
 1

The official most up-to-date version is found at URL
http://www.cse.yorku.ca/undergrad/csCalendars.html

Preface .. 2
The Department... 2
Faculty ... 3
CSAC and CEAB Accreditation ... 4
A Note on Terminology .. 4
Programs Offered by the Department.. 4
Streams in Honours Computer Science Programs.. 6
The Computer Security Program ... 6
Degree Requirements.. 8
Admission to Programs.. 8

Digital Media Program .. 9
Computer Engineering Program ... 9
Graduate Program in Computer Science.. 9

Industrial Internship Program... 9
Out of Major Elective Courses - Computer Science and Computer Security Programs
... 10
The Service Program... 11
Recent Academic Changes ... 11
Student Clubs .. 12
The Student Ombuds Service.. 12
Computer Facilities .. 13
Computer Use Policy ... 14
Computer Science and Computer Engineering Awards .. 15
Academic Policies.. 16
Appeal Procedures .. 18
Grading System ... 19
Courses Offered by the Department.. 19
Course Descriptions: 1000-Level... 21
Course Descriptions: 2000-Level... 29
Course Descriptions: 3000-Level... 33
Course Descriptions: 4000-Level... 46
Access to Courses... 70
Normal Order of Study... 71
Prerequisites for Computer Science and Engineering Courses 72
Degree Program Checklists... 77

http://www.cse.yorku.ca/undergrad/csCalendars.html

 2

Preface
In choosing to study Computer Science, Computer Security, Digital Media, or
Computer Engineering you have chosen a career in an exciting and rapidly changing
discipline. As a professional in one of these fields you may become involved in many
of the great changes in the future, for the computer will play a central role in these
changes.

It is important, therefore, that you not only develop the practical and theoretical skills
of a professional but that you also try to obtain an understanding of the impact of
computers on society. For that reason we would strongly encourage you to select, in
addition to the required courses in Computer Science and Engineering, courses
outside Computer Science and Engineering in areas where you will broaden your
knowledge of societal issues. One way to do this is to select isolated courses that
catch your interest; however, a more productive approach is to consider taking a
concentration of courses in a different area or possibly designing a second major or
minor in addition to your primary major.

So in planning your course selection you should be thinking ahead and asking
yourself not only which technical/scientific courses will give you a good degree, but
which courses will make you a good professional. That implies a sound technical
background, a broad education, professional ethics and a social conscience.

Lastly we would like to remind you that Computer Science or Computer Engineering is
an art as well as a scientific/technical field and that means you cannot learn it entirely
from a book — you must also practice it.

The Department
Computer Science and Engineering Department
1003 Computer Science & Engineering Building (CSEB)

York University
4700 Keele Street

Toronto, Ontario M3J 1P3
http://www.cse.yorku.ca/

Office hours 10:00 am – 4:00 pm
(Fridays during June-August: 10:00 am – 3:00 pm)

Undergraduate Director: Tel. (416) 736-5334
 George Tourlakis Email: enquiries@cse.yorku.ca

Computer Engineering Director: Tel: (416) 736-2100 X20192
 Robert Allison Email: allison@cse.yorku.ca

Graduate Director: Rick Wildes Tel. (416) 736-5053

Chair: Amir Asif Tel. (416) 736-5053
 Fax: (416) 736-5872

http://www.cse.yorku.ca/
http://www.cse.yorku.ca/cspeople/faculty/gt/index.html
mailto:enquiries@cse.yorku.ca
http://www.cse.yorku.ca/cspeople/faculty/allison/index.html
mailto:allison@cse.yorku.ca
http://www.cse.yorku.ca/cspeople/faculty/wildes/index.html
http://www.cse.yorku.ca/cspeople/faculty/asif/index.html

Faculty
 Telephone email Telephone email
 Extension @cse.yorku.ca Extension @cse.yorku.ca

Aboelaze,Mokhtar * 40607 aboelaze Ma, Burton 77885 burton
Allison, Robert 20192 allison Mackenzie, Scott * 40631 mack
Amanatides, John 44782 amana Mirzaian, Andy 70133 andy
An, Aijun 44298 aan Nguyen Uyen 33274 utn
Arjomandi, Eshrat
(Emerita) eshrat Ostroff, Jonathan 77882 jonathan

Asif, Amir 70128 asif Roosen-Runge, Peter
(Emeritus) peter

Baljko, Melanie 33348 mb Roumani, Hamzeh 66146 roumani

Cercone, Nick 55053 nick Roventa, Eugene
(Emeritus) roventa

Cribb, Peter 70127 peterc Ruppert, Eric 33979 ruppert
Datta, Suprakash 77875 datta Spetsakis, Minas 77886 minas
Dymond, Patrick 33948 dymond Stachniak, Zbigniew 77877 zbigniew

Eckford, Andrew 70152 aeckford Stuerzlinger,
Wolfgang 33947 wolfgang

Edmonds, Jeff 33295 jeff Toptsis, Anestis * 66675 anestis
Elder, James 66475 jelder Tourlakis, George 66674 gt
Godfrey, Parke 66671 godfrey Tsotsos, John 70135 tsotsos
Gotshalks, Gunnar 33350 gunnar Tzerpos, Vassilios 33341 bil
Gryz, Jarek 70150 jarek van Breugel, Franck 77880 franck
Hofbauer, John 70125 hofbauer Vlajic, Natalija 77878 vlajic

Hornsey, Richard * 33265 hornsey Wallis, Anthony
(Emeritus) wallis

Jenkin, Michael 33162 jenkin Wharton, Michael 33978 michael
Jiang, Hui 33346 hj Wildes, Richard 40203 wildes
Kant, Mariana * 70117 mkant Xu, Jia 77879 jxu
Lesperance, Yves 70146 lesperan

* On Sabbatical

 3

 4

CSAC and CEAB Accreditation
The Computer Science Accreditation Council (CSAC) has accredited all Computer
Science honours programs offered by the Department that have already graduated
students, with the exception of the BA and BSc honours minor. The Computer
Engineering specialized honours BASc program is accredited by the Canadian
Engineering Accreditation Board (CEAB).
The Computer Science Accreditation Council is an autonomous body established by
the Canadian Information Processing Society (CIPS), while the Canadian Engineering
Accreditation board is established by Professional Engineers Canada. The purpose of
accreditation is to identify those institutions that offer computer programs worthy of
recognition. The objectives of the accrediting bodies are:

� To formulate and maintain high educational standards for Canadian universities
offering computer and information science programs, and to assist those institutions
in planning and carrying out education programs.

� To promote and advance all phases of computer and information science education
with the aim of promoting public welfare through the development of better
educated computer professionals.

� To foster a cooperative approach to computer and information science education
between industry, government, and educators to meet the changing needs of
society.

Graduation from an accredited Computer Science Program simplifies the process of
professional certification as an Information Systems Professional of Canada or ISP.
The provinces of Ontario and Alberta recognised the ISP designation. Likewise,
accreditation from the Canadian Engineering Accreditation Board (CEAB) ensures
that the academic requirements necessary for registration as a professional engineer
within Canada are successfully met. More information on professional accreditation
and the accreditation process can be found on the CIPS web page at
http://www.cips.ca/ and on the Engineers Canada website at
http://www.engineerscanada.ca/

A Note on Terminology
In this document BA or BSc degree refers to the 90-credit bachelor degree. BA
Honours or BSc Honours degree refers to the 120-credit degree.

Programs Offered by the Department
The Department offers courses towards the following programs, each of which is
described more fully below.

1. Computer Science

http://www.cips.ca/
http://www.engineerscanada.ca/

 5

2. Computer Security
3. Computer Engineering
4. Digital Media

For detailed information you are advised to first read the appropriate sections of the
York University Undergraduate Calendar (click on the related York University’s web
page http://calendars.registrar.yorku.ca/calendars/index.htm). Secondly, read this
supplemental Calendar, and thirdly, see an advisor in the Department.

The Computer Science Program
Computer Science is available as a major program leading to an Honours or a
Specialised Honours (120-credit) degree The degree types are BA Honours, BSc
Honours, BA or BSc Specialised Honours, International BSc (iBSc) and International
BA (iBA).

The Honours major in Computer Science may be combined with most subjects in both
LA&PS and Science and Engineering leading to a four-year double major or major-
minor degree. Conversely, Computer Science is also available as an Honours Minor
program, which must be combined with an Honours Major in a different discipline.

The intention of a combined program is for students to major in two subjects. In a
double major program, students complete course work up to the 4000-level in each
subject. In a major/minor program the minor subject generally requires somewhat less
course work than the major, and still may include courses at the 4000-level. Such
degrees may require students to take more than the minimum of 120-credits to satisfy
the honours requirements of each subject. Consult advisors in both departments if you
are planning a combined program.

In the Specialised Honours program students take more courses in computer science
and mathematics than for other programs thereby achieving greater specialisation.
However, a breadth in education is maintained by the requirement of a significant
number of non-CSE and non-MATH courses.

A BA Honours or BSc Honours program requires 120-credits (normally completed in
four years of study), more specialisation, a higher minimum performance (grade-point-
average of 5.0 to proceed1 — i.e., continue in the program — and to graduate), and in
some cases different courses than a BA or BSc degree.

The Department also offers a 90-credit BA or BSc program normally completed in
three years of study and requiring a minimum grade point average of 4.0 over all
courses for graduation.

The recommended courses in computer science and mathematics are identical in
most programs in the first two years of study so that students can make their final

1 In December 2005 the Senate of York University has approved, with effective date of
implementation April 3, 2006, an amendment that allows students to “proceed on warning” if
they fail to meet the gpa of 5.0. The minimum cumulative gpa required are 4.0 between 0-23
credits; 4.25 between 24-53 credits; 4.80 between 54-83 credits; 5.0 beyond 83 credits.

http://calendars.registrar.yorku.ca/calendars/index.htm

 6

decision as to which program to graduate in after they have more exposure to the
discipline. Also all programs are structured in such a way that a student who embarks
on a BA Honours or BSc Honours program can meet the requirements for a BA or
BSc degree by the end of the third year and can at that time graduate with either a BA
or BSc. If you have the grade point average to be eligible for an honours program, you
will be listed as an honours student for administrative purposes. Only the honours
programs (with the exception of the minor) are accredited by the CSAC.

The degree requirements for the various Computer Science degree programs and
Streams, as well as for Computer Security, Digital Media and Computer Engineering
offered by the Department are listed at the end of this calendar (as a URL link in the
case of the on-line version of this document).

Streams in Honours Computer Science Programs
Both the Specialised Honours and Honours Major programs may be taken with a
specified focus or stream. The streams provide a mechanism for recognizing on your
transcript a particular emphasis or focus. Available streams currently include:

1. Communication Networks
2. Intelligent Systems
3. Interactive Systems
4. Software Development

Each stream requires some specific 3000- and 4000–level courses (thus specifying
what would otherwise be choices within CSE courses that you would make yourself in
an un-streamed Honours Major or Specialized Honours program), as well as a full
year (6 credit) 4000–level project, or honours thesis as it would be called in some
universities.

The Computer Security Program
The Computer Security program is a specialised honours degree that may be pursued
as a BSc or a BA degree program. It focuses on understanding threats to computer
security and the techniques for combating those threats. Besides the foundational
computer science and mathematics courses the program requires in-depth education
in areas such as computer networks, cryptography, operating systems, database, and
software engineering techniques as well as specialized courses in computer security.
In addition a solid understanding of applied ethics, management and operational
practices, and exposure to relevant legal concepts are important elements of the
curriculum.

As a specialised honours program computer security cannot be combined with any
other honours major or honours minor. However, the program does still require a
significant number of non-CSE and non-MATH courses to ensure a breadth of general
education.

International Programs - iBSc and iBA Honours

 7

The department has a strong interest and involvement in promoting opportunities for
students to study abroad.

The iBSc and iBA degree programs are structured as honours computer science
programs that contain a compulsory exchange placement abroad of at least one full
term of study. This iBSc degree program requires 12 credits in a language stream
chosen by the student and 18 credits that focus on a country or region that is
compatible with the student’s chosen language stream and/or international issue that
is of interest to the student. The iBA requires 18 credits in a language stream chosen
by the student and 12 credits that focus on a country or region that is compatible with
the student’s chosen language stream and/or international issue. Students would
normally enrol in language courses relevant to their exchange placement.

For more information see the URL:
 http://www.cse.yorku.ca/csprosp_students/undergrad/iBSc/index.html

Since 2003 the Department has maintained a successful International Summer School
program, mounting courses in partnership with departments in Germany, Greece and
Poland.

For more information see the URL:
 http://www.cse.yorku.ca/cscurrent_students/undergrad_students/internation
al/index.html

The Digital Media Program
Digital Media or New Media are the technical methods and social practices of
communication, representation, and expression that have developed using the digital,
multimedia, and networked computer. Digital media have transformed work in other
media (books, movies, telephones, television) as well as given rise to entirely new
media (computer games and the Internet for example).

The curriculum aims to provide a foundation in the following areas:
• The computational basis for the creation of digital media imagery and sound,

including animation and the simulation of 3D environments.
• The theoretical, artistic, aesthetic and experiential ideas that lie behind an

informed understanding of the aesthetic aspects of digital media creation
• The practice of creating digital media works that explore the ways in which

culture is produced and can be produced through technology
• The broader socio-cultural effects and the theory and research concerning

responses to and uses of digital media.

This is a multidisciplinary BA Specialised Honours degree program that requires an
approximately equal number of courses from the Department of Computer Science
and Engineering and the Fine Arts Cultural Studies department of the Faculty of Fine
Arts. There are also a few courses required from the Communication Studies program
of the Division of Social Science in the Faculty of LA&PS.

For more information see the URL:
 http://www.yorku.ca/web/futurestudents/programs/template.asp?id=652

http://www.cse.yorku.ca/csprosp_students/undergrad/iBSc/index.html
http://www.cse.yorku.ca/cscurrent_students/undergrad_students/international/index.html
http://www.cse.yorku.ca/cscurrent_students/undergrad_students/international/index.html
http://www.yorku.ca/web/futurestudents/programs/template.asp?id=652

 8

The Computer Engineering Program
This is a Specialised Honours BASc (Bachelor of Applied Science) degree in which
students must select courses that focus on software and hardware engineering. This
includes, for example, courses in digital logic, embedded systems, signals and
systems, and computer networks that are required in Computer Engineering but
optional for students in other degree programs. The BASc moreover contains a
substantial core of engineering design courses that are only open to students in an
Engineering program.

While Honours programs in Computer Science allow flexibility for students to choose
electives, the Computer Engineering program is highly specified in order to meet
accreditation requirements of the CEAB.

Like all engineering programs the workload is very demanding. Total credits normally
completed over four years amount to nearly 150, for example.

For more information see also the URL:
http://www.eng.yorku.ca/index.php/currentstudents/46-computer-engineering-program-
requirements

Degree Requirements
Specific course requirements for the degree programs outlined above can be found in
the official University Calendar at:

http://calendars.registrar.yorku.ca/calendars/index.htm

Course requirements fall into two or three broad categories:

1. those required for the major, i.e. computer science and mathematics
courses, and for the Digital Media degree, fine arts cultural studies and
social science courses

2. those required for the second major if the program is an Honours Double
Major or Honours Major Minor program.

3. courses required for general education, breadth and diversity. These
depend on whether the degree is a BA, BSc or a BASc.

