis of sequential circuits using a Hardware Description Language
• Rapid Prototyping using field programmable gate arrays

References:
• Michael D. Ciletti, Modelling, Synthesis, and Rapid Prototyping with the

VERILOG (TM) HDL, 1/e, Prentice-Hall, ISBN 0-13-977398-3 1.

 32

• Richard E. Haskell, Design of Embedded Systems Using 68HC12/II
Microcontrollers, Prentice-Hall, ISBN 0-13-083208-1.

• Frank Vahid and Tony Givargis, Embedded System Design: A Unified
Hardware/Software Introduction, John Wiley & Sons, ISBN: 0471386782.

• John B Peatman, Design with Microcontrollers, Prentice Hall, ISBN 0-13-
759259-0

• The 8051 Microcontroller 3/e. Prentice-Hall, ISBN 0-13-780008-8.
Prerequisites: General prerequisites, including COSC3201 4.0
COSC 3221 3.0
Operating System Fundamentals
(formerly COSC 3321 3.0—before S2000)
This course is intended to teach students the fundamental concepts that underlie
operating systems, including multiprogramming, concurrent processes, CPU
scheduling, deadlocks, memory management, file systems, protection and security.
Many examples from real systems are given to illustrate the application of particular
concepts. At the end of this course, a student will be able to understand the
principles and techniques required for understanding and designing operating
systems.
Prerequisites: General prerequisites, including COSC2021 4.0; COSC2031 3.0
Course Credit Exclusion: COSC3321 3.0
COSC 3301 3.0
Programming Language Fundamentals
The topic of programming languages is an important and rapidly changing area of
computer science. This course introduces students to the basic concepts and
terminology used to describe programming languages. Instead of studying particular
programming languages, the course focuses on the "linguistics" of programming
languages, that is, on the common, unifying themes that are relevant to
programming languages in general. The algorithmic, or procedural, programming
languages are particularly emphasized. Examples are drawn from early and
contemporary programming languages, including FORTRAN, Algol 60, PL/I, Algol
68, Pascal, C, C++, Eiffel, Ada 95, and Java.

This course is not designed to teach any particular programming language.
However, any student who completes this course should be able to learn any new
programming language with relative ease.

Topics covered may include the following:
• Classification of programming languages: language levels, language

generations, and language paradigms
• Programming language specification: lexical, syntactic, and semantic levels

of language definition
• Data, data types, and type systems: simple types, structured types, type

composition rules
• Control primitives, control structures, control composition rules

 33

http://www.cs.ucr.edu/%7Evahid
http://www.ics.uci.edu/%7Egivargis

• Subprograms: functions and procedures, argument-parameter binding,
overloading

• Global program structure: modules, generic units, tasks, and exceptions
• Object-oriented language features: classes, encapsulation, inheritance, and

polymorphism
• Critical and comparative evaluation of programming languages

Prerequisites: General prerequisites, including COSC2001 3.0

COSC 3311 3.0
Software Design
A study of design methods and their use in the correct construction, implementation,
and maintenance of software systems. Topics include design, implementation,
testing, documentation needs and standards, support tools.

This course focuses on design techniques for both small and large software
systems. Techniques for the design of components (e.g., modules, classes,
procedures, executables) as well as complex architectures will be considered.
Principles for software design and rules for helping to ensure software quality will be
discussed. The techniques will be applied in a set of small assignments, and a
large-scale project, where students will design, implement, and maintain a non-trivial
software system.

Specific topics to be discussed may include the following:
• software design principles: coupling and cohesion, information hiding, open-

closed, interface design
• abstract data types
• seamless software construction and process models; a rational design

process
• design-by-contract and its implementation in programming languages and

design methods; writing and testing contracts; debugging contracts
• abstraction and data design; choosing data structures
• the Business Object Notation (BON) for modelling designs; alternative

modelling languages like UML, data-flow diagrams, structure charts, etc.
• static software modelling; dynamic modelling and behavioural modelling
• case studies in design: designing architectures; comparisons; design of OO

inheritance hierarchies; class library design
• methods for finding classes; designing class interfaces
• CASE tools: forward and reverse engineering of code from models
• software testing
• design patterns; applications of patterns; implementing patterns

Prerequisites: General prerequisites, including COSC2001 3.0, COSC2031 3.0 and
MATH1090 3.0

 34

COSC 3341 3.0
Introduction to Program Verification
 (formerly COSC 3111 3.0—before S2000)
Every program implicitly asserts a theorem to the effect that if certain input
conditions are met then the program will do what its specifications or documentation
says it will. Making that theorem true is not merely a matter of luck or patient
debugging; making a correct program can be greatly aided by a logical analysis of
what it is supposed to do, and for small pieces of code a proof that the code works
can be produced hand-in-hand with the construction of the code itself. Good
programming style works in part because it makes the verification process easier
and this in turn makes it easier to develop more complex algorithms from simple
ones.

The course will provide an introduction to the basic concepts of formal verification
methods. It will also include the use of simple tools to aid in verification.

Topics covered will include the following:
• The role of formal verification in the software life cycle; verification vs. testing

and validation
• Introduction to propositional calculus; checking for tautologies and

contradictions; annotating code with assertions
• Symbolic execution; proving relative correctness for small code segments;

establishing termination
• Creating specifications with quantifiers; translating specifications into code

Suggested reading:
• Gries and Schneider, A Logical Approach to Discrete Mathematics, Springer-

Verlag, 1993.
• R. Backhouse, Program Construction and Verification, Prentice-Hall, 1986

Prerequisites: General prerequisites, including MATH1090 3.0
Course Credit Exclusion: COSC3111 3.0

COSC 3401 3.0
Functional and Logic Programming
This course covers functional and logic programming. Together with the students'
background on procedural and object-oriented programming, the course allows
them to compare the development of programs in these different types of
languages.

"Functional programs work with values, not states. Their tools are expressions, not
commands. How can assignments, arrays and loops be dispensed with? Does not
the outside world have states? These questions pose real challenges. The
functional programmer can exploit a wide range of techniques to solve problems."
(Paulson, 1996)

"Based on predicate logic, it [logic programming] allows computing problems to be
expressed in a completely `declarative' way, without giving instructions for how the

 35

problem is to be solved. An execution mechanism, like the one embodied in
implementations of Prolog, can then be used to search efficiently and systematically
for a solution of the problem." (Spivey, 1996)

Topics on functional programming may include: recursive, polymorphic and higher-
order functions; recursive types and type inference. Topics on logic programming
may include backtracking, resolution and unification.

Prerequisites: General prerequisites; COSC2031 3.0 and MATH1090 3.0

COSC 3402 3.0
Introduction to Concepts of Artificial Intelligence
Artificial Intelligence (AI) deals with building a system that can operate in an
intelligent fashion. Neat as this simple definition is, it obscures the complex nature
of intelligence. At the time of the Dartmouth Conference (1956), regarded by many
as the start of AI, some researchers believed it would be possible to create a
"thinking machine" in a matter of a few years. That was close to 40 years ago, and
we are still far from our goal, but we have learned a lot on the way.

In this course, we begin by discussing differing definitions of artificial intelligence
and go on to examine fundamental concepts in AI, building on material introduced in
COSC3401 3.0: Introduction to Symbolic Computation. Topics to be covered
include reasoning under uncertainty, search, constraint propagation, planning and
problem solving.

Prerequisites: General prerequisites; COSC3401 3.0; MATH1090 3.0

COSC 3408 3.0
Simulation of Discrete Systems
Simulation is a technique for dealing with problems that do not admit exact (or
"analytic") solutions via mathematical analysis. A model of the system to be studied
is constructed, and then the model is run to see how it performs, either to predict
how the system will behave, or, if the behaviour of the system is known, to test the
validity of the model of the system. A computer is a tool for supporting a large
amount of activity in the running of the model.

A "discrete system" simulation is one, which admits a discrete-event model that can
be run in discrete steps that match the structure of the model. (For simulation of
continuous systems see COSC3418 3.0)

Examples of discrete systems studied by simulation include games and other
dynamic systems involving small populations where it is feasible to model
individual's behaviour. Major sub-topics include the generation and use of random
numbers, queuing systems, and the visual presentation of behaviour.

Prerequisites: General prerequisites; MATH2030 3.0 or MATH2560 3.0

 36

 37

Course Credit Exclusion: AK/COSC3451 3.0,1 MATH4930B 3.0

COSC 3418 3.0
Simulation of Continuous Systems
Simulation is a technique for dealing with problems that do not admit exact (or
"analytic") solutions via mathematical analysis. A model of the system to be studied
is constructed, and then the model is run to see how it performs, either to predict
how the system will behave, or, if the behaviour of the system is known, to test the
validity of the model of the system. A computer is a tool for supporting a large
amount of activity in the running of the model.

A "continuous system" may either be presumed to be inherently continuous or it
may, at a fine enough scale, be actually composed of discrete events. However, in
simulation, a "continuous system" is one for which the model, due to practical
necessity, is described by continuous variables regardless of its physical structure.
However, the running of a continuous model involves, also of necessity, discrete
steps. Thus central to continuous system simulation is the problem of
approximation. (For simulation of discrete systems see COSC3408 3.0)

Examples of continuous systems studied by simulation include dynamic systems
involving very fine variations or large populations. Major sub-topics include chaotic
behaviour, the numerical solution of differential equations by finite methods, and
related issues of stability and errors.

Prerequisites: General prerequisites; MATH2560 3.0

COSC 3421 3.0
Introduction to Database Systems
Concepts, approaches and techniques in database management systems (DBMS)
are taught. Topics include logical models of relational databases, relational
database design, query languages, crash recovery, and concurrency control.