The Department also provides degree checklists that itemize the course requirements
in an accessible way (hopefully!). Every effort is made to ensure the accuracy of these
checklists, however, in case of any inconsistency the official University Calendar is to
be followed. These checklists are included at the end of this calendar.

Admission to Programs
Computer Science and Computer Security Programs
Please go to http://www.yorku.ca/web/futurestudents/requirements/ to find out about
the various University and Faculty level Admissions Requirements pertaining to your
situation. There are two general Admission Categories:

1. Entry with only secondary school background
Requirements under this category are detailed at

http://www.eng.yorku.ca/index.php/currentstudents/46-computer-engineering-program-requirements
http://www.eng.yorku.ca/index.php/currentstudents/46-computer-engineering-program-requirements
http://calendars.registrar.yorku.ca/calendars/index.htm
http://www.yorku.ca/web/futurestudents/requirements/

 9

http://www.yorku.ca/web/futurestudents/requirements/highschool.html
Please note the Faculty-specific requirements as these pertain to your case.

2. Entry with post-secondary academic background
Please follow http://www.yorku.ca/web/futurestudents/requirements/univ_coll.html to
find a detailed description of general University and Faculty-specific policies for
gaining admission under this category.

In particular, York University students who want to change their major to be, or to
include, computer science will need to meet the following minimum requirement:

� Completion of at least 24 credits with an average of C+ or better if transferring to
the honours computer science programs (minimum average of C is needed to
transfer into the Bachelor degree programs)2

Once transferred to a computer science program, students will need to satisfy all
specific and general prerequisites of computer science courses they wish to take.

Digital Media Program
Admission requirements can be found at the same websites as given above. Please
go to http://www.yorku.ca/web/futurestudents/requirements/.

Computer Engineering Program
Admission requirements can be found at the same websites as given above. Please
go to http://www.yorku.ca/web/futurestudents/requirements/.

Graduate Program in Computer Science
Admission to the graduate program is highly competitive. The ideal preparation for
graduate studies in Computer Science is the completion of the Specialised Honours
Program in Computer Science (please consult the Computer Science degree
requirements, the degree checklist, and the course descriptions), or an equivalent
degree (including senior level courses in theoretical computer science). Your grade
point average in the last two years should be at least B+ to enter the competition for
admission. Of course, the higher your grades the more likely you will be a successful
candidate. For more information please visit
http://www.cse.yorku.ca/cscurrent_students/grad_students/index.html

Industrial Internship Program
The Technology Internship Program (TIP) offers qualified undergraduate Computer
Science, Computer Security, Computer Engineering, and Digital Media students the
opportunity to take part in a program that alternates academic studies with related
work experience in either the private or public sectors. There is considerable flexibility

2 All courses listed in your transcript will be included in the calculation of your cumulative grade
point average.

http://www.yorku.ca/web/futurestudents/requirements/highschool.html
http://www.yorku.ca/web/futurestudents/requirements/univ_coll.html
http://www.yorku.ca/web/futurestudents/requirements/
http://www.yorku.ca/web/futurestudents/requirements/
http://www.cse.yorku.ca/cscurrent_students/grad_students/index.html

 10

in the duration of individual Internships and the length of an Internship can vary from
four to sixteen months. During the work placement students earn a salary typical of
entry-level positions in the IT sector.

Students in the BASc, BA Honours, BSc Honours, iBSc, iBA and Computer Security
programs are eligible to apply. Students enrolled in the Internship option are required
to enrol in CSE3900 0.00 (Internship Co-op Term) in each term of their internship.
The Department has formed a partnership with the Career Centre of York University to
offer better services to students who are interested in the Internship Program. The
Career Centre assists students seeking internship employment and also assists
employers wishing to hire York University Internship students. Internship students
receive assistance in identifying relevant and interesting internship opportunities,
formulating the employer application package and sharpening their interview skills.
Students are placed at a wide range of companies including IBM, RIM, Sun
Microsystems, Platform, Workbrain, Ontario Lottery and Gaming Commission, CIBC,
Toronto Hydro, Ontario Power Generation, and Global Matrix.

For additional information please visit the link http://www.yorku.ca/careers/intern/
or e-mail intern@career.yorku.ca

See also the CSE3900 0.00 description in this supplemental calendar.

Out of Major Elective Courses - Computer Science and Computer
Security Programs
Students in Computer Science or Computer Security sometimes feel their study in this
discipline is quite isolated from the other programs in their Faculty, and place little
emphasis on their choice of courses outside the major, even though at least a quarter
of their courses are non-computer science/math. This is a mistake — computer
science supports applications in every information-using discipline. In order to make
creative and effective use of your skills in computing, you need to know much more of
the natural world, the man-made world, and the world of ideas, than can be learned in
courses in computing.

There are many choices for elective courses beyond computing. For example courses
in economics, philosophy (logic), psychology, linguistics, physics and chemistry to
name just a few whose announced content meshes with issues and problems studied
in computer science.

Not only should you consider taking individual courses in other subjects but you
should also consider taking a concentration of courses that together form a coherent
or complementary package. Such a concentration may come from one discipline (one
of the sciences, for example, because of their hierarchical structure) but it may also
come from two or three disciplines on related concepts presented from different
perspectives. It may also be necessary to take specific prerequisites before you can
take a desired elective course; such combinations also form coherent concentrations.

http://www.yorku.ca/careers/intern/
mailto:intern@career.yorku.ca

 11

To further emphasise the importance of outside the discipline elective courses, all
honours programs require at least 30 credits from non-CSE and non-MATH courses.

The Service Program
The Department also offers a variety of courses at the 1000-level and 2000-level that
are of interest to students wanting to learn about computers and computer use without
majoring in Computer Science or Engineering. In some cases degree programs
offered by other departments may require these courses in their programs.

At the 1000- level these courses for non-majors are:

CSE1520 3.0 Computer Use: Fundamentals
CSE1530 3.0 Computer Use: Programming
CSE1540 3.0 Computer Use for the Natural Sciences
CSE1550 3.0 Computer Use: Web and Database Systems
CSE1560 3.0 Introduction to Computing for Math and Statistics
CSE1570 3.0 Introduction to Computing for Psychology

CSE1520 3.0 is an introduction to computers including their architecture, system
software, networking and other general topics as well as providing exposure to
problem solving applications such as the spreadsheet. The course CSE1530 3.0 is an
introduction to computer programming and may be taken as preparation for CSE1020
3.0 or for CSE2501 1.0, if the student lacks background in this area. CSE1550 3.0
offers a practical way of learning the basics of how information is specified, acquired,
and managed using database technology. CSE1560 3.0 and CSE1570 3.0 are
directed towards MATH/Stats and Psychology majors, respectively.

Students taking the 1500 series courses are not enabled to take the 2000-level CSE
courses for majors without successful completion of CSE1020 3.0 and CSE1030 3.0.

At the 2000-level the Department offers the course CSE2501 1.0, Fortran and
Scientific Computing, which covers computer-based problem solving in a variety of
scientific and engineering settings. As of 2005/06 we introduced two new service
courses in C# programming, CSE2550 1.0 and CSE2560 1.0. These three 2500
series of courses have prerequisites.

Recent Academic Changes
1. Program Changes (2010/11)

A new course, CSE1001 1.0, “Research Directions in Computing” has been
introduced and it will be a degree requirement for all Computer Science
(including the Bachelor 90-credit degree) and Computer Security Programs
effective September 2010. The Digital Media Program has also had some
minor changes (but it does not require CSE1001 1.0). The reader is referred to
the checklists section.

2. New Courses and Course Changes FW2010/11

 12

• New course: CSE1001 1.0 Research Directions in Computing (first offered
in Fall 2010/11). This course meets once every second week and spans the
fall and winter terms.

• New course: CSE1570 3.0 Introduction to Computing for Psychology (first
offered in Winter 2010/11)

• New course: CSE2041 3.0 Net-Centric Computing (first offered in Fall
2010/11)

• New course: CSE4491 3.0 Simulation and Animation for Computer Games.
• Course Change: The prerequisites of CSE 1019 3.0 and CSE1020 3.0 have

changed to reflect changes in the high school curriculum.
• Course Change: The prerequisite of CSE 4431 3.0 has changed:

MATH1310 3.0 is no longer required.

Student Clubs
The York University Computer Club (YUCC) is an organisation of students who
share an interest in computing. They nominate students to serve on Department
committees, sponsor informational and social events and facilitate communications
among students and faculty members. They can be reached by electronic mail at
yucc@yucc.yorku.ca

The Engineering Society at York, or ES@Y, represents Engineering students on
various issues relating to engineering and the university, and organises social events
and advising sessions. They can be accessed though their website at
http://www.engsocyu.com/.

The York University chapter of Engineers Without Borders — EWB@York —
helps people in developing communities gain access to the technology they need to
improve their lives. Last summer, EWB@York repaired Pentium-based computers and
shipped them to Iraq for female NGOs. Summer Internships include three international
and one local placement.

The Women in Computer Science and Engineering (WiCSE) supports and
promotes women in Computer Science and Engineering. The objectives of WiCSE
include: (i) providing a support network for female computer science and engineering
students; (ii) implementing a mentoring program to assist them in the preparation of
applications for scholarships, bursaries and summer jobs, providing guidance in
career development and post graduate education; and (iii) improving the "climate" for
women and help student attraction and retention. They can be contacted through their
website http://www.cse.yorku.ca/~eshrat/WiCSE/.

The Student Ombuds Service
The Student Ombuds Service (SOS) is a peer-advising service designed to help York
students — especially those in Bethune College and the Faculty of Science and
Engineering — find university-related information that they need. The SOS office is
staffed with knowledgeable upper-level students and serves as a resource centre and
the hub of a referral network, assisting students to find answers to any questions

mailto:yucc@yucc.yorku.ca
http://www.engsocyu.com/
http://www.cse.yorku.ca/%7Eeshrat/WiCSE/

 13

about York University policies and procedures, giving general academic help, and
advice about University life. SOS resources include departmental mini-calendars,
graduate and professional school information, a tutor registry, and a study group
registry. The SOS office is located in 214 Bethune College and holds drop-in hours
between 10:00 a.m. and 4:00 p.m., Monday to Friday. No appointment is necessary.
SOS can also be reached on the web, http://www.yorku.ca/sos, by e-mail at
sos@yorku.ca, or by phone at 416-736-5383.

Computer Facilities
Undergraduate students who are registered to any CSE major course use the “Prism
Laboratory” the Department of Computer Science and Engineering undergraduate
computing laboratories. Students are granted an authorised account through which
they store or print their course related files, use electronic mail facilities, create their
own web sites. Students access the Unix or Windows workstations in the laboratories
through scheduled sessions or first come first serve basis. Prism accounts can also
be accessed remotely by dial-up, through the Internet via secure connection, or from
other designated laboratories on campus including the Jupiter Lab, which is in the
same building as our CSE laboratories. Selected labs are equipped with printing
facilities. Senior students use a variety of specialty laboratories as required. These
include the Robotics and Vision, the Digital Systems, the Software Engineering, the
Networking and Computer Security, the Integrated Signal Processing and Multi-Media,
and the Virtual Reality Laboratories.

� The Robotics and Vision Laboratory consists of two CRS robot arms, an
autonomous mobile robot, four Unix and one Windows workstations equipped with
multimedia hardware including monocular and stereo video cameras and audio
facilities.

� The Digital Systems Laboratory provides hands-on experience in digital logic
design connecting discrete components such as gates, flip-flops and registers on
integrated circuit chips. Students are also exposed to design on FPGA boards using
hardware description languages. It consists of Windows workstations, embedded
microcontroller boards, logic analysers, oscilloscopes and other electronic test
equipment to provide students with hands-on experience on design and
implementation of digital and embedded systems.

� The Software Engineering Laboratory consists of a project meeting area and a work
area with Unix and Windows workstations equipped with modern software
development tools to provide students experience with various phases of the
software development life cycle such as requirements, analysis and design,
implementation, testing, delivery, and maintenance.

� The Virtual Reality Laboratory was established to support the study of modern
virtual reality systems. It consists of a variety of specialised hardware displays and
tracking devices including a large screen passive stereoscopic display, two
Phantom Omni haptic devices, immersive audio displays, two head mounted
displays and a number of magnetic and inertial motion tracking devices. These

http://www.yorku.ca/sos
mailto:sos@yorku.ca

 14

displays are supported by a set of high-performance Linux workstations and the
custom VE software environment developed at York.

� The Integrated Signal Processing and Multi-Media Laboratory consist of a number
of Digital Signal Processing boards, each contain a processor, memory, and I/O
channels with A/D and D/A capabilities. The laboratory is equipped with function
generators, oscilloscopes and power supplies. Windows workstations are also
available for program development, and simulation.

� The Networking and Computer Security Laboratory consists of Unix and Windows
workstations equipped with specialized software tools and hardware equipment for
networking and computer security courses.

� The Digital Media Laboratory consists of workstations equipped with video
capturing devices and software suites that are tailored to the development of
interactive, media-rich applications. This includes various compilers and
development environments (e.g., Java, Python, Cycling 74’s Max/MSP, Eclipse) as
well as video- and image-, and audio-manipulation suites. The lab is used for
classroom instruction, tutorials, student work, and student evaluation (in-lab tests).

All computers in the Department are connected to the campus network backbone,
providing access to all significant systems and services in the University, as well as
computers around the world via the Internet.

Computer Use Policy
Working in a laboratory environment requires cooperative behaviour that does not
harm other students by making any part of the Department’s computer systems
unusable such as locking out terminals, running processes that require lots of network
traffic (such as playing games on multiple terminals), or using the facilities to work on
tasks that are not related to course work. Essentially, all users of common facilities
need to ask themselves whether or not their behaviour adversely affects other users
of the facility and to refrain from engaging in "adverse behaviour". Good manners,
moderation and consideration for others are expected from all users. Adverse
behaviour includes such things as excessive noise, occupying more space than
appropriate, harassment of others, creating a hostile environment and the displaying
of graphics of questionable taste. Lab monitors are authorised to ensure that no
discomfort is caused by such practices to any user.

The Department policy on computer use prohibits attempting to break into someone
else's account, causing damage by invading the system or abusing equipment, using
electronic mail or file transfer of abusive or offensive materials, or otherwise violating
system security or usage guidelines. As well, we expect you to follow Senate policies
(please follow the link on the related Senate Policy

 http://www.yorku.ca/secretariat/policies/document.php?document=77)

The Department computer system coordinator, in conjunction with the Department
and York Computing Services, will investigate any suspected violation of these
guidelines and will decide on appropriate penalties. Users identified as violating these

http://www.yorku.ca/secretariat/policies/document.php?document=77

 15

guidelines may have to make monetary restitution and may have their computing
privileges suspended indefinitely. This could result in your being unable to complete
courses, and a change in your major.

Adverse behaviour may also violate University, Provincial and Federal laws; for
example duplication of copyrighted material and theft of computer services are both
criminal offences. In such cases the University, Provincial or Federal authorities may
act independently of the Department. The police may be asked to investigate and
perpetrators may be liable for civil and/or criminal prosecution. The Department does
not assume any liability for damages caused by such activities.

Computer Science and Computer Engineering Awards
Unless otherwise stipulated, students in the Faculty of Science and Engineering are
eligible for these awards. The Department maintains plaques commemorating the
achievement awards.

Computer Science Academic Achievement Award
Up to four cash awards are presented annually, one for each of the four years of
study, to students who achieved the highest OCGPA and are majoring in any of the
programs offered by the Department. These awards are funded by contributions from
the Department.