The purpose of this course is to introduce the fundamental concepts of database
management, including aspects of data models, database languages, and database
design. At the end of this course, a student will be able to understand and apply the
fundamental concepts required for the design and administration of database
management systems.

Topics may include the following:
• Overview of Database Management Systems
• Relational Model
• Entity-Relational Model and Database Design
• SQL
• Integrity Constraints
• Crash Recovery

1 This old Atkinson COSC course is not to be confused with the current COSC 3451 3.0
below.

• Concurrency Control

Prerequisites: General prerequisites
Course Credit Exclusions: AK/COSC3503 3.0, AK/AS/ITEC3220 3.0,
AK/AS/ITEC3421 3.0

COSC 3451 3.0
Signals and Systems
The study of computer vision, graphics and robotics requires background in the
concept of discrete signals, filtering, and elementary linear systems theory. Discrete
signals are obtained by sampling continuous signals.

In this course, students review the concept of a discrete signal, the conditions under
which a continuous signal is completely represented by its discrete version, linear
time-invariant systems.
Topics covered may include the following:

• Continuous and discrete signals
• Linear time-invariant systems
• Fourier analysis in continuous time
• Fourier analysis in discrete time
• Sampling
• Filtering, image enhancement
• Laplace transform
• Z transform
• Linear feedback systems
• Random signals, image coding
• Kalman filtering
• Statistical pattern recognition

Prerequisites: General prerequisites
Course Credit Exclusions: COSC4242 3.0, COSC4451 3.0, EATS4020 3.0,
MATH4130B 3.0, MATH4830 3.0, PHYS4060 3.0

COSC 3461 3.0
User Interfaces
This course introduces the concepts and technology necessary to design, manage
and implement user interfaces UIs. Users are increasingly more critical towards
poorly designed interfaces. Consequently, for almost all applications more than half
of the development effort is spent on the user interface.

The first part of the course concentrates on the technical aspects of user interfaces
(UIs). Students learn about event-driven programming, windowing systems, widgets,
the Model-view-controller concept, UI paradigms, and input/output devices.

The second part discusses how to design and test user interfaces. Topics include
basic principles of UI design, design guidelines, UI design notations, UI evaluation
techniques, and user test methodologies

 38

The third part covers application areas such as groupware (CSCW), multi-modal
input, UIs for Virtual Reality, and UIs for the WWW.

Students work in small groups and utilize modern toolkits and scripting languages to
implement UIs. One of the assignments focuses on user interface evaluation.

Prerequisites: General prerequisites
Course Credit Exclusion: AK/AS/ITEC3230 3.0, AK/AS/ITEC3461 3.0
NCR Note: No credit will be retained by students who successfully completed
AS/SC/COSC4341 3.0 or AS/SC/COSC4361 3.0 before FW99.

COSC 3900 0.0
Internship Co-op Term
The objective of the course is to provide qualified students a hands-on, practical
work experience that formally integrates the student’s academic knowledge with
real-world situations in a “co-operative” work setting. Enrolment in the course is
mandatory in each term that a student undertakes a work placement. Students will
be assigned a faculty supervisor, although the Internship Co-op Coordinator and the
Internship Office will take the lead in placement and interaction with the placement
site.
Prerequisites:
Successful completion of at least 12.0 computer science credits at the 3000 level
including COSC3311 3.0 (Software Design) and an overall average of at least B in
Mathematics and Computer Science courses completed. To qualify, in the first
instance, the student must be enrolled full-time in the Honours Program and attend
all mandatory preparatory sessions as outlined by the Internship Co-op Office.

Notes:

• This course does not count for degree credit in any program. Registration in
sections of COSC3900 while on an internship placement provides a
transcript notation of the student’s participation in the internship program.

• Students are required to register in this course in every term of their work
term (internship co-op).

• Every student registered in the course will be assigned a faculty supervisor
who will assess the student’s performance during the internship.

Evaluation:
Performance in each term (COSC3900 0.0) will be graded on a pass/fail basis. To
receive a passing grade, the student must pass each of the required components.
Note that not all components are required for each Internship term if the Placement
consists of more than two terms.
These components are:

• Employer Evaluation. Completed by the employer, this summarizes the
performance of the student at the placement. If the student is engaged in a
12 or 16-month work term placement at the same company, only two
evaluations are required. These are due in the second and final term of the

 39

placement. The employer evaluation will be submitted to the Internship
Coordinator.

• Internship Coordinator Evaluation. Completed by the Internship Co-op
Coordinator, this report is completed based on a minimum of two meetings,
at least one normally conducted at the work site. The first one will be
conducted at the work site within the first term, and the second as a follow-
up either on-site or by telephone or email.

• Work Report. Submitted by the student upon his/her return to campus to the
faculty supervisor at the end of every work term. This is a short (3-5 page)
summary of the work performed during the internship and an assessment of
the value of the opportunity. The supervisor will grade the work report and
forward it to the Internship Coordinator.

The faculty supervisor assigns the course grade based upon the Employer
Evaluation, Internship Coordinator Evaluation, and Work Report.

Course Descriptions: 4000-Level

General Prerequisites
Before enrolment is permitted in any 4000-level computer science course the
following requirements must be met.

� completed1 COSC2001 3.0, COSC2011 3.0, COSC2021 4.0, COSC2031 3.0

� completed at least 12 credits in COSC courses at the 3000-level

� a cumulative grade point average of 4.5 or better over completed computer
science courses (including only the most recent grades in repeated courses)

� completed MATH1090 3.0

Specific prerequisites may apply to individual courses.

Note: Normally a maximum of three COSC courses may be taken in any one of the
fall or winter terms at any level higher than 1000 provided that prerequisites are met.

COSC 4001 6.0 (Cross listed with SC/EATS4001 6.0 and SC/PHYS4001 6.0)
Space and Communication Sciences Workshop
Individual projects will be assigned by mutual agreement between the student and a
faculty member. The work may be done under supervision by the faculty member or
under supervision of an industrial associate to that faculty member. The projects
will be self-contained problems of a design nature, and will be pursued in the
manner of a space project. Thus, the first step is to define the requirements of the
design, the second to carry out a review of previous work, and the third to execute
the design. Following that, the design shall be tested, normally through simulation,
and conclusions drawn. A report of professional quality shall be written and
submitted.

1 “Completed” means “passed”.

40

 41

This is an honours thesis course in Intelligent Systems. Although a course
coordinator will be assigned to the course, the bulk of the course will take place
through the interaction between a supervisor and a single student (or group of
students). After two organizational meetings in September, the student will work with
his/her supervisor directly. The course requires an initial project proposal that will be
submitted to and approved by the supervisor and the course coordinator (director).
This is, in essence, a contract for the project to follow. The supervisor will evaluate
the performance of the student in early January. The format of this evaluation will
vary from project to project, but the requirements of this evaluation will be specified
in the original project proposal. At the beginning of the course, the course director
(coordinator) will establish a date and format for the public presentation of all
Intelligent System Projects. Normally held between reading week and the third last
week of term, this presentation will normally consist of either a short public oral or
poster presentation of the project. (The actual format may change from year to

Prerequisites: Satisfactory completion of the 3000-level courses in the Space and
Communication Science core
Course Credit Exclusions: COSC4080 3.0, COSC4081 6.0, COSC4082 6.0,
COSC4084 6.0, EATS4001 6.0, PHYS4001 6.0

COSC 4080 3.0
Computer Science Project
This is a course for advanced students, normally those in the fourth year of an
honours program, or students who have completed 36 computer science credits.
Students who have a project they wish to do, need to convince a member of the
faculty in the department that it is appropriate for course credit.
Alternatively, students may approach a faculty member in the department (typically,
one who is teaching or doing research in the area of the project) and ask for project
suggestions. Whatever the origin of the project, a “contract” is required. It must state
the scope of the project, the schedule of work, the resources required, and the
criteria for evaluation. The contract must be signed by the student and his/her
project supervisor and be acceptable to the course director. A critical course
component that must be included in the contract is a formal seminar presentation.
The course director will arrange the seminar sessions, and students and their faculty
supervisors are required to participate. The seminar talks will have a typical length
of 15-20 minutes, and will be evaluated by the individual supervisor, the course
director and one more faculty member. This talk will be worth 30% of the final mark.
The remaining 70% of the course mark is the responsibility of the individual
supervisor. Internship students may apply to receive credit for their internship as a
project course. A “contract” including the seminar presentation is still required.
Prerequisites: General prerequisites and permission of the course director.
Restricted to students who have completed 36 credits in Computer Science.
Course Credit Exclusions: COSC4001 6.0, COSC4081 6.0, COSC4082 6.0,
COSC4084 6.0

COSC 4081 6.0
Intelligent Systems Project

year.) All of the faculty associated with the Intelligent Systems Stream will be invited
to attend this presentation. The individual supervisor, the course coordinator and
one more faculty member will mark this presentation. The final report will be due at
the end of the term and will be marked by the individual supervisor.
The actual nature of the project will vary from student to student. Although projects
that involve significant implementation are anticipated, purely theoretical projects are
possible as well.
Marking Scheme:
 Mid-term evaluation: 30%
 Public presentation evaluation: 30%
 Final report: 40%

Prerequisites: Only open to students in the Intelligent Systems Stream who have
completed COSC3401 3.0 and COSC3402 3.0 with a minimum grade of B; and
permission of the instructor.
Course Credit Exclusions: COSC4001 6.0; COSC4080 3.0; COSC4082 6.0;
COSC4084 6.0