Bursary in Science and Engineering
This bursary is available to assist Faculty of Science and Engineering students who
are in financial need. Recipients must have completed at least 24 credits towards a
BSc degree with a minimum cumulative grade point average of 5.0 on all science
courses taken. Recipients must be Canadian citizens, permanent residents or
protected persons, and Ontario residents, and demonstrate financial need.

Business.Ca Inc. Bursary
Students in their third year, enrolled in the Faculty of Science and Engineering, in
good academic standing are eligible for this award. Applicants must be Canadian
citizens, permanent residents or protected persons, Ontario residents and
demonstrate financial need.

Prestigious Awards
The Faculty of Science and Engineering also awards various medals to its top-
graduating students. These include the Gold and Silver Medals of Academic
Excellence (Faculty of Science and Engineering). The Faculty also recognises highly
achieving students by including their names in the Dean’s Honour Roll

Other Awards
� Students in the Department are encouraged to apply for Summer Science awards

such as the NSERC Undergraduate Summer Research Award. These awards pay
students a salary over the summer while they are working on a research project
under the supervision of a faculty member. Normally students who have completed
at least their 2nd year may apply and typically a grade point average of at least

 16

7.0(B+) is required. In addition, faculty sometimes employ undergraduate research
assistants over the summer period. While not an award administered by NSERC,
such positions are only offered to the best students in the Department.

� Hany Salama Bursary – a cross-Faculty bursary available to ITEC, MATH and CSE
students, administered by Student Financial Services.

� Sally Murray Findley Memorial Scholarship – a cross-Faculty scholarship available
to ITEC, MATH and CSE students, administered by Student Financial Services.

Academic Policies
Advising
Academic advising is available on an individual basis in the Department. Individual
advising is available to students in order to discuss academic issues such as
recommended mathematical skills, theoretical versus applications oriented courses,
areas of specialisation, graduate studies and career paths, course choice, assistance
with degree program checklists and requirements.

It is ultimately the responsibility of each student to ensure that they meet all degree
requirements of both the Department and their home Faculty (i.e., Science and
Engineering). Written information and program checklists are provided to assist you in
making appropriate choices. It is recommended that you take advantage of advising
opportunities to answer any questions you may have.

Individual advising appointments are made through the Undergraduate Office
(ug@cse.yorku.ca, Tel: (416) 736-5334).

Academic Honesty
The University Senate, the Faculty of Science and Engineering and the Department
have policies on academic honesty and their enforcement is taken very seriously.
Academic honesty is essentially giving credit where credit is due. When a student
submits a piece of work it is expected that all unquoted and unacknowledged ideas
(except for common knowledge) and text are original to the student. Unacknowledged
and unquoted text, diagrams, etc., which are not original to the student, and which the
student presents as their own work is academically dishonest. The deliberate
presentation of part of another student's program text or other work as your own
without acknowledgment is academically dishonest, and renders you liable to the
disciplinary procedures instituted by the Faculty of Science and Engineering.

The above statement does not imply that students must work, study and learn in
isolation. The Department encourages students to work, study and learn together,
and to use the work of others as found in books, journal articles, electronic news and
private conversations. In fact, most pieces of work are enhanced when relevant
outside material is introduced. Thus faculty members expect to see quotes, references
and citations to the work of others. This shows the student is seeking out knowledge,
integrating it with their work, and perhaps more significantly, reducing some of the
drudgery in producing a piece of work.

mailto:ug@cse.yorku.ca

 17

As long as appropriate citation and notice is given students cannot be accused of
academic dishonesty.

A piece of work, however, may receive a low grade because it does not contain a
sufficient amount of original work. In each course, instructors describe their
expectations regarding cooperative work and define the boundary of what is
acceptable cooperation and what is unacceptable. When in doubt it is the student’s
responsibility to seek clarification from the instructor. Instructors evaluate each piece
of work in the context of their course and given instructions.

You should refer to the appropriate sections of the York University Undergraduate
Calendar

http://calendars.registrar.yorku.ca/calendars/index.htm
and Senate policies

http://www.yorku.ca/secretariat/policies/document.php?document=69
for further information and the penalties when academic dishonesty occurs.

Concerns about Fairness
The Department's faculty members are committed to treating all students fairly,
professionally, and without discrimination on non-academic grounds including a
student’s race or sex. Students who have concerns about fair treatment are
encouraged to discuss the matter with their instructor or the course director. If this is
not possible or does not resolve the problem, the matter should be brought to the
attention of the Undergraduate Director, and if necessary, the Department Chair, for a
departmental response.

Moving to New Program Requirements and new prerequisites
Computer Science and Engineering is a relatively young and rapidly changing
discipline. To ensure that our students graduate with current degree programs that are
informed by the latest advances in the field, the Department has determined the
following principles governing the applicability of new degree requirements for
Computer Science programs:
� If you have been taking courses in consecutive years then the starting year in

computer science is the year in which you take your first major CSE course, and it
normally coincides with the year you were admitted into the program. If you have a
break in your studies then your starting year changes to the year in which you start
taking major CSE courses again. Since most Senate approved degree program
regulations become effective in the fall term following approval, your starting year is
the current academic year if you start in the fall, winter, or the immediately following
summer terms. For example: starting in fall 2001 you follow the 2001-02 program
requirements; starting in winter 2002 or summer 2002 you also follow the 2001-
2002 program requirements.
� If program requirements change you may continue with your studies using the

program requirements in effect in your starting year. In this case the degree
checklists in this calendar may not apply to you. You should use the degree
checklists applicable to your starting year.

http://calendars.registrar.yorku.ca/calendars/index.htm
http://www.yorku.ca/secretariat/policies/document.php?document=69

 18

� If program requirements change you may elect to graduate under the new
requirements—that is, those in effect in the year of your graduation—but you must
meet all of them. You are not permitted to mix and match old and new
requirements, or to pick and choose from among various requirements that were in
effect between your starting year and graduation year.
� Changes in prerequisites to courses or to groups of courses are not changes in

degree requirements, and apply to all students regardless of their year of entry or
re-entry to the program. Prerequisite changes normally are effective starting with
the term immediately following their approval.

Appeal Procedures
The Department expects a student's disagreement with an evaluation of an item of
course work (e.g., final examination, assignment report, class test, oral presentation,
laboratory presentation, class participation) to be settled with the instructor informally,
amicably and expeditiously.

If however a formal appeal becomes necessary due to lack of an informal settlement,
there are distinct procedures to follow for term work on one hand and for final
examinations and final grades on the other. Of necessity, a formal appeal must
involve only written work.

Term Work
An appeal against a grade assigned to an item of term work must be made to the
instructor within 14 days of the grade being made available to the class.
In the case of a multi-sectioned course (where the instructor is not the course
director), a second appeal may be made to the course director within 14 days of the
decision of the instructor.
If a student feels that their work has not been fairly reappraised by the course director,
then they may appeal for a reappraisal by the Departmental petitions committee.
Such a request is made in writing using the appropriate form obtained from the
Undergraduate Office. The request must be made within 14 days of the decision of
the course director.

Final Exams and Final Grades
An appeal for reappraisal of a final grade must be made in writing on a standard
Departmental form, obtained from the Undergraduate Office, within 21 days of
receiving notification of the grade.

For more details on the University’s reappraisal policies see
http://www.registrar.yorku.ca/services/grades/policy.htm

The Departmental petitions committee will discuss the appeal with the course director
to ensure that no grade computation, clerical or similar errors have been made. If
such an error is discovered, a correction will be made and the student and the
Registrar's Office will be notified.

http://www.registrar.yorku.ca/services/grades/policy.htm

 19

If a final examination is to be reappraised then the Departmental petitions committee
will select a second reader for the examination paper. The petitions committee will
consider the report of the second reader and recommend a final grade, which may be
lower than the original grade. The student will receive the report of the petitions
committee and the Registrar's Office will be informed of any grade change. The
decision of the Department Petitions Committee can only be appealed on procedural
grounds to the Executive Committee of the Faculty.

Grading System
Grading at York University is done on a letter scale. The following table shows the
grading scale used. The number in parenthesis is the grade point that is used to
determine the grade point average. The grade point average is a credit weighted
average of all relevant courses.
� A+ (9) Exceptional — Thorough knowledge of concepts and/or techniques and

exceptional skill or great originality in the use of those concepts and techniques in
satisfying the requirements of a piece of work or course.
� A (8) Excellent — Thorough knowledge of concepts and/or techniques together

with a high degree of skill and/or some elements of originality in satisfying the
requirements of a piece of work or course.
� B+ (7) Very Good — Thorough knowledge of concepts and/or techniques together

with a fairly high degree of skill in the use of those concepts and techniques in
satisfying the requirements of a piece of work or course.
� B (6) Good — Good level of knowledge of concepts and/or techniques together

with a considerable skill in using them in satisfying the requirements of a piece of
work or course.
� C+ (5) Competent — Acceptable level of knowledge of concepts and/or techniques

together with considerable skill in using them to satisfy the requirements of a piece
of work or course.
� C (4) Fairly Competent — Acceptable level of knowledge of concepts and/or

techniques together with some skill in using them to satisfy the requirements of a
piece of work or course.
� D+ (3) Passing — Slightly better than minimal knowledge of required concepts

and/or techniques together with some ability to use them in satisfying the
requirements of a piece of work or course.
� D (2) Barely Passing — Minimum knowledge of concepts and/or techniques

needed to satisfy the requirements of a piece of work or course.
� E (1) Marginally failing.
� F (0) Failing.

Courses Offered by the Department

Prerequisites

 20

Almost all courses have prerequisites. These are carefully considered in order to
provide accurate information to students about what background you need to have
before taking the course.

Prerequisites are enforced in every term. Students enrolled into computer science
courses for which they do not meet the prerequisite will be de-enrolled and notified by
email. This prerequisite checking process starts as early as possible after the start of
each term and, depending on Undergraduate Office workload, may continue up to the
end of the sixth week of the term.

Prerequisites include both specific courses and, at the 3000- and 4000-level, also the
requirement of a cumulative GPA over all CSE courses of 4.5 or higher. “General
Prerequisites” is a term used to describe prerequisites that apply to (almost) every
course at a particular level. We use it simply to avoid having to repeatedly specify the
same thing! Thus, for example, for 3000- level courses, “CSE2011 3.0 and the CSE
GPA of 4.5 or higher” are the general prerequisites.

Fees
All courses have an associated fee of $10.00, with the following exceptions: All 4000-
level courses; all service courses; CSE1019 3.0, CSE3001 1.0, CSE3002 1.0,
CSE3121 3.0, CSE3122 3.0 and CSE3900 0.0. This fee is to offset consumable costs
associated with operating the PRISM lab. This includes paper, toner, and maintaining
and servicing printers within the lab.

The cost of these fees will be reviewed from year to year and adjusted accordingly.
The associated course fee will not normally be refunded, but will be refunded if you
withdraw from the course before the first lecture or because of Departmentally initiated
de-enrolment.

Course Weights
Courses normally meet for three class hours a week for one term (these are 3 credit–
courses whose numbers end in "3.0"). Some courses have required supervised labs
per week (e.g., CSE1020 3.0 and CSE1030 3.0). Catalogue numbers are assigned to
the labs rather than the lectures and students use the REM to enrol by selecting an
appropriate lab. Other courses have a similar registration system and lab
requirements, but the associated labs are of sufficient duration per week to entail a
4.0-credit weight for the course (e.g., CSE2021, 3201, 3215 and 3451 are “4.0-credit
courses”). Some of the 3.0 courses at the 2000 and 3000 levels have optional
tutorials. All CSE courses put heavy demands on the student’s time by requiring the
completion of take-home assignments or projects.

Service Courses
Courses with second digit 5 (e.g. 1520, 1530, 1540, 1550, 1560, 2501, 2550, 2560)
may be taken to satisfy Faculty degree requirements but do not count as major
credits, and the grades from such courses are not included in calculating the
prerequisite grade point average.

 21

In what follows, if a course is referenced by its rubric (e.g., MATH, CSE) and its
number only, then the Faculty prefix “SC/” is implied. If the prefix is different than this,
then it will be explicitly given, e.g., “AK/COSC3503 3.0”, “AP/ITEC1620 3.0”.

Course Descriptions: 1000-Level
CSE 1001 1.0 Research Directions in Computing
Computer Science is an exciting and wide-ranging discipline, many of whose topics
will not be introduced in any technical depth until upper year courses (if at all). This
course consists of a set of invited lectures by researchers in the department and a set
of other organised events that will introduce the students to the breadth of computer
science.

The course is organised around a series of invited talks by individual researchers and
research groups, as well as a number of laboratory tours and other events that will
introduce students to specific research directions in computer science, issues related
to professionalism and professional societies, and opportunities to become engaged in
different research and technical groups and events related to computer science.

Formally, the course will consist of 12 one-hour lectures spread over two terms. The
first lecture will be organizational in nature. The remaining 11 lectures will be invited
lectures by researchers (or research groups) in computer science, representatives of
specific interest groups associated with computer science (e.g., Engineers Without
Borders, Canadian Information Processing Society, etc.), work-
study/internship/student exchange programs, and representatives of volunteer/other
organizations that seek out technically literate students as volunteers.

In addition to these 12 formal meetings, a set of other extracurricular events will also
be organised including research lab tours, visits to local industrial sites (e.g., IBM),
special lectures directed at specific technical problems often encountered by students
(e.g., running LINUX at home), etc.

This course is offered on a pass-fail basis only.

Note. Computer Science and Computer Security Majors are expected to complete this
course in their first year of study.

CSE 1019 3.0 Discrete Mathematics for Computer Science
(Cross listed with MATH 1019 3.0)
Introduction to abstraction; use and development of precise formulations of
mathematical ideas; informal introduction to logic; introduction to naïve set theory;
induction; relations and functions; big-O notation; recursive definitions, recurrence
relations and their solutions; graphs and trees. The detailed list of topics includes
1. Proof techniques (without using a formal system)

proof by contradiction

proof by cases
proving implications
proving statements with quantifiers
mathematical induction on natural numbers

2. Naïve set theory
proving that one set is a subset of another
proving equality of two sets
basic operations on sets (union, intersection, Cartesian product, power sets, etc.)
cardinality of sets (finite and infinite)
strings

3. Functions and relations
review of basic definitions (relation, function, domain, range,
functions, 1-1 correspondence, function composition, closures of relations, etc.)
equivalence relations

4. Asymptotic notation
Ωbig-O, big- , big- notation Θ

proving f is in O(g), proving f is not in O(g)
classifying functions into a hierarchy of important classes, e.g.,

O(1), O(log n), O(n), O(n), O(n2), O(nO(1)), O(2n)
5. Recursive definitions and solving recurrences

recursive definitions of mathematical objects
solving simple recurrences
bounding divide-and-conquer recurrences of the form
f (n) = af (n /b) + g(n) a b , for constants and .

using structural induction on recursively defined objects
6. Sums

summation notation
computing and bounding simple sums

7. Elementary graph theory
basic definitions of graphs
proving simple facts about graphs
trees

Prerequisites: MATH1190 3.0, or two 4U courses including MHF4U (Advanced
Functions).