COSC 4082 6.0
Interactive Systems Project
This is an honours thesis course in Interactive Systems. Although a course
coordinator will be assigned to the course, the bulk of the course will take place
through the interaction between a supervisor and a single student (or group of
students). After two organizational meetings in September, the student will work with
his/her supervisor directly. The course requires an initial project proposal that will be
submitted to and approved by the supervisor and the course coordinator (director).
This is, in essence, a contract for the project to follow. The supervisor will evaluate
the performance of the student in early January. The format of this evaluation will
vary from project to project, but the requirements of this evaluation will be specified
in the original project proposal. At the beginning of the course, the course director
(coordinator) will establish a date and format for the public presentation of all
Interactive System Projects. Normally held between reading week and the third last
week of term, this presentation will normally consist of either a short public oral or
poster presentation of the project. (The actual format may change from year to
year.) All of the faculty associated with the Interactive Systems Stream will be
invited to attend this presentation. The individual supervisor, the course coordinator
and one more faculty member will mark this presentation. The final report will be
due at the end of the term and will be marked by the individual supervisor.
The actual nature of the project will vary from student to student. Projects will
involve the design, implementation and evaluation of an interactive system. While
theoretical projects are possible, the expectation is that all projects evaluate the
implementation with human participants and include an analysis of these results in
the presentation and final report. For projects that will involve significant subject
testing and performance evaluation, it is expected that a complete draft
implementation of the system will be available by January. Projects must deal with

 42

systems that interact with a human user. This interaction must be a critical
component of the system
Marking Scheme:
 Mid-term evaluation: 30%
 Public presentation evaluation: 30%
 Final report: 40%

Prerequisites: Only open to students in the Interactive Systems Stream who have
completed COSC3311 3.0 and COSC3461 3.0, and have prior permission of the
instructor.
Course Credit Exclusions: COSC4001 6.0, COSC4080 3.0, COSC4081 6.0,
COSC4084 6.0

COSC 4084 6.0
Communication Networks Project
This is an honours thesis course in Communication Networks. Although a course
coordinator will be assigned to the course, the bulk of the course will take place
through the interaction between a supervisor and a single student (or group of
students). After two organization meetings in September, the student will work with
his/her supervisor directly. The course requires an initial project proposal that will be
submitted to and approved by the supervisor and the course coordinator (director).
This is, in essence, a contract for the project to follow. The supervisor will evaluate
the performance of the student in early January. The format of the evaluation will
vary from project to project, but the requirements of this evaluation will be specified
in the original project proposal. At the beginning of the course, the course director
(coordinator) will establish a date and format for the public presentation of all
Communication Networks projects. Normally held between reading week and the
third last week of the term, this presentation will normally consist of either a short
public oral or poster presentation of the project. (The actual format may change from
year to year). All of the faculty associated with the Communication Networks Stream
will be invited to attend the presentation. The individual supervisor, the course
coordinator and one more faculty member will mark this presentation. The final
report will be due at the end of the term and will be marked by the individual
supervisor.
The actual nature of the project will vary from one student to another. Although
projects that involve significant implementation are anticipated, purely theoretical or
analysis projects are possible as well.
Marking Scheme:
 Mid-term evaluation: 30%
 Public presentation evaluation: 30%
 Final report: 40%
Prerequisites: Only open to students in the Communication Networks Stream who
have received a grade of at least B in COSC3451 3.0 and COSC3213 3.0, and have
prior permission of the instructor.

 43

Course Credit Exclusions: COSC4001 6.0, COSC4080 3.0, COSC4081 6.0,
COSC4082 6.0

COSC 4101 3.0 (integrated with COSC5101 3.0)
Advanced Data Structures
The course discusses advanced data structures: heaps, balanced binary search
trees, hashing tables, red-black trees, B-trees and their variants, structures for
disjoint sets, binomial heaps, Fibonacci heaps, finger trees, persistent data
structures, etc. When feasible, a mathematical analysis of these structures will be
presented, with an emphasis on average case analysis and amortized analysis. If
time permits, some lower bound techniques may be discussed, as well as NP-
completeness proof techniques and approximation algorithms.
The course may include the following topics:

• Amortized and worst-case analysis of data structures
• Data structuring paradigms: self-adjustment and persistence
• Lists: self-adjustment with the move-to-front heuristic
• Search trees: splay trees, finger search trees
• Heaps: skew heaps, Fibonacci heaps
• Union-find trees
• Link-and-cut trees
• Multidimensional data structures and dynamization

Prerequisites: General prerequisites, including COSC3101 3.0

COSC 4111 3.0 (integrated with COSC 5111 3.0)
Automata and Computability
This course is the second course in the theory of computing. It is intended to give
students a detailed understanding of the basic concepts of abstract machine
structure, information flow, computability, and complexity. The emphasis will be on
appreciating the significance of these ideas and the formal techniques used to
establish their properties. Topics chosen for study include: models of finite and
infinite automata, the limits to computation, and the measurement of the intrinsic
difficulty of computational problems.

Prerequisites: General prerequisites, including COSC3101 3.0

COSC 4115 3.0
Computational Complexity
This course provides an introduction to complexity theory, one of the most important
and active areas of theoretical computer science. Students learn basic concepts of
the field and develop their abilities to read and understand published research
literature in the area and to apply the most important techniques in other areas.

Topics include:
• Models of computation for complexity: Turing Machines, Random Access

Machines, Circuits and their resources such as time, space, size, and depth

 44

• Time- and space-bounded diagonalisation, complexity hierarchies, resource
bounded reducibility such as log space and polynomial time reducibility

• P vs. NP: Nondeterminism, Cook's Theorem and techniques for proving NP-
Completeness

• Nondeterministic space: The Savitch and Immerman/Szelepsenyi Theorems
• Important complexity Classes (and natural problems complete for them)

including: P, NP, co-NP, the Polynomial time Hierarchy, log space,
Polynomial SPACE and Exponential time

• If time permits the course may also include one or more advanced topics
such as parallel complexity classes, interactive proofs, applications to
cryptography, and probabilistic classes including random polynomial time

Possible Text:
• C.H. Papadimitriou, Computational Complexity, ISBN: 0-201-53082-1,

Addison Wesley, 1994.

References:
• U. Schoning and Randall Pruim, Gems of Theoretical Computer Science,

ISBN 3-540-64425-3, Springer Verlag, 1998.
• Lane A. Hemaspaandra and Mitsunori Ogihara, The Complexity Theory

Companion, ISBN 3-540-67419-5, Springer-Verlag, 2002.
• M.R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the

Theory of NP-Completeness, ISBN 0716710455, W.H. Freeman, 1979.
• D.-Z. Du and K. Ko, Theory of Computational Complexity, ISBN: 0-471-34506-

7, John Wiley and Sons, New York, NY, 2000.
• D. P. Bovet and P. Crescenzi, Introduction to the Theory of Complexity, ISBN

0139153802, Prentice-Hall, 1993.

Prerequisites: General prerequisites, including COSC3101 3.0

COSC 4161 3.0
Introduction to Cryptography
(Cross listed with MATH 4161 3.0)
Probability, information theory and number theory and applications to cryptography.
Classical codes such as Caesar shift, Vigenere, ADFGVX, rectangular substitution,
and others. Other topics: comma free codes, perfect secrecy, index of coincidence,
public key systems, primality testing and factorisation algorithms.
An outline of course topics:

Early Ciphers
• Caesar
• Vigenere
• Rectangular transposition
• Monoalphabetic substitutions
• Polyalphabetic substitutions
• Playfair

 45

 46

This course presents the core concepts of computer architecture and design ideas
embodied in many machines, and emphasizes a quantitative approach to

• ADFGVX
• Vernan’s two-tape system
• Hill encipherment

Probability Theory
• Basics
• Statistical models of English text
• Random number generators
• Breaking Vigenere
• Breaking Rectangular transposition
• Breaking ADFGVX
• Breaking Monoalphabetic substitutions

Information Theory
• Basics on the concept of information
• Entropy and information
• Redundancy of English text
• File and text compression
• Perfect secrecy systems

Number Theory
• Euclidean algorithm
• Residue systems
• The Euler phi-function
• Primitive roots
• Quadratic residues
• Quadratic reciprocity and the Jacobi symbol
• Primality testing
• RSA encipherment system
• Public key systems

The course will cover three main topics of mathematics (probability, information
and number theory) and use the historical and practical applications in
cryptography to develop these topics. Other topics as time permits may include
quantum cryptography, elliptic curves, DES, knapsack and digital signatures.

The weekly scheduled quizzes encourage the students to keep good study habits
and encourage attendance. They also prepare the students for the final. There will
be a programming assignment to complement the material presented in class.

Prerequisites: At least 12 credits from 2000-level (or higher) MATH courses (without
second digit 5, or second digit 7 in the case of Atkinson); or COSC 3101 3.0; or
permission of the instructor.

COSC 4201 3.0 (integrated with COSC 5501 3.0)
Computer Architecture

cost/performance tradeoffs. This course concentrates on uniprocessor systems. A
few machines are studied to illustrate how these concepts are implemented; how
various tradeoffs that exist among design choices are treated; and how good
designs make efficient use of technology. Future trends in computer architecture
are also discussed.

Topics covered may include the following:
• Fundamentals of computer design
• Performance and cost
• Instruction set design and measurements of use
• Basic processor implementation techniques
• Pipeline design techniques
• Memory-hierarchy design
• Input-output subsystems
• Future directions

Prerequisites: General prerequisites, including COSC3201 4.0, and COSC3221 3.0
(or COSC3321 3.0)
COSC 4210 3.0
Architecture and Hardware for Digital Signal Processing
The field of DSP is driven by two major forces, advances in DSP algorithms, and
advances in VLSI technology that implements those algorithms. This course
addresses the methodologies used to design custom or semi-custom VLSI circuits
for DSP applications, and the use of microcontrollers and digital signal processors to
implement DSP algorithms. It also presents some examples of advances in fast or
low power design for DSP.
The topics may include

• Basic CMOS circuits: manufacturing process, area, delay, and power
dissipation.

• Implementation of fundamental operations: Carry lookahead adders, carry
select adders, carry save adders, multipliers, array multipliers, Wallace tree
multipliers, Booth array multipliers, dividers, array dividers.

• Array processor architectures: Mapping algorithms into array processors.
• High level architectural transformation for mapping algorithms into hardware:

pipelining, retiming, folding, unfolding:
• Mapping DSP algorithms (FIR, IIR, FFT, and DCT) into hardware.
• Implementing DSP algorithms using microcontrollers.
• DSP support in general-purpose processors.
• The effect of scaling and roundoff noise.

Prerequisites: General prerequisites, including COSC3201 4.0 and COSC3451 3.0

COSC 4211 3.0 (integrated with COSC5422 3.0)
Performance Evaluation of Computer Systems
Topics covered may include the following:

 47

• Review of Probability Theory—probability, conditional probability, total
probability, random variables, moments, distributions (Bernoulli, Poisson,
exponential, hyperexponential, etc.)

• Stochastic Processes—Markov chains and birth and death processes
• Queuing Theory—M/M/1 Queuing system in detail; other forms of queuing

systems including limited population and limited buffers
• Application — A case study involving use of the queuing theory paradigm in

performance evaluation and modelling of computer systems such as open
networks of queues and closed queuing networks. Use of approximation
techniques, simulations, measurements and parameter estimation.

Prerequisites: General prerequisites, including MATH2030 3.0; COSC3211 3.0 or
COSC3213 3.0

COSC 4213 3.0
Computer Networks II
More advanced topics in networking, concentrating on higher-level protocols,
security, network programming and applications. Topics covered may include the
following:

• Higher level protocols
• Security: encryption, authentication, firewalls
• Network programming; RPC
• Multimedia: compression and multimedia standards
• The web: URL/http, CGI programming, dynamic html, proxy servers, wireless

networks

Prerequisites: General prerequisites, including COSC3212 3.0 or COSC3213 3.0

COSC 4214 3.0
Digital Communications
Digital communications has become a key enabling technology in the realization of
efficient multimedia systems, wireless and wired telephony, computer networks,
digital subscriber loop technology and other communication and storage devices of
the information age. The course provides an introduction to the theory of digital
communications and its application to the real world. Emphasis will be placed on
covering design and analysis techniques used in source and channel coding,
modulation and demodulation, detection of signal in the presence of noise, error
detection and correction, synchronization, and spread spectrum. An introduction to
information theory and recent development in the area will also be covered. Topics
covered in the course will be chosen from:

• Review of Probability and Random Variables
• Introduction to Stochastic Processes and Noise
• Introduction to Information theory: Shannon’s Source Coding and Channel

Coding theorems
• Source Coding: Lossless Coding (Huffman, Arithmetic, and Dictionary

Codes) versus Lossy Coding (Predictive and Transform Coding)

 48

• Analog to Digital Conversion: Sampling and Quantization
• Baseband Transmission
• Binary Signal Detection and Matched filtering
• Intersymbol Interference (ISI), Channel Capacity
• Digital Bandpass Modulation and Demodulation Schemes
• Error Performance Analysis of M-ary schemes
• Channel Coding: Linear Block, Cyclic, and Convolutional Codes
• Decoding Techniques for Convolutional Codes, Viterbi Algorithm
• Application of Convolutional codes to Compact Disc (CD)
• Synchronization Techniques
• Spread Spectrum Modulation: Direct Sequence and Frequency Hopping

References:
• Bernard Sklar, Digital Communications: Fundamentals and Applications, NY:

Prentice Hall, 2001, 2nd edition, ISBN # 0-13-084788-7 (required).
• John G. Proakis, Digital Communications, Third Edition, McGraw Hill

(suggested).
• Simon Haykin, Digital Communications, John Wiley & Sons (suggested).
• Marvin K. Simon, Sami M. Hinedi, and William C. Lindsey, Digital

Communication Techniques, NY: Prentice Hall, 1995 (suggested).
• Marvin E. Frerking, Digital Signal Processing in Communication Systems, NY:

International Thomson Publishing (ITP), 1994 (suggested).

Prerequisites: General prerequisites, including COSC3213 3.0, MATH2030 3.0 and
one of COSC3451 3.0, EATS 4020 3.0, PHYS 4250 3.0

COSC 4215 3.0 (integrated with COSC 5502 3.0)
Mobile Communications
Wireless mobile networks have undergone rapid growth in the past several years.
The purpose of this course is to provide an overview of the latest developments and
trends in wireless mobile communications, and to address the impact of wireless
transmission and user mobility on the design and management of wireless mobile
systems. Topics covered may include the following:

• Overview of wireless transmission.
• Wireless local area networks: IEEE 802.11, Bluetooth.
• 2.5G/3G wireless technologies.
• Mobile communication: registration, handoff support, roaming support,

mobile IP, multicasting, security and privacy.
• Routing protocols in mobile ad-hoc networks: destination-sequence distance

vector routing (DSDV), dynamic source routing (DSR), ad-hoc on-demand
distance vector routing (AODV), and a few others.

• TCP over wireless: performance in and modifications for wireless
environment.

• Wireless sensor networks: applications; routing.

 49

• Satellite systems: routing, localization, handover, global positioning systems
(GPS).

• Broadcast systems: digital audio/video broadcasting.
• Applications to file systems, world wide web; Wireless Application Protocol

and WAP 2.0; i-mode; SyncML.
• Other issues such as wireless access technologies, quality of service

support, location management in mobile environments, and impact of
mobility on performance.

The pedagogical components of the course include lectures, office hours, hands-on
laboratories and exercises, assignments, tests, and a project that addresses recent
research issues in wireless mobile networking.

Prerequisites: General prerequisites, including COSC3213 3.0

COSC 4221 3.0 (integrated with COSC 5421 3.0)
Operating System Design
An operating system has four major components: process management,
input/output, memory management, and the file system. This project-oriented
course puts operating system principles into action. This course presents a practical
approach to studying implementation aspects of operating systems. A series of
projects is included, making it possible for students to acquire direct experience in
the design and construction of operating system components. A student in this
course must design and implement some components of an operating system and
have each interact correctly with existing system software. The programming
environment is C++ under Unix. At the end of this course, a student will be able to
design and implement the basic components of operating systems.

A solid background in operating systems concepts, computer architecture, C, and
UNIX is expected.

Prerequisites: General prerequisites, including COSC3221 3.0 or COSC3321 3.0
Course Credit Exclusion: COSC4321 3.0

COSC 4301 3.0 (integrated with COSC5423 3.0)
Programming Language Design
This course is a continuation of COSC3301 3.0 Programming Language
Fundamentals. Like its predecessor, the course focuses on the linguistics of
programming languages; that is, on the common, unifying themes that are relevant
to programming languages in general. Both algorithmic and non-algorithmic
language categories are examined. Current techniques for the formal specification
of the syntax and semantics of programming languages are studied. Skills are
developed in the critical and comparative evaluation of programming languages.

Prerequisites: General prerequisites, including COSC3301 3.0

 50

COSC 4302 3.0 (integrated with COSC5424 3.0)
Compilers and Interpreters
Principles and design techniques for compilers and interpreters. Compiler
organization, compiler writing tools, scanning, parsing, semantic analysis, run-time
storage organization, memory management, code generation, and optimisation.
Students will implement a substantial portion of a compiler in a project.

This course is a hands-on introduction to the design and construction of compilers
and interpreters. At the end of the course, you will understand the architecture of
compilers and interpreters, their major components, how the components interact,
and the algorithms and tools that can be used to construct the components. You
will implement several components of a compiler or interpreter, and you will
integrate these components to produce a working compiler or interpreter.

Specific topics to be covered may include the following:
• Compiler architecture: single-pass vs. multiple-pass translation
• Lexical analysis (scanning): design of scanners using finite automata; tabular

representations; tools for building scanners
• Parsing (syntax analysis): top-down vs. bottom-up parsing; parse trees and

abstract syntax trees; tabular representations for parsers; parser generators
• Symbol tables: efficient algorithms and data structures; representing data

types in symbol tables
• Type checking: scope control; static vs. dynamic type checking
• Memory management: static allocation; register allocation; stack allocation;

heap allocation; garbage collection
• Code generation: translating imperative programming constructs; function

and procedure calls; branching code; translating object-oriented constructs
and modules

• Optimisation: local and global optimisations; dead code removal; control flow
analysis

Prerequisites: General prerequisites; COSC3301 3.0 recommended

COSC 4311 3.0
System Development
System Development deals with the construction of systems of interacting
processes. The course focuses on abstraction, specification, and analysis in
software system development. Abstraction and specification can greatly enhance
the understandability, reliability and maintainability of a system. Analysis of
concurrency and interaction is essential to the design of a complex system of
interacting processes.

The course is split into three parts. The first part discusses a semiformal method,
Jackson System Development (JSD) by Michael Jackson. JSD is used to build an
understanding of what system development entails and to develop a basic method
of constructing practical systems of interacting processes. JSD gives precise and

 51

useful guidelines for developing a system and is compatible with the object-oriented
paradigm. In particular, JSD is well suited to the following:

• Concurrent software where processes must synchronize with each other
• Real time software. JSD modelling is extremely detailed and focuses on

time at the analysis and design stages.
• Microcode. JSD is thorough; it makes no assumptions about the availability

of an operating system.
• Programming parallel computers. The JSD paradigm of many processes

may be helpful.