Course Credit Exclusion: MATH2320 3.0

CSE 1020 3.0 Introduction to Computer Science I
Many processes can be viewed as a sequence of interactions between a client who
requests a service and an implementer who provides it. The concerns of these two
parties, albeit complementary, are completely separate because one deals with the
"what" while the other deals with the "how". It is widely recognized that separating
these concerns leads to reliable, scalable, and maintainable software. Based on this,
CSE1020 deals exclusively with the client who needs to be able to look for services;
read their API (Application Programming Interface) specifications; create programs

 22

 23

that use them; and determine if they are operating correctly relative to their
specifications. Topics include delegation and contracts, encapsulation and APIs,
aggregation and the collections framework, and inheritance and polymorphism. The
course emphasizes the software development process and introduces elements of
UML (Unified Modelling Language) and software engineering. Three lecture hours and
weekly laboratory sessions.
The course uses the Java programming language throughout. Its assessment is based
on a series of programming exercises and a number of written tests. The two
components have approximately equal weights and are intended to measure the
student’s understanding of theoretical concepts and ability to build applications.
This course is an introduction to the discipline; it is not a survey course. As such the
emphasis is on the development of a theoretical conceptual foundation and the
acquisition of the intellectual and practical skills required for further courses in
computer science. The course is intended for prospective computer science and
computer engineering majors, i.e. those with a well-developed interest in computing as
an academic field of study and with strong mathematical, analytical and language
abilities; it is not intended for those who seek a quick exposure to applications or
programming (for this purpose any of CSE1520, CSE1530 or CSE1540 would be more
appropriate).
Warning: The work for this course includes a substantial number of exercises that
require problem analysis, program preparation, testing, analysis of results, and
documentation and submission of written reports. The course is demanding in terms
of time, and requires the student to put in many hours of work per week outside of
lectures.
Recommendation: You will benefit if you have prior practical experience with
programming as well as using a computer. Students who wish to take a one-course
exposure to the practical aspects of computing should consider enrolling in CSE1520
3.0 and CSE1530 3.0 instead (see the following descriptions).

Prerequisites: One of (1) – (3) below must be met:
(1) (New high school curriculum): Two 4U Math courses including MHF4U
(Advanced Functions), with no grade below 65%.
(2) Completion of 6.0 credits from York University MATH courses (not including
AK/MATH1710 6.0 or courses with second digit 5) with a grade average of 5.0
(C+) or better over these credits;
(3) Completion of AK/MATH1710 6.0, or 6.0 credits from York University
mathematics courses whose second digit is 5, with an average grade not below
7.0 (B+).

Strongly Recommended: Previous programming experience; for example, a high
school programming course or CSE1530 3.0.
Course Credit Exclusion: AP/ITEC1620 3.0

 24

CSE 1030 3.0 Introduction to Computer Science II
This course continues the separation of concern theme introduced in CSE1020. While
CSE1020 focuses on the client concern, this course focuses on the concern of the
implementer. Hence, rather than using an API (Application Programming Interface) to
build an application, the student is asked to implement a given API. Topics include
implementing classes (utilities/non-utilities, delegation within the class definition,
documentation and API generation, and implementing contracts), aggregations
(implementing aggregates versus compositions and implementing collections),
inheritance hierarchies (attribute visibility, overriding methods, abstract classes versus
interfaces, inner classes); generics; building graphical user interfaces with an
emphasis on the MVC (Model-View-Controller) design pattern; recursion; searching
and sorting (including quick and merge sorts); linked lists; and stacks and queues. The
coverage also includes a few design patterns. Three lecture hours and weekly
laboratory sessions.
Lab tests and in-class tests are integral parts of the assessment process in this
course.

Prerequisites: CSE1020 3.0
Course Credit Exclusion: AP/ITEC2620 3.0

CSE 1520 3.0 Computer Use: Fundamentals
This course is appropriate for students who are not majoring in Computer Science or
Computer Engineering, but who would like an introduction to the use of the computer
as a problem-solving tool. No previous computing experience is assumed, but the
course does involve extensive practical work with computers, so some facility with
problem-solving and symbolic operations will be very helpful.
An introduction to the use of computers focusing on concepts of computer technology
and organisation (hardware and software), and the use of applications and information
retrieval tools for problem solving.
Topics to be studied include: the development of information technology and its
current trends; analysis of problems for solution by computers, report generation, file
processing; spreadsheets; database; numeric and symbolic calculation; the functions
of an operating system; interactive programs.
Students should be aware that like many other computer courses, this course is
demanding in terms of time, and should not be added to an already heavy load. There
is scheduled and unscheduled time in the Glade laboratory. The course is not
appropriate for students who want more than an elementary knowledge of computing
and it cannot be used as a substitute for CSE1020 3.0/1030 3.0: Introduction to
Computer Science.

Prerequisites: None
NCR Note: No credit will be retained if this course is taken after the successful

completion of or simultaneously with CSE1020 3.0.
Note: This course counts as elective credits towards satisfying Faculty degree

requirements but does not count as Computer Science major credits.

 25

CSE 1530 3.0 Computer Use: Programming
Concepts of computer systems and technology — e.g. software engineering,
algorithms, programming languages and theory of computation are discussed.
Practical work focuses on problem solving using a high-level programming language.
The course requires extensive laboratory work.
Note: This course is designed for students who are not Computer Science or
Computer Engineering majors. However, those who wish to major in Computer
Science but lack programming background may use it as preparation. Students who
plan to major in Computer Science must also take CSE1020 3.0 and CSE1030 3.0.
This course does not count as a Computer Science major credit.

Prerequisites: None
Course Credit Exclusion: CSE1540 3.0
NCR Note: No credit will be retained if this course is taken after the successful

completion of or simultaneously with CSE1020 3.0 or AS/AK/ITEC1620 3.0

CSE 1540 3.0 Computer Use for the Natural Sciences
Introduction to problem solving using computers — top down and modular design;
implementation in a procedural programming language — control structures, data
structures, subprograms; application to simple numerical methods, modelling and
simulation in the sciences; use of library subprograms. This course is intended for
students in the Faculty of Science and Engineering and students in the BA Applied
Math program.

Note: This course is not open to any student who has passed or is taking CSE1020
3.0. This course counts as elective credits towards satisfying Faculty degree
requirements but does not count as Computer Science major credits.

Suggested reading:
• Nyhoff and Leestma, Fortran 77 for Engineers and Scientists, 3rd Edition,

Maxwell Macmillan.
• Keiko Pitter et. al., Every Student's Guide to the Internet (Windows version),

McGraw-Hill, 1995.
Prerequisites: None.
Course Credit Exclusion: CSE1530 3.0
NCR Note: No credit will be retained if this course is taken after the successful

completion of or simultaneously with CSE1020 3.0 or CSE2501 1.0

CSE 1550 3.0 Computer Use: Web and Database Systems
This course offers a practical way of learning the basics of how information is
specified, acquired, and managed using database technology. It therefore incorporates
four core practices:
� determining the information requirements for a system
� specifying those requirements
� developing a relational database to store the information
� using SQL to manipulate databases

 26

These topics are introduced in a realistic context to promote understanding of how
information is used to support business and other organisations. In particular, the
course examines the use of database management systems to manage the
information content of Web sites. Students also learn to:

• construct web pages in HTML
• design interactive web sites
• design and implement dynamic Web applications

The content for the course is organised in a modular fashion:
1. Introduction to Information Technology and the WWW - introduction to

information and database systems, internet information systems (web pages and
HTML and web servers)

2. Designing and Specifying Information Systems - data models, entity-relationship
diagrams

3. Designing and Creating Relational Databases - developing relational models,
defining relational databases in MS Access, improving designs

4. Manipulating Relational Information - using MS Access, using SQL
5. Creating Interactive Web Sites- presenting information with HTML, introduction

to ASP and JavaScript, database applications for the web.

Prerequisites: None
Course Credit Exclusion: SB/OMIS 3730 3.0
NCR Note: No credit will be retained if this course is taken after the successful

completion of, or simultaneously with CSE3421 3.0 or ITEC3220 3.0.
Note. This course does not count for Computer Science major credit.

CSE 1560 3.0 Introduction to Math and Statistics
This course introduces students to computer-based problem solving techniques that
can be used to approach problems in Mathematics and Statistics. Through a
combination of lectures and laboratory sessions, students become familiar with a
scientific computing environment that combines numeric and symbolic computation,
high-level programming, scientific libraries, graphics, and a variety of visualization
tools. Topics include:
1. Working with the Environment - opening MAPLE, saving your program, getting

help
2. Basic Aspects of Maple - MAPLE as a programming language, variables,

constants, expressions and assignments, lists, sets, arrays
3. Control Structures - looping, repetition, branching
4. Procedures - defining, calling, parameters and local variables, library procedures,

loading a package (example: Linear Algebra), user-defined procedures
5. Data Structures - expressions and operands, strings, lists, arrays and tables
6. Plots and other Visualization Tools - the MAPLE plotting package, plotting tabular

data, approximating curves and surfaces, the GRID and MESH objects,
animations: Display and Animate commands, generating reports, converting
MAPLE plots into images (such as gif, jpeg) and incorporating them into web
pages, putting MAPLE Notebooks on the Web

 27

7. Recursion - recurrence relations, reduction formulas from integration, sorting
(bubble sort, quick sort), calculation of numbers with recursive formulas

8. Math and Statistics Applications, including possibly topics from: Algebra,
Calculus, Probability and Statistics, Matrix Algebra, Trigonometry. Such topics
may include, but are not limited to: (Algebra) solve equations and systems of
equations, simplify expressions, find roots of polynomials; (Calculus) calculate
limits, find derivatives, compute finite sums, evaluate integrals; (Probability and
Statistics) Generate and animate: Poisson distribution, exponential distribution,
normal distribution, Pseudo-randomly generated data from distributions; (Matrix
Algebra) Vectors, operations involving vectors (difference, dot product, cross
product), Matrices, operations involving matrices (define a matrix, build a matrix
from column vectors and from row vectors, add two matrices, multiply two
matrices, add, multiply, divide entries of a matrix by a value, transposition,
determinants); (Trigonometry) MAPLE’s trigonometric functions and examples.

Prerequisites: AS/SC/AK/MATH 1300 3.0
Co requisites: AS/SC/AK/MATH 1310 3.0; AS/SC/AK/MATH 1131 3.0
NCR Note: No credit will be retained if this course is taken after the successful

completion of, or simultaneously with SC/PHYS 2030 3.0

CSE 1570 3.0 Introduction to Computing for Psychology

This course introduces students to computer-based problem solving techniques that
can be used to approach problems in Psychology such as the design of stimulus-
response experiments and the capture and simple analysis of data from a variety of
experimental contexts. The analysis of data will mainly focus on data management
such as how to deal with files that come in different formats, how to make new
variables, how to make subsets of files, how to combine files, how to ftp files, etc.
Through a combination of lectures and weekly exercises students learn the basic
concepts of computer programming with application to such a domain. In addition to
an in-depth focus on one programming environment the course provides an overview
of a range of other experimental environments used in Psychology including brief
exposure to a statistical analysis package. This brief exposure will not go beyond very
basic descriptive statistics and creation of graphs.

• General introduction to computing and software development, command window,
editor, creating and running simple scripts.

• Variables and mathematical operations

• Selection control structures, logical operators, etc.

• Iteration control structures

• File I/O, recording user responses, etc

• Data types: cell and structure

• Functions

 28

• Object-Oriented Constructs (what is a class vs. what is an instance, instantiation,
attribute access and method invocation, constructors, encapsulation)

• Plotting

• Creating 2-D graphics

• Simple animation

• MedialLab and DirectRT, SuperLab (use demo version full except for data
collection), E-Prime (demo version, full except for data collection)

Faculty from the Department of Psychology will participate in developing domain-
specific lab Exercises. The course is a lecture-based course (3 hours per week) with
an extensive component of weekly exercises through which student “learn by doing”.

Prerequisite: MATH1505 6.0
Course Credit Exclusions: CSE1530 3.0, CSE1560 3.0

CSE 1710 3.0 Programming for Digital Media
The course lays the conceptual foundation for the development and implementation of
Digital Media artefacts and introduces some of the core concepts of Digital Media,
including the computing and cultural layers of media, and the notion of cultural logic
(Media Theory). Topics include programming constructs, data types and control
structures; the object oriented concepts of modularity and encapsulation; integration of
sound, video, and other media; networking constructs (HTTP connections); and the
interrelationships among languages such as Processing, Java, and other Digital Media
tools (such as Macromedia Director and Python). Three lecture hours and weekly
laboratory sessions. The laboratory sessions form an integral part of the lectures and
may cover examinable material that is not covered in class.
This course is an introduction to the interdisciplinary area of practice of New Media; it
is not a survey course. As such, the emphasis is on the development of a theoretical
conceptual foundation and the acquisition of the intellectual and practical skills
required for further courses in the Digital Media program, and thus is intended for
prospective majors in this program. It is not intended for those who seek a quick
exposure to Digital Media, or Digital Media applications or programming.
Topics include:

• Digital Media: Introduction and Core Concepts
• Examples of Digital Media artefacts, the notion of evaluation (e.g., the evaluation

of software), projects and questions positioned at the intersection of Science and
Art

• Why do we use the programming language and environment? (and not
Macromedia Director or other tools)

• The use of APIs and other sources of documentation
• Variables and Control Structures
• Iteration
• Modularity (functions, procedures)

 29

• Integration of Sound, Video (the use of cameras, microphones, other peripherals)
• Application invocation within a networked context (HTTP connections, URLs,

sharing information, server file access (read/write))
• The connection between programming languages such as Processing and Java,

and other tools for implementation Macromedia Director, Max/MSP, and other
Digital Media tools

Prerequisites: None.
Course Credit Exclusions: CSE1530 3.0, ITEC1620 3.0
NCR Note: No credit will be retained if this course is taken after the successful

completion of, or simultaneously with CSE1020 3.0

CSE 1720 3.0 Building Interactive Systems
This course continues an introduction to computer programming within the context of
image, sound and interaction, subsequent to CSE1720 3.0. The student’s foundation
in basic programming will serve as a platform from which to explore the use of diverse
media within interactive systems, including the WWW and simple game systems.
Topics include:
• User Interfaces (UIs)
• UI Elements
• Event driven programming
• Intro to threads
• User Interface Builders
• Guidelines for UI design
• Objects, classes and inheritance
• Interactive WWW-based systems - introduction to WWW and basic network

concepts, HTML, Javascript, other WWW technologies (e.g. Flash), guidelines for
WWW design

• How to design simple games and make them engaging

Prerequisites: CSE1710 3.0
Course Credit Exclusions: CSE1020 3.0, ITEC1620 3.0, ITEC1630 3.0

Course Descriptions: 2000-Level
General Prerequisites
� CSE1030 3.0 with a grade of C+ or better

Specific prerequisites may also apply to individual courses. Normally a maximum of
three CSE courses may be taken in any one of the fall or winter terms at any level
higher than 1000 provided that prerequisites are met.