The second part of the course discusses the mathematical model CSP
(Communicating Sequential Processes by C.A.R. Hoare). While CSP is not suitable
to the actual design and development of a system of interacting processes, it can
mathematically capture much of JSD. Consequently, it is possible to use formal
methods in analysing inter-process communication arising out of JSD designs.

The third part of the course discusses Z notation and its use in the specification of
software systems. Z has been successfully used in many software companies —
such as IBM and Texas Instruments — to specify and verify the correctness of real
systems.

Prerequisites: General prerequisites, including COSC3311 3.0 or COSC3221 3.0 or
COSC3321 3.0

COSC 4312 3.0
Software Engineering Requirements
This course deals with the elicitation, specification and analysis of software
requirements. It provides a critical description of available methods and tools, and
practical exercises on applying these methods and tools to realistic problems. On
completion of this module, students will have a grounding in:

• Requirements and system concepts
• Traceability through requirements into design
• Current requirements methods, techniques, and tools
• Industrial practice and standards
• Specific topics to be covered include:
• Introduction: Problems, principles and processes of requirements

engineering
• Requirements elicitation processes and methods
• Introduction to Use Cases and UML
• Specification techniques: Requirements models; data modelling; functional

models; the application of formal requirements methods
• Goal-oriented requirements modelling
• Non-functional requirements: safety, security and other nonfunctional

requirements
• Pragmatic requirements engineering: Technology transfer; Traceability

 52

• Current Requirements Standards, e.g., IEE 830 Recommended Practice for
Requirements Engineering

• Requirements Categorization for Resource Allocation
• Why-Because Analysis

References:
• G. Kotonya and I. Somerville. Requirements Engineering: Processes and

Techniques, Wiley, 1998.
• A. Davis, Software Requirements, Addison-Wesley, 1992.
• S. Robertson and J. Robertson, Mastering the Requirements Process,

Addison-Wesley, 1999.
• M. Jackson, Problem Frames, Addison-Wesley, 2000.
• M. Jackson, Software Requirements and Specifications, Addison-Wesley,

1995.

Prerequisites: General prerequisites, including COSC3311 3.0

COSC 4313 3.0
Software Engineering Testing
An introduction to systematic methods of testing and verification, covering a range
of static and dynamic techniques and their use within the development process.
The course emphasizes the view that design should be carried out with verification
in mind to achieve overall project goals.

Students should:
• understand the importance of systematic testing
• understand how verification is an integral part of the development process

and not a bolt on activity
• understand the strengths and weaknesses of particular techniques and be

able to select appropriate ones for a given situation
• All too often software is designed and then tested. The real aim must be to

take a more holistic view, where design is carried out with verification in mind
to achieve overall project goals. We shall take a fairly liberal view of testing.
This includes various automated and manual static analysis techniques. In
addition, we shall show how increased rigor at the specification stage can
significantly help lower-level testing.

• Black box and white box testing. Unit level testing techniques and practical
exercises. Mutation testing, domain testing, data flow and control flow
testing. Coverage criteria. Theoretical background (e.g., graph theory).

• Static analysis techniques (including program proof tools such as the Spark
Examiner or ESC/Java).

• Higher level testing (integration, system, performance, configuration testing
etc). Testing tools and instrumentation issues.

• The testing of object oriented programs. Specific problems and existing
techniques, e.g., Junit, automatic test case generation via UML diagrams.

 53

• Testing non-functional properties of high integrity systems. Worst case
execution times, stack usage. Hazard directed testing. Software fault
injection, simulation and hardware testing techniques.

• Management issues in the testing process. Planning, configuration
management. Q.A. Controlling the test process. Inspections reviews,
walkthroughs and audits. Influence of standards.

• Regression testing.

References:

Primary:
• Robert Binder, Testing Object-Oriented Systems, Addison-Wesley, 2000.

Supplementary:
• Lisa Crispin, Testing Extreme Programming, Addison-Wesley, 2002.
• K. Beck, Test Driven Development By Example, Addison-Wesley, 2002.
• E. Kit, Software Testing in the Real World, Addison-Wesley, 1995.
• C. Kaner, J. Falk, and H. Nguyen, Testing Computer Software, Wiley, 1999.

Prerequisites: General prerequisites, including COSC3311 3.0

COSC 4351 3.0 (integrated with COSC5441 3.0)
Real-Time Systems Theory
In real-time computing systems the correctness of the system depends not only on
the logical result of the computation but also on the time at which the results are
produced. For example, a computer controlling a robot on the factory floor of a
flexible manufacturing system must stop or turn the robot aside in time to prevent a
collision with some other object on the factory floor. Other examples of current real-
time systems include communication systems, traffic systems, nuclear power plants
and space shuttle and avionic systems.

Real-time programs in many safety-critical systems are more complex than
sequential programs or concurrent programs that do not have real-time
requirements. This course will deal with the modelling, simulation, specification,
analysis, design and verification of such real-time programs. The objective of the
course is to expose the student to current techniques for formally proving the
correctness of real-time behaviour of systems.

Topics covered may include the following:
• Techniques for expressing syntax and semantics of real-time programming

languages
• Modelling real-time systems with discrete event calculi (e.g. Petri net and

state machine formalisms)
• Specification of concurrency, deadlock, mutual exclusion, delays and

timeouts
• Scheduling of tasks to meet hard time bounds

 54

• CASE tools for analysis and design. At the end of the course the student will
be able to model and specify real-time systems, design and verify
correctness of some real-time systems.

Prerequisites: General prerequisites, including COSC3311 3.0 or COSC3221 3.0 (or
COSC3321 3.0) or COSC3341 3.0 (or COSC3111 3.0)

COSC 4352 3.0 (integrated with COSC5442 3.0)
Real-Time Systems Practice
In real-time computing systems the correctness of the system depends not only on
the logical result of the computation but also on the time at which the results are
produced. For example, a computer controlling a robot on a factory floor must stop
the robot in time to prevent a collision. Other examples of real-time systems include
communication systems, traffic systems, nuclear power plants and avionic systems.
Real-time systems are complex and require knowledge of reactive programs for
their design. A reactive program maintains an ongoing non-terminating interaction
with its environment rather than computing some final value on termination.

The course will focus on the design, construction and verification of soft and hard
real-time systems. Topics may include:

• models of concurrent processes with access to a clock (e.g. by fair transition
systems with timeouts and clock variables)

• semaphores and synchronization
• process communication and fairness
• temporal logic for specifying safety properties (e.g. freedom from deadlock)
• liveness and real-time response
• verification of real-time systems using temporal logic model-checking tools

such as StateClock/SteP
• examples from real-time programming languages (Ada and Java)

Prerequisites: General prerequisites, including COSC3301 3.0 or COSC3311 3.0 or
COSC3221 3.0 (or COSC3321 3.0)

COSC 4401 3.0 (integrated with COSC 5326 3.0)
Artificial Intelligence
This course will be an in-depth treatment of one or more specific topics within the
field of Artificial Intelligence. Possible topics include the following:

• Machine learning: deduction, induction, and abduction, explanation-based
learning, learning k-DNF

• Statistical learning: reinforcement learning, genetic learning algorithms, and
connectionist learning systems, supervised and unsupervised

• Statistical and structural pattern recognition
• Speech recognition

55

• Artificial intelligence programming paradigms: search, pattern-directed
inference, logic- and object-oriented programming, symbolic mathematics,
constraint satisfaction and symbolic relaxation, building problem solvers,
efficiency issues

• Sensor-based robotics: path planning, position estimation, map building,
object recognition, robotic sensor and actuator hardware, software, and
interfacing

Contact the course director for information regarding the focus of the course this
year.

Prerequisites: General prerequisites, including COSC3402 3.0

COSC 4402 3.0 (integrated with COSC 5311 3.0)
Logic Programming
Logic programming has its roots in mathematical logic and it provides a view of
computation that contrasts in interesting ways with conventional programming
languages. Logic programming approach is rather to describe known facts and
relationships about a problem, than to prescribe the sequence of steps taken by a
computer to solve the problem.

One of the most important problems in logic programming is the challenge of
designing languages suitable for describing the computations that these systems
are designed to achieve. The most commonly recognized language is PROLOG.

When a computer is programmed in PROLOG, the actual way the computer carries
out the computation is specified partly by the logical declarative semantics of
PROLOG, partly by what new facts PROLOG can "infer" from the given ones, and
only partly by explicit control information supplied by the programmer. Computer
Science concepts in areas such as artificial intelligence, database theory, software
engineering knowledge representation, etc., can all be described in logic programs.

Topics covered may include the following:
• Logical preliminaries: syntax and semantics of first order predicate logic and

its Horn logic fragment
• Logical foundations of logic programming: unification, the resolution rule,

SLD-resolution and search trees
• PROLOG as a logic programming system
• Programming techniques and applications of PROLOG
• Constrained logic programming systems

At the end of this course a student will be familiar with fundamental logic
programming concepts and will have some programming expertise in PROLOG.

Prerequisites: General prerequisites, including COSC3401 3.0, and COSC3101 3.0
or COSC3341 3.0

COSC 4411 3.0
Database Management Systems
This course is the second course in database management. It introduces concepts,
approaches, and techniques required for the design and implementation of
database management systems.

 56

Topics may include the following:
• Query Processing
• Transactions
• Concurrency Control
• Recovery
• Database System Architectures
• Distributed Databases
• Object-Oriented Databases

Suggested reading:
• R. Elmasri and S.B. Navathe, Fundamentals of Database Systems, 2nd Ed.,

Benjamin Cummings, 1994.