CSE 2001 3.0 Introduction to the Theory of Computation
The course introduces different theoretical models of computers and studies their
capabilities and theoretical limitations. Topics covered typically include the following.
• Finite automata and regular expressions; practical applications, e.g., text editors

 30

• Pushdown automata and context-free grammars; practical applications, e.g., parsing
and compilers

• Turing machines as a general model of computers; introduction to unsolvability: the
halting problem

Prerequisites: General prerequisites, CSE1019 3.0

CSE 2011 3.0 Fundamentals of Data Structures
This course discusses the fundamental data structures commonly used in the design
of algorithms. At the end of this course, students will know the classical data
structures, and master the use of abstraction, specification and program construction
using modules. Furthermore, students will be able to apply these skills effectively in
the design and implementation of algorithms.
Topics covered may include the following.
• Review of primitive data types and abstract data type — arrays, stacks, queues and

lists
• Searching and sorting; a mixture of review and new algorithms
• Priority queues
• Trees: threaded, balanced (AVL-, 2-3-, and/or B-trees), tries
• Graphs: representations; transitive closure; graph traversals; spanning trees;

minimum path; flow problems

Prerequisites: General prerequisites, CSE1019 3.0

CSE 2021 4.0 Computer Organization
This course provides a description of how computers work by following the abstraction
trail from the high-level programming layer down to the digital-logic component layer.
By understanding how the features of each abstraction layer are implemented in the
one beneath it, one can grasp the tapestry of the software/hardware interface.
Topics include programming in assembly language, machine instructions and their
encoding formats, translating and loading high-level programs, computer organization
and performance issues, CPU structure, single/multi-cycle datapath and control,
pipelining, and memory hierarchy. The course presents theoretical concepts as well as
concrete implementations on a modern RISC processor.
The lab sessions (3 hours/week) involve experiments on assembly and machine
language, hardware description languages and simulators, processor architectures,
cache memories.
Suggested reading:
• Computer Organization and Design: The Hardware / Software Interface, 3rd edition

by D. Patterson and J. Hennessy, Morgan Kaufmann Publishers (2005).
• Structured Computer Organization, 5th edition, by Andrew S. Tanenbaum, Prentice

Hall (2006).
• Computer Organization and Architecture: Designing for Performance, 7th edition, by

William Stallings, Prentice Hall (2006).

 31

• Content representation and presentation
- XML (extensible markup language) and XML Schemas
- XML Parsing and DOM (document object model)

Prerequisites: General prerequisites

CSE 2031 3.0 Software Tools
This course introduces software tools that are used for building applications and in the
software development process. It covers the following topics:
• ANSI-C (stdio, pointers, memory management, overview of ANSI-C libraries)
• Shell programming
• Filters and pipes (shell redirection, grep, sort & uniq, tr, sed, awk, pipes in C)
• Version control systems and the "make" mechanism
• Debugging and testing
• All the above tools will be applied in practical programming assignments and/or

small-group projects.

The course is structured as two hours of lectures and two hours of weekly labs.

Suggested reading:
• Kernighan and Ritchie, The C Programming Language (ANSI C Edition).
• Kernighan and Pike, The Practice of Programming.

Prerequisites: General prerequisites

CSE 2041 3.0 Net-Centric Computing

Net-centric computing encompasses numerous technologies but is based on a few
underlying principles. This course covers these principles in general and examines a
representative subset of the prevailing technologies. Topics include network
programming; web applications; database connectivity; content representation and
presentation; and client-side programming.

Detailed topics list:

• Network programming
- Overview of the Protocol Stack
- Creating sockets
- The HTTP (hypertext transfer protocol) standard
- Multi-tier architectures

• Web programming
- The CGI (common gateway interface) protocol
- Server-side scripting, e.g. Perl, PHP, Ruby, Python
- XHTML and Forms
- Session management
- Database connectivity

 32

- XSL (extensible stylesheet language) and XPATH
- Content Presentation via XHTML and CSS (cascading stylesheets)

• Client-side programming
- The scripting engine and JavaScript
- Host objects, DOM, and events
- Building rich internet apps via AJAX (asynchronous JavaScript and XML)
- JavaScript libraries such as JQuery and Dojo

• The Future of the Web
- Service-Oriented Computing
- Web Modelling

Security related issues, such as packet sniffing, denial of service, SQL injection, and
phishing, will be covered throughout.

Expected Learning Outcomes:
At the end of this course the student will be expected to demonstrate abilities to:

• Build applications out of pieces running on different platforms and communicating
through sessions

• Recognize the separate concerns of content generation, transfer, and presentation,
and identify the technologies appropriate for each.

• Embed rich interactive applications in a universal client.

Prerequisites: General prerequisites
Course Credit Exclusions: ITEC3020 3.0

CSE 2501 1.0 Fortran and Scientific Computing
Covers computer-based problem solving in a variety of scientific and engineering
settings. Introduces the FORTRAN programming language and its interface with
scientific libraries.
The first third of the course (4 weeks) is in lecture format (3 hours per week) covering
the following topics.

• Data types, control structures and program structure
• Functions and subroutines
• Arrays
• I/O
• Errors in computations

For the remainder of the term students work on their own on various projects. Project
applications are drawn mainly from the following scientific areas.

• Numerical methods: linear systems; curve fitting; non-linear equations;
optimisation; differential equations; Fourier transform

• Simulation: random numbers; distributions; queues
• Monte Carlo method

 33

• Processing experimental data
• Data visualisation
• Chaos and fractals

Prerequisites: CSE1020 3.0 or CSE1530 3.0

CSE 2550 1.0 Introduction to C# Programming
Introduction to the C# programming language: programming constructs analogous to
those taught in CSE1030 3.0; basic data structures if time permits.

• Comparison of C# vs. Java and C, C++. The VisualStudio.NET development
environment. C# program structure.

• Control structures (if/else, while, for, switch, break, continue)
• Operator overloading
• Arrays, strings
• Exception handling
• Classes, methods, namespaces, parameter passing, method and constructor

overloading, inheritance, polymorphism, interfaces, abstract classes.

Prerequisites: CSE1030 3.0 or ITEC2620 3.0
NCR note: This course is not open for credit to students who passed CSE3403 3.00
Note: Does not count for major credit for computer science, or towards engineering

requirements.

CSE 2560 1.0 C# Programming Tools for Graphical User Interfaces
Introduction to programming graphical user interfaces (GUI) in the C# programming
language: building GUIs in C# under the VisualStudio.NET IDE; the major GUI
components and event handling mechanism of C#.

• GUI development: General, C# and .NET specific
• Events
• Building Windows applications: Forms
• GUI components of C#: Labels, TextBoxes, Buttons, GroupBoxes, Panels,

CheckBoxes, RadioButtons, PictureBoxes, Menus, LinkLabels, ListBoxes. More
advanced features as time permits (for example, colour control, font control,
drawing, imaging, animation).

Prerequisite: CSE2550 1.0
NCR note: This course is not open for credit to students who passed CSE3403 3.0
Note: Does not count for major credit for computer science, or towards engineering

requirements.

Course Descriptions: 3000-Level
General Prerequisites
� CSE2011 3.0

 34

� A cumulative grade point average of 4.5 or better over all completed3 major
computer science courses and CSE1019 3.0

In computing the GPA the September 2004 Senate legislation applies: If a course is
completed more than once, only the second grade is used, unless otherwise directed
by the student’s home Faculty.
Specific additional prerequisites may also apply to individual courses. A comma or
semicolon in a prerequisite list is to be read as “and”.
Notes:
• Normally a maximum of three CSE courses may be taken in any one of the fall or

winter terms at any level higher than 1000 provided that prerequisites are met.
• Although Java is used in introductory courses, some upper level courses assume

students have a working knowledge of C++, and/or the C programming language;
therefore students may want to plan on completing CSE2031 3.0 before entering
third year.

CSE 3000 3.0 Professional Practice in Computing
Professional, legal and ethical issues in the development, deployment and use of
computer systems and their impact on society. Topics include: the impact of computing
technology on society, privacy and security, computer crime, malware, intellectual
property, legal issues, professional ethics and responsibilities. One third of the course
will consist of guest lecturers from industry, government and the university who will
typically discuss a broad range of topics related to professional issues
(entrepreneurialism, small business start-up, human resources, infrastructure planning
and development, research and development in industry, project management, etc.).
In addition approximately another third of the course will be spent on topics related to
ethics and legal issues and will usually be co-taught by faculty from a unit such as the
Department of Philosophy, the Division of Social Science, or Osgoode Law School.

Prerequisites: General prerequisites
Course Credit Exclusions: EATS 3001 1.0, PHYS 3001 1.0, CSE3001 1.0

CSE 3101 3.0 Design and Analysis of Algorithms
This course is intended to teach students the fundamental techniques in the design of
algorithms and the analysis of their computational complexity. Each of these
techniques is applied to a number of widely used and practical problems. At the end
of this course, a student will be able to: choose algorithms appropriate for many
common computational problems; to exploit constraints and structure to design
efficient algorithms; and to select appropriate tradeoffs for speed and space.

Topics covered may include the following:
• Review: fundamental data structures, asymptotic notation, solving recurrences

3 “Completed” means that the course appears on your transcript, whether passed or failed, and
is not flagged NCR (No Credit Retained).

 35

• Sorting and order statistics: heapsort and priority queues, randomised quicksort and
its average case analysis, decision tree lower bounds, linear-time selection

• Divide-and-conquer: binary search, quicksort, mergesort, polynomial multiplication,
arithmetic with large numbers

• Dynamic Programming: matrix chain product, scheduling, knapsack problems,
longest common subsequence, some graph algorithms

• Greedy methods: activity selection, some graph algorithms
• Amortisation: the accounting method, e.g., in Graham's Scan convex hull algorithm
• Graph algorithms: depth-first search, breadth-first search, biconnectivity and strong

connectivity, topological sort, minimum spanning trees, shortest paths
• Theory of NP-completeness

Suggested reading:
• T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, 2nd edition,

McGraw-Hill and The MIT Press, 2001.
• Jeff Edmonds’ notes: “How to Think about Algorithms”. Available Online

<http://www.cse.yorku.ca/%7Ejeff/notes/3101/notes.html>

Prerequisites: General prerequisites, CSE2001 3.0, MATH1090 3.0, MATH1310 3.0

CSE 3121 3.0 Introduction to Numerical Computations I
(Cross-listed with AS/SC/MATH 3241 3.0)
This course is concerned with an introduction to matrix computations in linear algebra
for solving the problems of linear equations, non-linear equations, interpolation and
linear least squares. Errors due to representation, rounding and finite approximation
are studied. Ill-conditioned problems versus unstable algorithms are discussed. The
Gaussian elimination with pivoting for general system of linear equations, and the
Cholesky factorisation for symmetric systems are explained. Orthogonal
transformations are studied for computations of the QR decomposition and the
Singular Values Decompositions (SVD). The use of these transformations in solving
linear least squares problems that arise from fitting linear mathematical models to
observed data is emphasised. Finally, polynomial interpolation by Newton's divided
differences and spline interpolation are discussed as special cases of linear equations.
The emphasis of the course is on the development of numerical algorithms, the use of
intelligent mathematical software and the interpretation of the results obtained on
some assigned problems.
Topics covered may include the following:
• Preliminaries—linear algebra, computer programming and mathematical software
• Number systems and errors—machine representation of numbers, floating-point

arithmetic, simple error analysis, ill-conditioned problems and unstable algorithms
• Solution of systems of linear equations—Gaussian elimination and its computational

complexity, pivoting and stability, special structures (Cholesky's factorisation for
positive definite systems, banded systems, storage and computational complexities)
error analysis, condition number and iterative refinement

http://www.cse.yorku.ca/%7Ejeff/notes/3101/notes.html

 36

• Solution of over determined systems of linear equations by linear least squares
approximations—linear least squares problems, normal equations, orthogonal
transformations (Given's and Householder's), QR and singular value
decompositions (SVD), SVD and rank-deficient problems, computational
complexities versus robustness

• Interpolation—Newton's divided differences spline interpolation; banded linear
systems, error analysis for interpolation. Other interpolations (rational, B-splines)

Prerequisites: CSE1540 3.0 or CSE2031 3.0 or SC/CSE2501 1.0; MATH1010 3.0 or
MATH1014 3.0 or MATH1310 3.0; MATH1025 3.0 or MATH1021 3.0 or
MATH2021 3.0 or MATH2221 3.0

CSE 3122 3.0 Introduction to Numerical Computations II
(Cross-listed with AS/SC/MATH3242 3.0)
The course is a continuation of CSE3121 3.0. The main topics include numerical
differentiation, Richardson's extrapolation, elements of numerical integration,
composite numerical integration, Romberg integration, adaptive quadrature methods,
Gaussian quadrature, numerical improper integrals; fixed points for functions of
several variables, Newton's method, Quasi-Newton methods, steepest descent
techniques, and homotopy methods; power method, Householder method and QR
algorithms.
The final grade will be based on assignments, tests and a final examination.

Prerequisite: CSE3121 3.0

CSE 3201 4.0 Digital Logic Design
Theory and design of logic circuits used in digital systems. This is an intermediate level
course that uses a Hardware Design Language to illustrate modern design techniques
and is supplemented by hardware laboratory exercises (2 hours per week).
The topics covered will include:
• Review of number systems, Boolean algebra, logic gates and their electrical

characteristics.
• Analysis and design of Combinational Circuits including arithmetic units,

multiplexers, data selectors, parity checkers etc.
• Hardware Description Languages (HDL). Use of VHDL in logic circuit design and

simulation.
• Analysis and design of Sequential Circuits. Flip flops, synchronous and

asynchronous circuits. Design using Algorithmic State Machines.
• Memory systems, programmable logic and their applications. Register transfer

techniques, Bus concepts.
• Design examples.

Recommended Texts:
• M.Morris Mano, Digital Design, (Third Edition), Prentice Hall, 2002.
• S.Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design,

McGraw Hill, 2001.

 37

Introduction to the design of embedded systems using both hardware and software.
Topics include microcontrollers; their architecture, and programming; design and
implementation of embedded systems using field programmable gate arrays. The
following is a detailed list of topics to be covered:

• R.S. Sandige, Digital Design Essentials, Prentice Hall.

Prerequisites: General prerequisites, CSE2021 4.0. PHYS3150 3.0 is strongly
recommended

CSE 3213 3.0 Communication Networks
This course is an introduction to communications and networking. Topics covered
include:
• Distinction between information and data, between signal and data, between symbol

and data, and between analogue and digital data
• Transmission media; time domain and frequency domain
• Fundamental limits due to Shannon and Nyquist
• Protocol hierarchies; the OSI model
• Encoding of analogue/digital data as analogue/digital signals
• Data link protocols; error and flow control
• Medium access; Ethernet and token passing systems in LANs
• Routing of packets in networks, congestion control
• Internetworking
• Transport services and protocols
• High-level applications and their protocols, e.g. WWW(HTTP), e-mail (SMTP),

Internet names (DNS)

Prerequisites: General prerequisites, MATH1310 3.0
Course Credit Exclusion: COSC3211 3.0

CSE 3214 3.0 Computer Network Protocols and Applications
This course focuses on the higher-level network protocols, security issues, network
programming, and applications. Topics covered may include:
• Networking Basics
• Queuing Fundamentals
• Network Layer Protocols, Including ICMP, DHCP, and ARP Multicasting
• Transport Layer, UDP, and TCP
• Sockets and Socket Programming
• Application Layer Protocols, Including HTTP and DNS
• Multimedia
• Security
• VOIP

Prerequisites: General prerequisites
Course Credit Exclusion: CSE4213 3.0

CSE 3215 4.0 Embedded Systems

 38

• Introduction to specific microcontroller architecture, its assembly language, and

programming
• Peripherals, input/output ports and timers
• Interrupts
• Memory systems
• Analog to digital and digital to analog conversion
• Parallel and Serial Interfacing
• Hardware Modelling
• Structural specification of hardware
• Rapid Prototyping using field programmable gate arrays

References:
� M.D. Ciletti, Modeling, Synthesis, and Rapid Prototyping with the VERILOG (TM)

HDL, 1st ed, (Prentice-Hall).
� J.K. Peckol, Embedded Systems: A contemporary Design Tool (Wiley).
� W. Wolf, Computers as Components (Morgan-Kaufman).
� F. Vahid and T. Givargis, Embedded System Design: A Unified

Hardware/Software Introduction (John Wiley& Sons).

Prerequisites: General prerequisites; CSE2031 3.0; CSE3201 4.0

CSE 3221 3.0 Operating System Fundamentals
This course is intended to teach students the fundamental concepts that underlie
operating systems, including multiprogramming, concurrent processes, CPU
scheduling, deadlocks, memory management, file systems, protection and security.
Many examples from real systems are given to illustrate the application of particular
concepts. At the end of this course, a student will be able to understand the principles
and techniques required for understanding and designing operating systems.

Prerequisites: General prerequisites, CSE2021 4.0, CSE2031 3.0
Course Credit Exclusion: COSC3321 3.0

CSE 3301 3.0 Programming Language Fundamentals
The topic of programming languages is an important and rapidly changing area of
computer science. This course introduces students to the basic concepts and
terminology used to describe programming languages. Instead of studying particular
programming languages, the course focuses on the "linguistics" of programming
languages, that is, on the common, unifying themes that are relevant to programming
languages in general. The algorithmic or procedural, programming languages are
particularly emphasised. Examples are drawn from early and contemporary
programming languages, including FORTRAN, Algol 60, PL/I, Algol 68, Pascal, C,
C++, Eiffel, Ada 95, and Java.
This course is not designed to teach any particular programming language. However,
any student who completes this course should be able to learn any new programming
language with relative ease.

 39
Prerequisites: General prerequisites, CSE2001 3.0, CSE2031 3.0, MATH1090 3.0

Topics covered may include the following:
• Classification of programming languages: language levels, language generations,

and language paradigms
• Programming language specification: lexical, syntactic, and semantic levels of

language definition
• Data, data types, and type systems: simple types, structured types, type

composition rules
• Control primitives, control structures, control composition rules
• Subprograms: functions and procedures, argument-parameter binding, overloading
• Global program structure: modules, generic units, tasks, and exceptions
• Object-oriented language features: classes, encapsulation, inheritance, and

polymorphism
• Critical and comparative evaluation of programming languages

Prerequisites: General prerequisites, CSE2001 3.0

CSE 3311 3.0 Software Design
A study of design methods and their use in the correct construction, implementation,
and maintenance of software systems. Topics include design, implementation, testing,
documentation needs and standards, support tools.
This course focuses on design techniques for both small and large software systems.
Techniques for the design of components (e.g., modules, classes, procedures, and
executables) as well as complex architectures will be considered. Principles for
software design and rules for helping to ensure software quality will be discussed. The
techniques will be applied in a set of small assignments, and a large-scale project,
where students will design, implement, and maintain a non-trivial software system.
Specific topics to be discussed may include the following:
• software design principles: coupling and cohesion, information hiding, open-closed,

interface design
• abstract data types
• seamless software construction and process models; a rational design process
• design-by-contract and its implementation in programming languages and design

methods; writing and testing contracts; debugging contracts
• abstraction and data design; choosing data structures
• the Business Object Notation (BON) for modelling designs; alternative modelling

languages like UML, data-flow diagrams, structure charts, etc.
• static software modelling; dynamic modelling and behavioural modelling
• case studies in design: designing architectures; comparisons; design of OO

inheritance hierarchies; class library design
• methods for finding classes; designing class interfaces
• CASE tools: forward and reverse engineering of code from models
• software testing
• design patterns; applications of patterns; implementing patterns

 40

Topics on functional programming may include: recursive, polymorphic and higher-
order functions; recursive types and type inference. Topics on logic programming may
include backtracking, resolution and unification.

CSE 3341 3.0 Introduction to Program Verification
Every program implicitly asserts a theorem to the effect that if certain input conditions
are met then the program will do what its specifications or documentation says it will.
Making that theorem true is not merely a matter of luck or patient debugging; making a
correct program can be greatly aided by a logical analysis of what it is supposed to do,
and for small pieces of code a proof that the code works can be produced hand-in-
hand with the construction of the code itself. Good programming style works in part
because it makes the verification process easier and this in turn makes it easier to
develop more complex algorithms from simple ones.
The course will provide an introduction to the basic concepts of formal verification
methods. It will also include the use of simple tools to aid in verification.
Topics covered will include the following:
• The role of formal verification in the software life cycle; verification vs. testing and

validation
• Introduction to propositional calculus; checking for tautologies and contradictions;

annotating code with assertions
• Symbolic execution; proving relative correctness for small code segments;

establishing termination
• Creating specifications with quantifiers; translating specifications into code

Suggested reading:
• Gries and Schneider, A Logical Approach to Discrete Mathematics, Springer-

Verlag, 1993.
• R. Backhouse, Program Construction and Verification, Prentice-Hall, 1986

Prerequisites: General prerequisites, MATH1090 3.0
Course Credit Exclusion: COSC3111 3.0

CSE 3401 3.0 Functional and Logic Programming
This course covers functional and logic programming. Together with the students'
background on procedural and object-oriented programming, the course allows them
to compare the development of programs in these different types of languages.
"Functional programs work with values, not states. Their tools are expressions, not
commands. How can assignments, arrays and loops be dispensed with? Does not
the outside world have states? These questions pose real challenges. The functional
programmer can exploit a wide range of techniques to solve problems." (Paulson,
1996)
"Based on predicate logic, it [logic programming] allows computing problems to be
expressed in a completely `declarative' way, without giving instructions for how the
problem is to be solved. An execution mechanism, like the one embodied in
implementations of Prolog, can then be used to search efficiently and systematically
for a solution of the problem." (Spivey, 1996)

 41

Prerequisites: General prerequisites, MATH1090 3.0

CSE 3402 3.0 Introduction to Concepts of Artificial Intelligence
Artificial Intelligence (AI) deals with building a system that can operate in an intelligent
fashion. Neat as this simple definition is, it obscures the complex nature of
intelligence. At the time of the Dartmouth Conference (1956), regarded by many as
the start of AI, some researchers believed it would be possible to create a "thinking
machine" in a matter of a few years. That was close to 40 years ago, and we are still
far from our goal, but we have learned a lot on the way.
In this course, we begin by discussing differing definitions of artificial intelligence and
go on to examine fundamental concepts in AI, building on material introduced in
CSE3401 3.0: Functional and Logic Programming. Topics to be covered include
reasoning under uncertainty, search, constraint propagation, planning and problem
solving.

Prerequisites: General prerequisites, CSE3401 3.0

CSE 3403 3.0 Platform Computing
This course presents the .NET platform and in all topics, as applicable, compares this
platform to JEE and other platforms such as Mono, Ruby on Rails, Django, etc. Also,
the course discusses how platform computing has affected and affects major web
paradigms, such as the traditional World Wide Web, Web 2.0, Semantic Web/Web 3.0,
and W4 (World Wide Wisdom Web). Topics include:
• Introduction to .NET - the .NET Framework, the Common Language Runtime , the

Common Type System, common Language Specification, the .NET Framework
Class Library, Visual Studio

• NET Languages - C#: Examples, types, non-object-oriented features, object-
oriented features; Visual Basic: Examples, types, control structures, non-object-
oriented features, object-oriented features.

• .NET Framework Class Library highlights - System namespace, System.IO
namespace, System.Collections, System.XML, System.Net, System.Sockets,
System.Web, System.Windows.Forms.

• Building Web applications with ASP.NET - .aspx files, web controls, code-behind,
etc

• Building Distributed applications (Web Services)
• accessing databases with ADO.NET
• .NET security

Prerequisites: general prerequisites

CSE 3421 3.0 Introduction to Database Systems
Concepts, approaches and techniques in database management systems (DBMS) are
taught. Topics include logical models of relational databases, relational database
design, query languages, crash recovery, and concurrency control.

 42

The purpose of this course is to introduce the fundamental concepts of database
management, including aspects of data models, database languages, and database
design. At the end of this course, a student will be able to understand and apply the
fundamental concepts required for the design and administration of database
management systems.
Topics may include the following:

• Overview of Database Management Systems
• Relational Model
• Entity-Relational Model and Database Design
• SQL
• Integrity Constraints
• Crash Recovery
• Concurrency Control

Prerequisites: General prerequisites
Course Credit Exclusions: AK/COSC3503 3.0, ITEC3220 3.0, ITEC3421 3.0

CSE 3431 3.0 Introduction to 3D Computer Graphics
This course introduces the fundamental concepts and algorithms of three-dimensional
computer graphics. Topics include: an overview of graphics hardware, graphics
systems and APIs, object modelling, transformations, camera models and viewing,
visibility, illumination and reflectance models, texture mapping and an introduction to
advanced rendering techniques such as ray tracing. Optional topics include an
introduction to animation, visualisation, or real-time rendering.

Prerequisites: General prerequisites, CSE2031 3.0, MATH1025 3.0
Course Credit Exclusion: GL/CSLA3635 3.0

CSE 3451 4.0 Signals and Systems
The study of computer vision, graphics and robotics requires background in the
concept of discrete signals, filtering, and elementary linear systems theory. Discrete
signals are obtained by sampling continuous signals. Starting with a continuous time
signal, students will review the concept of a discrete signal, the conditions under which
a continuous signal is completely represented by its discrete version, and discuss the
analysis and design of linear time-invariant systems. In particular, frequency selective
filters in both discrete and continuous time domain will be developed. An
accompanying lab will cover applications of the concepts covered in the lectures to
practical problems such as speech and image processing.

The following topic will be covered

� Continuous and discrete time signals
� Linear time-invariant systems
� Fourier analysis in continuous time
� Fourier analysis in discrete time
� Sampling

 43

� Laplace transform
� Z transform
� Linear feedback systems
� Design of Continuous and discrete time frequency selective filters.

There are three supervised lab hours per week.

Prerequisites: General prerequisites, MATH1310 3.00
Course Credit Exclusions: COSC4242 3.0, COSC4451 3.0, EATS4020 3.0,

MATH4130B 3.0, MATH4830 3.0, PHYS4060 3.0

CSE 3461 3.0 User Interfaces
This course introduces the concepts and technology necessary to design, manage and
implement user interfaces UIs. Users are increasingly more critical towards poorly
designed interfaces. Consequently, for almost all applications more than half of the
development effort is spent on the user interface.
The first part of the course concentrates on the technical aspects of user interfaces
(UIs). Students learn about event-driven programming, windowing systems, widgets,
the Model-view-controller concept, UI paradigms, and input/output devices.
The second part discusses how to design and test user interfaces. Topics include
basic principles of UI design, design guidelines, UI design notations, UI evaluation
techniques, and user test methodologies
The third part covers application areas such as groupware (CSCW), multi-modal input,
UIs for Virtual Reality, and UIs for the WWW.
Students work in small groups and utilise modern toolkits and scripting languages to
implement UIs. One of the assignments focuses on user interface evaluation.

Prerequisites: General prerequisites
Course Credit Exclusion: AP/ITEC3230 3.0, AP/ITEC3461 3.0
NCR Note: No credit will be retained by students who successfully completed

AS/SC/COSC4341 3.0 or AS/SC/COSC4361 3.0 before FW99.

CSE 3481 3.0 Applied Cryptography
This course provides an overview of cryptographic algorithms and the main
cryptosystems in use today. The course emphasises the application of cryptographic
algorithms to designing secure protocols. Topics include:
• Cryptography and Information Security - terminology, information integrity,

confidentiality, authentication, non-repudiation.
• Symmetric Key Cryptography - classical ciphers, encryption standards, and modern

symmetric ciphers
• Public Key Infrastructure - asymmetric cryptography, hash functions, certificate

authorities, digital signatures, cryptanalysis
• Cryptographic Protocols - IP, transport and application layer security (SSL, IPSec,

VPN), authentication protocols (Kerberos, single sign-on, biometrics), electronic mail

44

(PGP, S/MIME), XML and WS Security, wireless and broadband security,
cryptanalysis 101.

• How can secure systems (that use crypto) be broken?
• Trusted computing – hardware and software aspects.

Prerequisites: General prerequisites, CSE3213 3.0

CSE 3900 0.0 Internship Co-op Term
The objective of the course is to provide qualified students a hands-on, practical work
experience that formally integrates the student’s academic knowledge with real-world
situations in a “co-operative” work setting. Enrolment in the course is mandatory in
each term that a student undertakes a work placement. Students will be assigned a
faculty supervisor, although the Internship Co-op Coordinator and the Internship Office
will take the lead in placement and interaction with the placement site.

Prerequisites:
Successful completion of at least 9.0 computer science credits at the 3000 level
including CSE3311 3.0 (Software Design) and an overall GPA of at least 6.0 in
Mathematics and Computer Science courses completed4. To qualify, in the first
instance, the student must be enrolled full-time in the Honours Program and attend all
mandatory preparatory sessions as outlined by the Internship Co-op Office.

Notes:
• This course does not count for degree credit in any program. Registration in

sections of CSE3900 while on an internship placement provides a transcript notation
of the student’s participation in the internship program.

• Students are required to register in this course in every term of their work term
(internship co-op).

• Every student registered in the course will be assigned a faculty supervisor who will
assess the student’s performance during the internship.

• Successful applicants will have 18 credits remaining to complete their honours
degree upon enrolment to the program.

Evaluation:
Performance in each term (CSE3900 0.0) will be graded on a pass/fail basis. To
receive a passing grade, the student must pass each of the required components.
Note that not all components are required for each Internship term if the Placement
consists of more than two terms.
These components are:
• Employer Evaluation. Completed by the employer, this summarises the

performance of the student at the placement. If the student is engaged in a 12 or 16-
month work term placement at the same company, only two evaluations are
required. These are due in the second and final term of the placement. The
employer evaluation will be submitted to the Internship Coordinator.

4 See the definition of “completed” where the general prerequisites of 3000 level courses are listed.

 45

• Internship Coordinator Evaluation. Completed by the Internship Co-op Coordinator,
this report is completed based on a minimum of two meetings, at least one normally
conducted at the work site. The first one will be conducted at the work site within the
first term, and the second as a follow-up either on-site or by telephone or email.

• Work Report. Submitted by the student upon his/her return to campus to the faculty
supervisor at the end of every work term. This is a short (3-5 page) summary of the
work performed during the internship and an assessment of the value of the
opportunity. The supervisor will grade the work report and forward it to the
Internship Coordinator.

The faculty supervisor assigns the course grade based upon the Employer Evaluation,
Internship Coordinator Evaluation, and Work Report.

 46

Course Descriptions: 4000-Level
General Prerequisites
� CSE2011 3.0
� A cumulative grade point average of 4.5 or better over all completed5 major

computer science courses and CSE1019 3.0
In computing the GPA the September 2004 Senate legislation applies: If a course is
completed more than once, only the second grade is used, unless otherwise directed
by the student’s home Faculty.
Specific additional prerequisites may also apply to individual courses. A comma in a
prerequisite list is to be read as “and”.
Note: Normally a maximum of three CSE courses may be taken in any one of the fall
or winter terms at any level higher than 1000 provided that prerequisites are met.