Prerequisites: General prerequisites, COSC3421 3.0

COSC 4412 3.0
Data Mining
Data mining is computationally intelligent extraction of interesting, useful and
previously unknown knowledge from large databases. It is a highly inter-disciplinary
area representing the confluence of machine learning, statistics, database systems
and high-performance computing. This course introduces the fundamental concepts
of data mining. It provides an in-depth study on various data mining algorithms,
models and applications. In particular, the course covers data pre-processing,
association rule mining, sequential pattern mining, decision tree learning, decision
rule learning, neural networks, clustering and their applications. The students are
required to do programming assignments to gain hands-on experience with data
mining.

Suggested reading:
• Jiawei Han and Micheline Kamber, Data Mining — Concepts and Techniques,

Morgan Kaufmann Publishers, 2001
• David Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining,

MIT Press, 2001
• Ian Witten and Eibe Frank, Data Mining — Practical Machine Learning Tools

and Techniques with Java Implementations, Morgan Kaufmann Publishers,
1999.

• S.M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann,
1998.

• Tom Mitchell, Machine Learning, McGraw Hill, 1997.

Prerequisites: General prerequisites, including COSC3421 3.0 and one of
MATH2030 3.0 or MATH1131 3.0

COSC 4413 3.0
Building E-Commerce Systems
A study of technological infrastructure for Electronic Commerce on the Internet
discussing terminology, possible architectures, security and cryptography, content
 57

presentation, web protocols, adaptive and intelligent agents, data mining, and
vertical applications.

Topics covered may include the following:
• Basic e-commerce concepts. Examples of e-commerce stores
• Internet as the infrastructure for e-commerce; network layers and protocols;

network and transport layer; TCP/IP; web server design; DNSs, URLs, and
HTTP; proxies, caching

• Security and encryption; basic concepts of computer cryptography;
symmetric and asymmetric cryptosystems; DES; public key cryptosystems;
RSA; Diffie-Hellmann; elliptic codes; PGP; breaking computer cryptography
with massive parallelism

• Electronic store content and presentation; HTML, CGI, Dynamic HTML,
JavaScript. Applets; push and pull content; MIME and cookies; future
representations — XML, WAP

• Intelligent e-commerce; data mining in e-commerce; agents; product and
merchant brokerage; mobile agents; negotiations

Prerequisites: General prerequisites; COSC3212 3.0 or COSC3213 3.0;
COSC3321 or COSC3221 3.0; COSC3421 3.0

COSC 4421 3.0 (integrated with COSC 5324 3.0)
Introduction to Robotics
The course introduces the basic concepts of robotic manipulators and autonomous
systems. After a review of some fundamental mathematics the course examines
the mechanics and dynamics of robot arms, mobile robots, their sensors and
algorithms for controlling them. A Robotics Laboratory is available equipped with a
manipulator and a moving platform with sonar, several workstations and an
extensive collection of software.

Prerequisites: MATH1025 3.0 and: either general prerequisites for 4000-level
COSC courses; or COSC2011 3.0, COSC2031 3.0, co-requisite: ENG 4000 6.0

COSC 4422 3.0 (integrated with COSC 5323 3.0)
Computer Vision
Computer Vision is a very challenging problem with wide applications. It spans
several disciplines within science and engineering: computer science, computer
engineering, photogrammetry, telecommunications, robotics, medicine and the list
goes on. This course introduces the fundamental concepts of vision with emphasis
on computer science.

In particular the course covers the image formation process, colour analysis, image
processing, enhancement and restoration, feature extraction and matching, 3-D
parameter estimation and applications. A Vision Laboratory is available where
students can gain practical experience. The Lab includes several workstations
equipped with video cameras, digitisers and image processing software.

Prerequisites: General prerequisites, including COSC3121 3.0
 58

COSC 4431 3.0 (integrated with COSC 5331 3.0)
Computer Graphics
This course introduces the fundamental concepts of three-dimensional computer
graphics. Algorithms for image generation and the components of interactive
graphics systems are presented. The course discusses also virtual reality systems,
how interactive entertainment systems, such as games, work and how animations
for film and TV are created.

The first half of the course concentrates on the fundamentals of image generation:
the graphics pipeline, modelling, graphics data structures, transformations, camera
& perspective, visibility, raster graphics, shading.

The second part covers more advanced techniques and application areas: texturing,
anti-aliasing, ray tracing, free form surfaces, Interactive graphics systems, virtual
reality, animation.

The assignments use current graphics toolkits to implement interactive graphics
programs. Students work in small groups. Students are expected to be familiar with
C and UNIX and will be using the X window environment on the undergraduate
workstations.

Prerequisites: General prerequisites; MATH1025 3.0
Course Credit Exclusion: COSC4331 3.0

COSC 4441 3.0 (integrated with COSC 5351 3.0)
Human Computer Interaction

• Introduction (Goals, Motivation, Human Diversity)
• Theory of Human-Computer Interaction (Golden Rules, Basic Principles,

Guidelines)
• The Design Process (Methodologies, Scenario Development)
• Expert Reviews, Usability Testing, Surveys and Assessments
• Software Tools (Specification Methods, Interface-Building Tools)
• HCI Techniques
• Interaction Devices (Keyboards, Pointing Devices, Speech Recognition,

Displays, Virtual Reality Devices)
• Windows, Menus, Forms and Dialog Boxes
• Command and Natural Languages (Command Line and Natural Language

Interfaces)
• Direct Manipulation and Virtual Environments
• Manuals, Help Systems, Tutorials
• Hypermedia and the World Wide Web (Design, Creation, Maintenance of

Documents)
• Human Factors—Response Time and Display Rate; Presentation Styles—

Balancing Function and Fashion (Layout, Colour); Societal Impact of User
Interfaces (Information Overload); Computer Supported Cooperative Work

 59

(CSCW, Synchronous and Asynchronous); Information Search and
Visualization (Queries, Visualization, Data Mining)

The topics of this course will be applied in practical assignments and/or group
projects. The projects will consists of a design part, an implementation part and user
tests to evaluate the prototypes.

Suggested reading:
• Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human-Computer

Interaction, 2nd ed, Prentice Hall, 1998.

Prerequisites: General prerequisites; including COSC3461 3.0
Course Credit Exclusion: COSC4341 3.0

COSC 4452 3.0
Digital Signal Processing: Theory and Applications
Digital signal processing (DSP) has become the foundation of various digital
systems and communication and entertainment applications in today’s computer
era. This course consists of two parts. The first part introduces students to the
fundamental DSP concepts, principles and algorithms. In the second part, it covers
some important DSP-based applications in the real world.

The topics to be covered may include:

Part A: DSP theory
 A.1 Review of discrete-time systems and sampling
 A.2 Review of Z-transforms
 A.3 Discrete Fourier transform (DFT)
 A.4 Fast Fourier transform (FFT)
 A.5 Digital filter design
 A.5.1 Classical filter theory
 A.5.2 FIR filters
 A.5.3 IIR filters
 A.5.4 Filter banks
 A.6 Adaptive digital filters
 A.7 Spectral estimation and analysis

 Part B: DSP applications (selectively covered by the instructor)
 B.1 Embedded DSP systems:
 B.1.1.Introduction to DSP processors
 B.1.2 DSP processor architecture and programming
 B.1.3 Design embedded DSP systems with TMS320 series
 B.2 Speech and audio processing:
 B.2.1 Digital waveform coding: PCM, u-law, A-law.
 B.2.2 Time domain analysis
 B.2.3 Short-time spectrum analysis
 B.2.4 Linear prediction analysis
 B.2.5 Pitch detection and tracking
 60

 B.2.6 Speech coding
 B.2.7 Music processing
 B.3 Image processing:
 B.3.1 Two-dimensional signals and systems
 B.3.2 Image compression
 B.3.3 Image enhancement and restoration
 B.3.4 Image segmentation
 B.4 Radar and sonar signal processing
 B.5 Array signal processing

Prerequisites: General prerequisites including COSC3451 3.0

COSC 4461 3.0
Hypermedia and Multimedia Technology
The course focuses this year on the design and implementation of hypermedia
presentation systems. "Hypermedia" refers to the non-linear organization of digital
information, in which items (such as a word in a text field or a region of an image)
are actively linked to other items. Users interactively select and traverse links in a
hypermedia presentation system in order to locate specific information or
entertainment, or to browse in large archives of text, sound, images, and video.
Well-structured hypermedia gives users a way of coping with the "navigation"
problem created by availability of low-cost, fast access, high-density storage media.

We will explore the following topics.
• The historical roots of hypermedia: Bush, Engelbart, and Nelson
• The digital representation of media: rich text, sound, speech, images,

animation, and video
• Enabling technologies for creating hypermedia
• The role of scripting and mark-up languages
• Networked hypermedia (e. g. HTTP browsers); performance and

compression issues
• Development Tool Kits
• Distribution and Intellectual Property Issues

Students will be expected to familiarize themselves quickly with the Macintosh
interface and basic features of the operating system. Students will be asked to
schedule themselves for at least six-hours/week lab time in the Department's
Multimedia Lab, as the course work will involve a significant amount of exploration
and development of multimedia/hypermedia materials. Students will be divided into
small teams with specific responsibilities for individual exploration and programming
tasks assigned in connection with the course topics. Tasks may take the form of
constructing presentations, prototype applications, or the programming of useful
scripts. The teams will be asked to write short reports on their work that will be
presented in class.