CSE 4080 3.0 Computer Science Project
This is a course for advanced students, normally those in the fourth year of an honours
program, or students who have passed 36 computer science credits. Students who
have a project they wish to do need to convince a member of the faculty in the
Department that it is appropriate for course credit.
Alternatively, students may approach a faculty member in the Department (typically,
one who is teaching or doing research in the area of the project) and ask for project
suggestions. Whatever the origin of the project, a “contract” is required. It must state
the scope of the project, the schedule of work, the resources required, and the criteria
for evaluation. The contract must be signed by the student and his/her project
supervisor and be acceptable to the course director. A critical course component that
must be included in the contract is a formal seminar presentation. The course director
will arrange the seminar sessions, and students and their faculty supervisors are
required to participate. The seminar talks will have a typical length of 15-20 minutes,
and will be evaluated by the individual supervisor, the course director and one more
faculty member. This talk will be worth 30% of the final mark. The remaining 70% of
the course mark is the responsibility of the individual supervisor. Internship students
may apply to receive credit for their internship as a project course. A “contract”
including the seminar presentation is still required.

Prerequisites: General prerequisites and permission of the course director. Restricted
to students who have passed 36 credits in Computer Science.

Course Credit Exclusions: CSE4001 6.0, CSE4081 6.0, CSE4082 6.0, CSE4084 6.0

CSE 4081 6.0 Intelligent Systems Project
This is an honours thesis course in Intelligent Systems. Although a course coordinator
will be assigned to the course, the bulk of the course will take place through the
interaction between a supervisor and a single student (or group of students). After two

5 See the definition of “completed” where the general prerequisites of 3000 level courses are listed.

 47

organisational meetings in September, the student will work with his/her supervisor
directly. The course requires an initial project proposal that will be submitted to and
approved by the supervisor and the course coordinator (director). This is, in essence, a
contract for the project to follow. The supervisor will evaluate the performance of the
student in early January. The format of this evaluation will vary from project to project,
but the requirements of this evaluation will be specified in the original project proposal.
At the beginning of the course, the course director (coordinator) will establish a date
and format for the public presentation of all Intelligent System Projects. Normally held
between reading week and the third last week of term, this presentation will normally
consist of either a short public oral or poster presentation of the project. (The actual
format may change from year to year.) All of the faculty associated with the Intelligent
Systems Stream will be invited to attend this presentation. The individual supervisor,
the course coordinator and one more faculty member will mark this presentation. The
final report will be due at the end of the term and will be marked by the individual
supervisor.
The actual nature of the project will vary from student to student. Although projects
that involve significant implementation are anticipated, purely theoretical projects are
possible as well.
Marking Scheme:
 Mid-term evaluation: 30%
 Public presentation evaluation: 30%
 Final report: 40%

Prerequisites: Only open to students in the Intelligent Systems Stream who have
completed CSE3401 3.0 and CSE3402 3.0 with a minimum grade of B,
and have prior permission of the instructor.

Course Credit Exclusions: CSE4001 6.0; CSE4080 3.0; CSE4082 6.0; CSE4084 6.0

CSE 4082 6.0 Interactive Systems Project
This is an honours thesis course in Interactive Systems. Although a course coordinator
will be assigned to the course, the bulk of the course will take place through the
interaction between a supervisor and a single student (or group of students). After two
organisational meetings in September, the student will work with his/her supervisor
directly. The course requires an initial project proposal that will be submitted to and
approved by the supervisor and the course coordinator (director). This is, in essence, a
contract for the project to follow. The supervisor will evaluate the performance of the
student in early January. The format of this evaluation will vary from project to project,
but the requirements of this evaluation will be specified in the original project proposal.
At the beginning of the course, the course director (coordinator) will establish a date
and format for the public presentation of all Interactive System Projects. Normally held
between reading week and the third last week of term, this presentation will normally
consist of either a short public oral or poster presentation of the project. (The actual
format may change from year to year.) All of the faculty associated with the Interactive
Systems Stream will be invited to attend this presentation. The individual supervisor,
the course coordinator and one more faculty member will mark this presentation. The

 48

final report will be due at the end of the term and will be marked by the individual
supervisor.
The actual nature of the project will vary from student to student. Projects will involve
the design, implementation and evaluation of an interactive system. While theoretical
projects are possible, the expectation is that all projects evaluate the implementation
with human participants and include an analysis of these results in the presentation
and final report. For projects that will involve significant subject testing and
performance evaluation, it is expected that a complete draft implementation of the
system will be available by January. Projects must deal with systems that interact with
a human user. This interaction must be a critical component of the system
Marking Scheme:
 Mid-term evaluation: 30%
 Public presentation evaluation: 30%
 Final report: 40%

Prerequisites: Only open to students in the Interactive Systems Stream who have
passed CSE3311 3.0 and CSE3461 3.0, and have prior permission of
the instructor.

Course Credit Exclusions: CSE4001 6.0, CSE4080 3.0, CSE4081 6.0, CSE4084 6.0

CSE 4084 6.0 Communication Networks Project
This is an honours thesis course in Communication Networks. Although a course
coordinator will be assigned to the course, the bulk of the course will take place
through the interaction between a supervisor and a single student (or group of
students). After two organisation meetings in September, the student will work with
his/her supervisor directly. The course requires an initial project proposal that will be
submitted to and approved by the supervisor and the course coordinator (director).
This is, in essence, a contract for the project to follow. The supervisor will evaluate the
performance of the student in early January. The format of the evaluation will vary from
project to project, but the requirements of this evaluation will be specified in the
original project proposal. At the beginning of the course, the course director
(coordinator) will establish a date and format for the public presentation of all
Communication Networks projects. Normally held between reading week and the third
last week of the term, this presentation will normally consist of either a short public oral
or poster presentation of the project. (The actual format may change from year to
year). All of the faculty associated with the Communication Networks Stream will be
invited to attend the presentation. The individual supervisor, the course coordinator
and one more faculty member will mark this presentation. The final report will be due
at the end of the term and will be marked by the individual supervisor.
The actual nature of the project will vary from one student to another. Although
projects that involve significant implementation are anticipated, purely theoretical or
analysis projects are possible as well.
Marking Scheme:
 Mid-term evaluation: 30%
 Public presentation evaluation: 30%

 49

 Final report: 40%

Prerequisites: Only open to students in the Communication Networks Stream who
have received a grade of at least B in CSE3451 4.0 and CSE3213 3.0,
and have prior permission of the instructor.

Course Credit Exclusions: CSE4001 6.0, CSE4080 3.0, CSE4081 6.0, CSE4082 6.0

CSE 4090 6.0 Software Development Project
A well-designed software product is more than just a computer program. A software
product consists of quality code, a well thought out design developed via disciplined
professional engineering standards, appropriate literate documentation including
requirements, design and testing documents, a manual, and the appropriate
installation files and instructions needed to get the product to work. The product has to
be correct (i.e. it must satisfy all the requirements specified by the client), usable,
efficient, safe and maintainable.
The goal of this course is to provide students with an opportunity to integrate what they
have learned in earlier computer science courses, deepen their understanding of that
material, extend their area of knowledge, and apply their knowledge and skills in a
realistic simulation of professional experience. The end result must be a substantial
software product.
This course is run on a tight schedule over the Fall and Winter Terms; work is ongoing
and regular. The course is intended to help with the transition from being a student to
being an active professional in industry. During the course students are expected to
perform independent study, plan their work, make decisions, and take ownership of
the consequences of their mistakes.
A combination of teamwork and individual work is required. The requirements
elicitation, requirements analysis, design, coding, testing, and implementation of the
product will be a team effort. However, individual responsibilities must be clearly
identified in every deliverable.
This project will be of significant size and like most industrial projects it will be time and
resource limited. Students must meet the specified deadlines. As a result, they will
have to set their goals and plan their work accordingly.
Students must apply sound mathematics, good engineering design, and algorithms
throughout the project. However, they will also need to apply heuristics and design
patterns, or “rules of thumb”, where sound, well-understood algorithms are not
available. Any such heuristics must be clearly identified and supported by arguments
that justify their choice. The teams will be required to show that the heuristic cannot fail
in a way that will violate safety restrictions or other restrictions designated as critical.

Prerequisites: Only open to students in the Software Development Stream. B or higher
in CSE3311 3.0, and completion of CSE3101 3.0, CSE3221 3.0,
CSE3401 3.0, and CSE3341 3.0

Co requisites: CSE 4312 3.0, CSE 4313 3.0
Course Credit Exclusions: none

 50

CSE 4101 3.0 Advanced Data Structures (integrated with CSE5101 3.0)
The course discusses advanced data structures: heaps, balanced binary search trees,
hashing tables, red-black trees, B-trees and their variants, structures for disjoint sets,
binomial heaps, Fibonacci heaps, finger trees, persistent data structures, etc. When
feasible, a mathematical analysis of these structures will be presented, with an
emphasis on average case analysis and amortised analysis. If time permits, some
lower bound techniques may be discussed, as well as NP-completeness proof
techniques and approximation algorithms.
The course may include the following topics:

Prerequisites: General prerequisites; CSE3101 3.0.

CSE 4111 3.0 Automata and Computability (integrated with CSE5111 3.0)
This course is the second course in the theory of computing. It is intended to give
students a detailed understanding of the basic concepts of abstract machine structure,
information flow, computability, and complexity. The emphasis will be on appreciating
the significance of these ideas and the formal techniques used to establish their
properties. Topics chosen for study include: models of finite and infinite automata, the
limits to computation, and the measurement of the intrinsic difficulty of computational
problems.

Prerequisites: General prerequisites; CSE3101 3.0

CSE 4115 3.0 Computational Complexity
This course provides an introduction to complexity theory, one of the most important
and active areas of theoretical computer science. Students learn basic concepts of
the field and develop their abilities to read and understand published research
literature in the area and to apply the most important techniques in other areas.
Topics include:
• Models of computation for complexity: Turing Machines, Random Access Machines,

Circuits and their resources such as time, space, size, and depth
• Time- and space-bounded diagonalisation, complexity hierarchies, resource

bounded reducibility such as log space and polynomial time reducibility
• P vs. NP: Nondeterminism, Cook's Theorem and techniques for proving NP-

Completeness
• Nondeterministic space: The Savitch and Immerman/Szelepsenyi Theorems
• Important complexity Classes (and natural problems complete for them) including:

P, NP, co-NP, the Polynomial time Hierarchy, log space, Polynomial SPACE and
Exponential time

• If time permits the course may also include one or more advanced topics such as
parallel complexity classes, interactive proofs, applications to cryptography, and
probabilistic classes including random polynomial time

Possible Text:
• Arora and Barak, Complexity Theory, A modern approach, manuscript, 2008.

 51

• Sipser, M., Introduction to the theory of computation (second edition), Course
Technology, 2005.

References:
• C.H. Papadimitriou, Computational Complexity, ISBN: 0-201-53082-1, Addison

Wesley, 1994.
• U. Schoning and Randall Pruim, Gems of Theoretical Computer Science, ISBN

3-540-64425-3, Springer Verlag, 1998.
• Lane A. Hemaspaandra and Mitsunori Ogihara, The Complexity Theory

Companion, ISBN 3-540-67419-5, Springer-Verlag, 2002.
• M.R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the

Theory of NP-Completeness, ISBN 0716710455, W.H. Freeman, 1979.
• D.-Z. Du and K. Ko, Theory of Computational Complexity, ISBN: 0-471-34506-7,

John Wiley and Sons, New York, NY, 2000.
• D. P. Bovet and P. Crescenzi, Introduction to the Theory of Complexity, ISBN

0139153802, Prentice-Hall, 1993.

Prerequisites: General prerequisites; CSE3101 3.0

CSE 4161 3.0 Mathematics of Cryptography
(Cross-listed with MATH 4161 3.0)
Cryptography deals with the study of making and breaking secret codes.

In this course we will be studying situations that are often framed as a game between
three parties: a sender (e.g., an embassy), a receiver (the government office) and an
opponent (a spy). We assume that the sender needs to get an urgent message to the
receiver through communication channels that are vulnerable to the opponent. To do
this communication, the sender and receiver agree in advance to use some sort of
code, which is unlocked by a keyword or phrase. The opponent will be able to
intercept the message. Is he/she able to unlock the message without knowing the key?

We will learn some probability theory, information theory and number theory to answer
questions about how vulnerable the methods of sending secrets are. This has a great
number of applications to Internet credit card transactions, wireless communication
and electronic voting. We will start by learning some classical codes (used up through
WWI) and analyzing those. The last third of the course we will start to learn the
methods that are used in modern cryptography.

Prerequisites: At least 12 credits from 2000-level (or higher) MATH courses (without
second digit 5, or second digit 7), or CSE3101 3.0, or permission of the
instructor.

CSE 4201 3.0 Computer Architecture (integrated with CSE5501 3.0)
This course presents the core concepts of computer architecture and design ideas
embodied in many machines, and emphasises a quantitative approach to
cost/performance tradeoffs. This course concentrates on uniprocessor systems. A

 52

few machines are studied to illustrate how these concepts are implemented; how
various tradeoffs that exist among design choices are treated; and how good designs
make efficient use of technology. Future trends in computer architecture are also
discussed.
Topics covered may include the following:

• Fundamentals of computer design
• Performance and cost
• Instruction set design and measurements of use
• Basic processor implementation techniques
• Pipeline design techniques
• Memory-hierarchy design
• Input-output subsystems
• Future directions

Prerequisites: General prerequisites; CSE3201 4.0, CSE3221 3.0

CSE 4210 3.0 Architecture and Hardware for Digital Signal Processing
The field of DSP is driven by two major forces, advances in DSP algorithms, and
advances in VLSI technology that implements those algorithms. This course
addresses the methodologies used to design custom or semi-custom VLSI circuits for
DSP applications, and the use of microcontrollers and digital signal processors to
implement DSP algorithms. It also presents some examples of advances in fast or low
power design for DSP.
Topics may include
• Basic CMOS circuits: manufacturing process, area, delay, and power dissipation.
• Implementation of fundamental operations: Carry lookahead adders, carry select

adders, carry, save adders, multipliers, array multipliers, Wallace tree multipliers,
Booth array multipliers, dividers, array dividers.

• Array processor architectures: Mapping algorithms into array processors.
• High level architectural transformation for mapping algorithms into hardware:

pipelining, retiming, folding, unfolding:
• Mapping DSP algorithms (FIR, IIR, FFT, and DCT) into hardware.
• Implementing DSP algorithms using microcontrollers.
• DSP support in general-purpose processors.
• The effect of scaling and roundoff noise.

The course includes 6 two hour lab sessions during which students design special
purpose architecture for digital signal processing algorithms using digital signal
processor boards and FPGA boards.

Prerequisites: General prerequisites; CSE3201 4.00; CSE3451 3.00

CSE 4211 3.0 Performance Evaluation of Computer Systems
(integrated with CSE5422 3.0)
Topics covered may include the following:

 53

• Review of Probability Theory—probability, conditional probability, total probability,
random variables, moments, distributions (Bernoulli, Poisson, exponential,
hyperexponential, etc.)

• Stochastic Processes—Markov chains and birth and death processes
• Queuing Theory—M/M/1 Queuing system in detail; other forms of queuing systems

including limited population and limited buffers
• Application — A case study involving use of the queuing theory paradigm in

performance evaluation and modelling of computer systems such as open networks
of queues and closed queuing networks. Use of approximation techniques,
simulations, measurements and parameter estimation.