Prerequisites: General prerequisites, including COSC3461 3.0
Course Credit Exclusion: COSC4361 3.0

 61

 62

COSC 4471 3.0
Introduction to Virtual Reality
This course introduces the basic principles of Virtual Reality and its applications.
The necessary hardware and software components of interactive 3D systems as
well as human factors are discussed. The material is reinforced by practical
assignments and projects. The topics will be approximately as follows:

• Introduction: applications, human sensory/motor system & capabilities
• Interactive 3D Graphics Programming: 3D coordinate systems & geometry,

transformations, scene modelling & graphics primitives, scene graphs,
camera model, z-buffering, lighting, texturing, anti-aliasing, real-time
rendering (levels-of-detail, impostors, etc.), graphics hardware, distributed
rendering

• Virtual Reality Technology (VR): VR input devices, filtering & tracking, VR
output devices, Augmented Reality (AR) hardware, spatial audio, haptics

• Virtual Environments (VE): event driven simulation, procedural animation,
physics-based modelling, collision detection & response, simulation &
rendering in parallel, interaction with VE, haptic and auditory simulation

• Human Factors: presence, immersion, simulator sickness (frame-rate,
latency, vergence vs. accommodation, visual vs. vestibular, etc), training
(fidelity, transfer)

• Applications: training, collaborative virtual environments, medical,
visualization & decision support, design, entertainment, augmented reality,
space applications, teleoperation, computer games.

Prerequisites: General prerequisites for 4000-level COSC courses, or ENG 4000 6.0
taken as a co-requisite; and COSC3221 3.0, COSC3311 3.0, MATH1025 3.0

Required Mathematics Courses
The introductory courses COSC1019 3.0, MATH1090 3.0, MATH1300 3.0,
MATH1310 3.0 are required of all Computer Science majors. Students who have
not taken 12U or OAC calculus should consult advisors in the Mathematics
Department to determine which courses they should take before attempting
MATH1300 3.0. In addition some combination, or all of, the following courses are
also required, depending on the degree program—MATH1025 3.0, and MATH2030
3.0.
Mathematics Substitute Course List

Course Allowed Substitutions for COSC degree requirements

COSC1019 3.0 MATH2320 3.01

MATH1025 3.0 MATH2221 3.0, MATH1021 3.0 (formerly MATH2021 3.0)

1 Faculty of Science and Engineering students who use this substitution must ensure that they
satisfy General Regulation 4 (found at this link)

http://www.science.yorku.ca/currentstudent/calendar/degreerequirements/regulations/index.html

MATH1090 3.0 No substitute (see however next section)
MATH1300 3.0 MATH1000 3.0, MATH1013 3.0
MATH1310 3.0 MATH1010 3.0, MATH1014 3.0

Although not formally required for a computer science degree many other areas of
mathematics are relevant to computer science. They include

� Probability and statistics: MATH1131 3.0, MATH2131 3.0, MATH3131 3.0,
MATH3132 3.0

� (More) algebra: MATH2222 3.0, MATH2022 3.0, MATH3020 6.0, MATH3140 6.0

� Combinatorics and graph theory: MATH2260 3.0, MATH3260 3.0

But in selecting mathematics courses please remember that most computer science
honours degrees require you to take at least 30 credits that are neither COSC nor
MATH. The breadth of education implied by such a requirement is important for a
computer science professional.

Advice for Atkinson Faculty Students

Prerequisite and new-degree-requirement substitutes
Old Atkinson Faculty Computer Science courses completed before fall 1999/2000
will be accepted as prerequisites for courses in the combined AK/AS/SC/COSC
course list according to the following table of prerequisite substitutes. The same
substitutes will also be accepted in cases in which specific courses are required
under the new degree requirements or for satisfying breadth requirements:

For current AK/AS/SC/MATH
courses

Substitute old AK/MATH

1090+2090 2441+2442 (or 2440 6.0)
1090+2320 2441+2442 (or 2440 6.0)
1019+1090 2441+2442 (or 2440 6.0)

Current AK/AS/SC/COSC
courses

Substitute old AK/COSC

1020+1030 2411+2412 (or 2410 6.0)
2001 3431
2011 3501 (or 3500 6.0)
2021 3411 (or 3410 6.0)
2031 No substitute
3101 3432 (or 3430 6.0)

 3121

3511
3122 3512
3201 No substitute

 63

3211 3409A
3212

3409B
3221 3470
3301 No substitute
3311 No substitute
3331 3650
3341 No substitute
3401 3551
3402 3551
3408 3451
3418 4071
3421 3503
3461 No substitute
3530 No substitute
4101 No substitute
4111 4021

Old-degree-requirement substitutes
For continuing Atkinson Faculty Computer Science students who choose and are
able1 to graduate under the old degree requirements (before Fall 1999) that were in
effect when they took their first computer science course at the Atkinson Faculty of
Liberal and Professional Studies, new AK/AS/SC/COSC courses will be accepted as
substitutes for specific old degree requirements that have not yet been completed,
according to the following tables:

 For old AK/MATH course Substitute current AK/AS/SC/MATH

course
2441+2442 1019+1090 (or 1090+2090, or

1090+2320)

For old AK/COSC course Substitute current AK/AS/SC/COSC
course

3411 2021
3412

No substitute
3431 2001
3432 3101
3460 3201
3501 2011
3502 Any 32xx or 33xx course

 3511 3121

 64

1 See the departmental FAQ, item #1, url:
http://www.cs.yorku.ca/undergrad/guides/programmeFAQ.html

http://www.cs.yorku.ca/undergrad/guides/programmeFAQ.html

65

 3512 3122
3650 3331 (discontinued)

Upper Level Computer Science Requirements—All Faculties

Breadth in Computer Science Requirement
Courses are classified into four areas at the 3000- and 4000-levels under the
following headings. Degree requirements in all programs of study are such that
students shall take at least one course from each area in order to obtain a broad
grounding in the theories and techniques of Computer Science.

� Theory and Numerical Computation — Course numbers: COSC31xx 3.0,
COSC41xx 3.0. Topics: algorithms, data structures, complexity, automata and
computability, scientific and numerical computing.

� Systems — Course numbers: COSC32xx 3.0, COSC42xx 3.0. Topics: digital
logic, architecture, operating systems, data communication, and networks.

� Software Development — Course numbers: COSC33xx 3.0, COSC43xx 3.0.
Topics: programming languages, software systems design and verification.

� Applications — Course numbers: COSC34xx 3.0, COSC44xx 3.0. Topics:
artificial intelligence, expert systems, logic programming, databases, data mining,
simulation, machine learning, robotics, computer vision, human computer
interfaces, hypermedia and multimedia technologies, e-commerce systems,
virtual reality.

All degree programs require COSC3101 3.0, COSC3221 3.0 and COSC3311 3.0 to
partially satisfy the breadth requirement at the 3000-level. All non-honours degree
programs require at least one course COSC34xx 3.0 from the applications area, to
complete the 3000-level breadth requirement. All honours degree programs require
COSC3401 3.0 in the applications area to complete the 3000-level breadth
requirement. All honours degree programs also require COSC3002 1.0 (as of 2003-
04).

The Specialised Honours degrees require, in addition, one of COSC4101 3.0 or
COSC4111 3.0 or COSC4115 3.0 (the last choice added as of 2004/05).

Exceptions to Course Numbering
Service courses at all levels have second digit 5. These courses do not satisfy
requirements in Computer Science and grades will not be included in the Computer
Science prerequisite grade point average calculation.

Other courses falling outside the course numbering conventions are the following.

� COSC3001 1.0— Organization and Management Seminar in Space and
Communication Sciences

� COSC3002 1.0 — Organization and Management Seminar

 66

� COSC3900 0.0 — Internship Co-op Term

� COSC4001 6.0 — restricted to SCS stream students

� COSC408x y.0 — Computer Science Project courses (x=0, 1, 2, 4; y=3, 6)

Normal Order of Study
This section presents a summary of the department's course requirements, by
suggesting the normal order in which courses should be taken. See also p.5 under
the heading “Limits on Course Enrolment”. There are also checklists for each
program type at the end of this calendar (hard copy version).

The indication of first year, second year, etc., indicates the year of study for normal
progress by full-time students.

1000-level — first year
• Fall — COSC1020 3.0, COSC1019 3.0, MATH1300 3.0
• Winter — COSC1030 3.0, MATH1310 3.0.
• 15 additional credits satisfying general education, Faculty, second major

program, or elective requirements
* Normal progress is one COSC course per term.

2000-level — second year
• COSC2001 3.0, COSC2011 3.0, COSC2021 4.0, COSC2031 3.0
• Specialized Honours: MATH1090 3.0, MATH1025 3.0, MATH2030 3.0
 Other Honours programs: MATH1090 3.0; MATH2030 3.0

BA and BSc (90-credit) programs: MATH1090 3.01
• 8 to 14 additional credits satisfying general education, Faculty, second major

program, or elective requirements
• Normal progress is three COSC courses per term.

3000-level — third year
• 9 COSC credits at the 3000-level satisfying the breadth requirement —

COSC3101 3.0, COSC3221 3.0, COSC3311 3.0
• BA and BSc (90-credit) programs: COSC34xx 3.0

All BA and BSc Honours (120-credit) programs: COSC3002 1.0 and
COSC3401 3.0

• BA and BSc (90-credit) programs: 6 additional COSC 3000-level credits
BA and BSc Specialized Honours programs: 6 additional COSC 3000-level
credits

• 11 to 17 additional credits satisfying general education, Faculty, second major
program, or elective requirements

1 Although MATH1090 is not a 3000-level general prerequisite it is required for some 3000-
level core courses and therefore students should plan to complete it in year two.

• Normal progress is three COSC course per term.

4000-level — fourth year, honours programs only
• 12 COSC credits at the 4000-level (except for the Honours Minor BA degree

which requires 6 credits at the 4000-level), including one of COSC4111 3.0 or
COSC4101 3.0 or COSC4115 3.0 for the Specialized Honours programs

• 6 additional COSC credits at the 3000- or 4000-level for Specialized Honours
programs

• 12 to 18 additional credits satisfying general education, Faculty, second major
program, or elective requirements

• Normal progress is three COSC courses per term

Prerequisites for Computer Science Courses1

It is essential that students fulfil prerequisites for courses they wish to take.

There are both general prerequisites that are required for all COSC courses at the
specified level and specific prerequisites for each course that are in addition to the
general prerequisites. Both types of prerequisites include computer science
courses and mathematics courses, and in all cases there are grade requirements in
the prerequisite courses. The prerequisites are listed after each course description
and summarized in the following tables.

The prerequisites table is useful to determine what courses must be taken in order
to enrol in a particular course, or to determine if you are permitted to enrol in a
course.

Course Title Prerequisite(s)2
1000-Level
COSC1020 3.0 Intro. to Computer Science I See course description
COSC1030 3.0 Intro. to Computer Science II COSC1020 3.0

2000-Level
General Prerequisites:

• COSC1030 3.0 completed with a grade of C+ or better
• COSC1019 3.0

COSC2001 3.0 Intro. to the Theory of Computation General prerequisites

1 In exceptional circumstances some prerequisites or co requisites may be waived at the
discretion of the undergraduate director in consultation with the course director. All petitions
to have pre- and co requisites waived must be submitted to the undergraduate office. Course
directors may not waive prerequisites.

 67
2 A semicolon is interpreted as “and” in a prerequisite list.

 68

COSC2011 3.0 Fundamentals of Data Structures General prerequisites
COSC2021 4.0 Computer Organization General prerequisites
COSC2031 3.0 Software Tools General prerequisites

3000-Level
General Prerequisites:

• COSC2011 3.0, and one of COSC2001 3.0 or COSC2021 4.0 or COSC2031
3.0

• MATH1300 3.0 and MATH1310 3.0
• one of MATH1025 3.0 or MATH1090 3.0
• a cumulative GPA of 4.5 or better over all completed Computer Science

courses.

Theory and Numerical Computation Specific Prerequisites
COSC3101 3.0 Design and
Analysis of Algorithms

COSC2001 3.0 and MATH1090 3.0

COSC3121 3.0 Intro. to Numerical
Computations I

One of COSC1540 3.0, COSC2031 3.0;
one of MATH1010 3.0, MATH1310 3.0, or
MATH1014 3.0; one of MATH1021 3.0,
MATH1025 3.0, or MATH2221 3.0

COSC3122 3.0 Intro. to Numerical
Computations II

COSC3121 3.0

Systems
COSC3201 4.0 Digital Logic Design COSC2021 4.0. PHYS3150 3.0 is

strongly recommended
COSC3213 3.0 Computer Networks
COSC3215 4.0 Embedded Systems COSC3201 4.0
COSC3221 3.0 Operating
System Fundamentals

COSC2021 4.0; COSC2031 3.0

Software Development
COSC3301 3.0 Programming
Language Fundamentals

COSC2001 3.0

COSC3311 3.0 Software Design COSC2001 3.0; COSC2031 3.0;
MATH1090 3.0

COSC3341 3.0 Intro. To
Program Verification

MATH1090 3.0

Applications
COSC3401 3.0 Functional and Logic
Programming

COSC2031 3.0 and MATH1090 3.0

COSC3402 3.0 Intro. to Concepts of
Artificial Intelligence

COSC3401 3.0 and MATH1090 3.0

COSC3408 3.0 Simulation of
Discrete Systems

MATH2030 3.0 or MATH2560 3.0

COSC3418 3.0 Simulation of
Continuous Systems

MATH2560 3.0

COSC3421 3.0 Introduction to
Database Systems

COSC3451 3.0 Signals and Systems
COSC3461 3.0 User Interfaces

Other Courses:
COSC3001 1.0 Org. & Management
Seminar in SCS

In 3rd year of SCS streams in FSE

COSC3002 1.0 Organization and
Management Seminar

(Required of all COSC honours
degrees.)

4000-Level
General Prerequisites:

• COSC2001 3.0; COSC2011 3.0; COSC2021 4.0; COSC2031 3.0
• MATH1090 3.0
• at least 12 credits in computer science 3000-level courses.
• a cumulative GPA of 4.5 or better over all completed computer science

courses

Theory Courses Specific Prerequisites
COSC4101 3.0 Advanced Data Structures COSC3101 3.0
COSC4111 3.0 Automata and Computability COSC3101 3.0
COSC4115 3.0 Computational Complexity COSC3101 3.0
COSC4161 3.0 Introduction to Cryptography At least 12 credits from 2000-level

(or higher) MATH courses
(without second digit 5, or second
digit 7 in the case of Atkinson); or
COSC3101 3.0

Systems Courses
COSC4201 3.0 Computer Architecture COSC3201 4.0; COSC3221 3.0
COSC4210 3.0 Architecture and Hardware for
Digital Signal Processing

COSC3201 4.0; COSC3451 3.0

COSC4211 3.0 Performance Evaluation of
Computer Systems

MATH2030 3.0; COSC3211 3.0
or COSC3213 3.0

COSC4213 3.0 Computer Networks II COSC3213 3.0
COSC4214 3.0 Digital Communications COSC3213 3.0; MATH2030 3.0;

one of COSC3451 3.0, EATS
4020 3.0, PHYS 4250 3.0

 69

COSC4215 3.0 Mobile Communications COSC3213 3.0
COSC4221 3.0 Operating System Design COSC3221 3.0

Software Courses
COSC4301 3.0 Programming Language
Design

COSC3301 3.0

COSC4302 3.0 Compilers and Interpreters (COSC3301 3.0 recommended)
COSC4311 3.0 System Development COSC3311 3.0 or COSC3221 3.0
COSC4312 3.0 Software Engineering
Requirements

COSC3311 3.0

COSC4313 3.0 Software Engineering Testing COSC3311 3.0
COSC4351 3.0 Real-Time Systems Theory COSC3341 3.0 or COSC3311 3.0

or COSC3221 3.0
COSC4352 3.0 Real-Time Systems Practice COSC3301 3.0 or COSC3311 3.0

or COSC3221 3.0

Applications Courses
COSC4401 3.0 Artificial Intelligence COSC3402 3.0
COSC4402 3.0 Logic Programming COSC3401 3.0; COSC3101 3.0

or COSC3341 3.0
COSC4411 3.0 Database Management
 Systems

COSC3421 3.0

COSC4412 3.0 Data Mining COSC3421 3.0 and one of
MATH2030 3.0 or MATH1131 3.0

COSC4413 3.0 Building E-Commerce
 Systems

COSC3212 3.0 or COSC3213
3.0; COSC3321 or COSC3221
3.0; COSC3421 3.0

COSC4421 3.0 Introduction to Robotics MATH1025 3.0 and either:
general prerequisites for 4000-
level COSC courses, or:
COSC2011 3.0; COSC2031 3.0;
ENG 4000 6.0 as a co-requisite

COSC4422 3.0 Computer Vision COSC3121 3.0 (MATH3241 3.0)
COSC4431 3.0 Computer Graphics MATH1025 3.0
COSC4441 3.0 Human Computer Interaction COSC3461 3.0
COSC4452 3.0 Digital Signal Processing:
Theory and Applications

COSC3451 3.0

COSC4461 3.0 Hypermedia and Multimedia
 Technologies

COSC3461 3.0

COSC4471 3.0 Introduction to Virtual Reality General prerequisites, or ENG
4000 6.0 taken as a co requisite;
and COSC3221 3.0; COSC3311
3.0; MATH1025 3.0

 70

Other Courses
COSC4001 6.0 Space and Comm. Sciences
 Workshop

3000-level of SCS core

COSC4080 3.0 Computer Science Project Permission of course director; 36
COSC credits

COSC4081 6.0 Intelligent Systems Project Open only to students in the
Intelligent Systems Stream;
permission of the instructor;
COSC3401 3.0 and COSC3402
3.0 with gpa>= 6.0

COSC4082 6.0 Interactive Systems Project Open only to students in the
Interactive Systems Stream;
permission of the instructor;
COSC3311 3.0 and COSC3461
3.0

COSC4084 6.0 Communication Networks
Project

Open only to students in the
Communication Networks Stream;
permission of the instructor;
COSC3451 3.0 and COSC3213
3.0 with gpa>= 6.0

 71

	Preface
	The Department
	Faculty
	CSAC Accreditation
	A Note on Terminology
	Admission to the Computer Science Major
	Access to Courses
	Recent Academic Changes
	Programs Offered
	Elective Courses
	Industrial Internship Program
	Admission to the Graduate Program in Computer Science
	The Service Program
	York University Computer Club
	The Student Ombuds Service
	Computer Facilities
	Computer Use Policy
	Computer Science Awards
	Academic Policies
	Appeal Procedures
	Grading System
	Course Fees
	Course Weights
	Course Descriptions: 1000-Level
	Course Descriptions: 2000-Level
	Course Descriptions: 3000-Level
	Course Descriptions: 4000-Level
	Required Mathematics Courses
	Advice for Atkinson Faculty Students
	Upper Level Computer Science Requirements—All Faculties
	Exceptions to Course Numbering
	Normal Order of Study
	Prerequisites for Computer Science Courses
	Theory and Numerical Computation Specific Prerequisites
	Theory Courses Specific Prerequisites