Prerequisites: General prerequisites; MATH2030 3.0, CSE3213 3.0

CSE 4214 4.0 Digital Communications
Digital communications has become a key enabling technology in the realisation of
efficient multimedia systems, wireless and wired telephony, computer networks, digital
subscriber loop technology and other communication and storage devices of the
information age. The course provides an introduction to the theory of digital
communications and its application to the real world. Emphasis will be placed on
covering design and analysis techniques used in source and channel coding,
modulation and demodulation, detection of signal in the presence of noise, error
detection and correction, synchronisation, and spread spectrum. An introduction to
information theory and recent development in the area will also be covered.
Topics covered in the course will be chosen from:
• Review of Probability and Random Variables
• Introduction to Stochastic Processes and Noise
• Introduction to Information theory: Shannon’s Source Coding and Channel Coding

theorems
• Source Coding: Lossless Coding (Huffman, Arithmetic, and Dictionary Codes)

versus Lossy Coding (Predictive and Transform Coding)
• Analog to Digital Conversion: Sampling and Quantisation
• Baseband Transmission
• Binary Signal Detection and Matched filtering
• Intersymbol Interference (ISI), Channel Capacity
• Digital Bandpass Modulation and Demodulation Schemes
• Error Performance Analysis of M-ary schemes
• Channel Coding: Linear Block, Cyclic, and Convolutional Codes
• Decoding Techniques for Convolutional Codes, Viterbi Algorithm
• Application of Convolutional codes to Compact Disc (CD)
• Synchronisation Techniques
• Spread Spectrum Modulation: Direct Sequence and Frequency Hopping
The course includes weekly two-hour lab sessions and a weekly one-hour tutorial.
References:

 54

• Bernard Sklar, Digital Communications: Fundamentals and Applications, NY:
Prentice Hall, 2001, 2nd edition, ISBN # 0-13-084788-7 (required).

• John G. Proakis, Digital Communications, Third Edition, McGraw Hill
(suggested).

• Simon Haykin, Digital Communications, John Wiley & Sons (suggested).
• Marvin K. Simon, Sami M. Hinedi, and William C. Lindsey, Digital

Communication Techniques, NY: Prentice Hall, 1995 (suggested).
• Marvin E. Frerking, Digital Signal Processing in Communication Systems, NY:

International Thomson Publishing (ITP), 1994 (suggested).

Prerequisites: General prerequisites; CSE3213 3.0; MATH2030 3.0; one of CSE3451
4.0, EATS 4020 3.0, MATH 4830 3.0, PHYS 4060 3.0, or PHYS 4250 3.0
Course Credit Exclusion: CSE4214 3.0

CSE 4215 3.0 Mobile Communications
Wireless mobile networks have undergone rapid growth in the past several years. The
purpose of this course is to provide an overview of the latest developments and trends
in wireless mobile communications, and to address the impact of wireless transmission
and user mobility on the design and management of wireless mobile systems.
Topics covered may include the following:
• Overview of wireless transmission.
• Wireless local area networks: IEEE 802.11, Bluetooth.
• 2.5G/3G wireless technologies.
• Mobile communication: registration, handoff support, roaming support, mobile IP,

multicasting, security and privacy.
• Routing protocols in mobile ad-hoc networks: destination-sequence distance vector

routing (DSDV), dynamic source routing (DSR), ad-hoc on-demand distance vector
routing (AODV), and a few others.

• TCP over wireless: performance in and modifications for wireless environment.
• Wireless sensor networks: applications; routing.
• Satellite systems: routing, localisation, handover, global positioning systems (GPS).
• Broadcast systems: digital audio/video broadcasting.
• Applications to file systems, world wide web; Wireless Application Protocol and

WAP 2.0; i-mode; SyncML.
• Other issues such as wireless access technologies, quality of service support,

location management in mobile environments, and impact of mobility on
performance.

The pedagogical components of the course include lectures, office hours, hands-on
laboratories and exercises, assignments, tests, and a project that addresses recent
research issues in wireless mobile networking.
Two-hour lab sessions will be held alternate weeks. The scheduled lab sessions will
involve the use of:
• a commercial software tool for designing and planning of cellular systems (currently

EDX);

 55

• a wireless network simulator (currently Qualnet);
• software and hardware tools for building and monitoring of wireless LAN systems

(currently the tools from the Cisco wireless family of products).

Prerequisites: General prerequisites; CSE3213 3.0

CSE 4221 3.0 Operating System Design (integrated with CSE5421 3.0)
An operating system has four major components: process management, input/output,
memory management, and the file system. This project-oriented course puts operating
system principles into action. This course presents a practical approach to studying
implementation aspects of operating systems. A series of projects is included, making
it possible for students to acquire direct experience in the design and construction of
operating system components. A student in this course must design and implement
some components of an operating system and have each interact correctly with
existing system software. The programming environment is C++ under Unix. At the
end of this course, a student will be able to design and implement the basic
components of operating systems.
A solid background in operating systems concepts, computer architecture, C, and
UNIX is expected.

Prerequisites: General prerequisites; CSE3221 3.0
Course Credit Exclusion: COSC4321 3.0

CSE 4301 3.0 Programming Language Design (integrated with CSE5423 3.0)
This course is a continuation of CSE3301 3.0 Programming Language Fundamentals.
Like its predecessor, the course focuses on the linguistics of programming languages;
that is, on the common, unifying themes that are relevant to programming languages
in general. Both algorithmic and non-algorithmic language categories are examined.
Current techniques for the formal specification of the syntax and semantics of
programming languages are studied. Skills are developed in the critical and
comparative evaluation of programming languages.

Prerequisites: General prerequisites; CSE3301 3.0

CSE 4302 3.0 Compilers and Interpreters (integrated with CSE5424 3.0)
Principles and design techniques for compilers and interpreters. Compiler
organisation, compiler writing tools, scanning, parsing, semantic analysis, run-time
storage organisation, memory management, code generation, and optimisation.
Students will implement a substantial portion of a compiler in a project.
This course is a hands-on introduction to the design and construction of compilers and
interpreters. At the end of the course, you will understand the architecture of compilers
and interpreters, their major components, how the components interact, and the
algorithms and tools that can be used to construct the components. You will
implement several components of a compiler or interpreter, and you will integrate
these components to produce a working compiler or interpreter.
Specific topics to be covered may include the following:

 56

• Compiler architecture: single-pass vs. multiple-pass translation
• Lexical analysis (scanning): design of scanners using finite automata; tabular

representations; tools for building scanners
• Parsing (syntax analysis): top-down vs. bottom-up parsing; parse trees and abstract

syntax trees; tabular representations for parsers; parser generators
• Symbol tables: efficient algorithms and data structures; representing data types in

symbol tables
• Type checking: scope control; static vs. dynamic type checking
• Memory management: static allocation; register allocation; stack allocation; heap

allocation; garbage collection
• Code generation: translating imperative programming constructs; function and

procedure calls; branching code; translating object-oriented constructs and modules
• Optimisation: local and global optimisations; dead code removal; control flow

analysis

Prerequisites: General prerequisites; CSE3301 3.0 recommended

CSE 4311 3.0 System Development
System Development deals with the construction of systems of interacting processes.
The course focuses on abstraction, specification, and analysis in software system
development. Abstraction and specification can greatly enhance the understandability,
reliability and maintainability of a system. Analysis of concurrency and interaction is
essential to the design of a complex system of interacting processes.
The course is split into three parts. The first part discusses a semiformal method,
Jackson System Development (JSD) by Michael Jackson. JSD is used to build an
understanding of what system development entails and to develop a basic method of
constructing practical systems of interacting processes. JSD gives precise and useful
guidelines for developing a system and is compatible with the object-oriented
paradigm. In particular, JSD is well suited to the following:
• Concurrent software where processes must synchronise with each other
• Real time software. JSD modelling is extremely detailed and focuses on time at the

analysis and design stages.
• Microcode. JSD is thorough; it makes no assumptions about the availability of an

operating system.
• Programming parallel computers. The JSD paradigm of many processes may be

helpful.
The second part of the course discusses the mathematical model CSP
(Communicating Sequential Processes by C.A.R. Hoare). While CSP is not suitable to
the actual design and development of a system of interacting processes, it can
mathematically capture much of JSD. Consequently, it is possible to use formal
methods in analysing inter-process communication arising out of JSD designs.
The third part of the course discusses Z notation and its use in the specification of
software systems. Z has been successfully used in many software companies — such
as IBM and Texas Instruments — to specify and verify the correctness of real systems.

 57

Prerequisites: General prerequisites; one of CSE3311 3.0 or CSE3221 3.0

CSE 4312 3.0 Software Engineering Requirements
This course deals with the elicitation, specification and analysis of software
requirements. It provides a critical description of available methods and tools, and
practical exercises on applying these methods and tools to realistic problems.
Topics include:
• Requirements and system concepts
• Traceability through requirements into design
• Current requirements methods, techniques, and tools
• Industrial practice and standards
• Specific topics to be covered include:
• Introduction: Problems, principles and processes of requirements engineering
• Requirements elicitation processes and methods
• Introduction to Use Cases and UML
• Specification techniques: Requirements models; data modelling; functional models;

the application of formal requirements methods
• Goal-oriented requirements modelling
• Non-functional requirements: safety, security and other nonfunctional requirements
• Pragmatic requirements engineering: Technology transfer; Traceability
• Current Requirements Standards, e.g., IEE 830 Recommended Practice for

Requirements Engineering
• Requirements Categorisation for Resource Allocation
• Why-Because Analysis

References:
• G. Kotonya and I. Somerville. Requirements Engineering: Processes and

Techniques, Wiley, 1998.
• A. Davis, Software Requirements, Addison-Wesley, 1992.
• S. Robertson and J. Robertson, Mastering the Requirements Process, Addison-

Wesley, 1999.
• M. Jackson, Problem Frames, Addison-Wesley, 2000.
• M. Jackson, Software Requirements and Specifications, Addison-Wesley, 1995.

Prerequisites: General prerequisites; CSE3311 3.0

CSE 4313 3.0 Software Engineering Testing
An introduction to systematic methods of testing and verification, covering a range of
static and dynamic techniques and their use within the development process. The
course emphasises the view that design should be carried out with verification in mind
to achieve overall project goals.
Students should:
• understand the importance of systematic testing
• understand how verification is an integral part of the development process and not a

bolt on activity

 58

• understand the strengths and weaknesses of particular techniques and be able to
select appropriate ones for a given situation

• All too often software is designed and then tested. The real aim must be to take a
more holistic view, where design is carried out with verification in mind to achieve
overall project goals. We shall take a fairly liberal view of testing. This includes
various automated and manual static analysis techniques. In addition, we shall show
how increased rigor at the specification stage can significantly help lower-level
testing.

• Black box and white box testing. Unit level testing techniques and practical
exercises. Mutation testing, domain testing, data flow and control flow testing.
Coverage criteria. Theoretical background (e.g., graph theory).

• Static analysis techniques (including program proof tools such as the Spark
Examiner or ESC/Java).

• Higher level testing (integration, system, performance, configuration testing etc).
Testing tools and instrumentation issues.

• The testing of object oriented programs. Specific problems and existing techniques,
e.g., Junit, automatic test case generation via UML diagrams.

• Testing non-functional properties of high integrity systems. Worst case execution
times, stack usage. Hazard directed testing. Software fault injection, simulation and
hardware testing techniques.

• Management issues in the testing process. Planning, configuration management.
Q.A. Controlling the test process. Inspections reviews, walkthroughs and audits.
Influence of standards.

• Regression testing.

References:

Primary:
• Paul C. Jorgensen, Software Testing: A Craftsman's Approach, CRC Press,

2002.
Supplementary:

• Robert Binder, Testing Object-Oriented Systems, Addison-Wesley, 2000.
• K. Beck, Test Driven Development By Example, Addison-Wesley, 2002.
• Cem Kaner, James Bach, Bret Pettichord, Lessons learned in software

testing : a context-driven approach, Wiley, 2002

Prerequisites: General prerequisites; CSE3311 3.0

CSE 4351 3.0 Real-Time Systems Theory (integrated with CSE5441 3.0)
In real-time computing systems the correctness of the system depends not only on the
logical result of the computation but also on the time at which the results are produced.
For example, a computer controlling a robot on the factory floor of a flexible
manufacturing system must stop or turn the robot aside in time to prevent a collision
with some other object on the factory floor. Other examples of current real-time
systems include communication systems, traffic systems, nuclear power plants and
space shuttle and avionic systems.

 59

Real-time programs in many safety-critical systems are more complex than sequential
programs or concurrent programs that do not have real-time requirements. This
course will deal with the modelling, simulation, specification, analysis, design and
verification of such real-time programs. The objective of the course is to expose the
student to current techniques for formally proving the correctness of real-time
behaviour of systems.
Topics covered may include the following:
• Techniques for expressing syntax and semantics of real-time programming

languages
• Modelling real-time systems with discrete event calculi (e.g. Petri net and state

machine formalisms)
• Specification of concurrency, deadlock, mutual exclusion, delays and timeouts
• Scheduling of tasks to meet hard time bounds
• CASE tools for analysis and design. At the end of the course the student will be

able to model and specify real-time systems, design and verify correctness of some
real-time systems.

Prerequisites: General prerequisites; CSE3221 3.0

CSE 4352 3.0 Real-Time Systems Practice (integrated with CSE5442 3.0)
The key aspect that differentiates real-time systems from general purpose computing
systems is the need to meet specified deadlines. Failure to meet the specified
deadlines can lead to intolerable system degradation, and can, in some applications,
result in catastrophic loss of life or property. For example, the computations in an
aircraft collision avoidance system must be completed before specified deadlines to
prevent a mid-air collision. Real-time system technologies are applied In
telecommunication, signal processing, command and control, digital control, etc.
Examples of applications of real-time system technologies that impact our daily lives
include engine, vehicle stability, airbag and break mechanisms in cars, flight control
and air-traffic control, and medical devices. Twelve supervised laboratory hours (two
hours, alternate weeks).
The course will focus on the technologies related to the design and implementation of
real-time systems. Topics may include:

• typical real-time applications
• process models of real-time systems
• scheduling technologies in real-time systems
• design and implementation of real-time systems software
• real-time systems hardware
• real-time operating systems
• real-time programming languages
• inspection and verification methods for real-time systems

Prerequisites: General prerequisites; CSE3221 3.0

 60

CSE 4401 3.0 Artificial Intelligence (integrated with CSE5326 3.0)
This course will be an in-depth treatment of one or more specific topics within the field
of Artificial Intelligence. Possible topics include the following:
• Machine learning: deduction, induction, and abduction, explanation-based learning,

learning k-DNF
• Statistical learning: reinforcement learning, genetic learning algorithms, and

connectionist learning systems, supervised and unsupervised
• Statistical and structural pattern recognition
• Speech recognition
• Artificial intelligence programming paradigms: search, pattern-directed inference,

logic- and object-oriented programming, symbolic mathematics, constraint
satisfaction and symbolic relaxation, building problem solvers, efficiency issues

• Sensor-based robotics: path planning, position estimation, map building, object
recognition, robotic sensor and actuator hardware, software, and interfacing

Contact the course director for information regarding the focus of the course this year.

Prerequisites: General prerequisites; CSE3402 3.0

CSE 4402 3.0 Logic Programming (integrated with CSE5311 3.0)
Logic programming has its roots in mathematical logic and it provides a view of
computation that contrasts in interesting ways with conventional programming
languages. Logic programming approach is rather to describe known facts and
relationships about a problem, than to prescribe the sequence of steps taken by a
computer to solve the problem.
One of the most important problems in logic programming is the challenge of
designing languages suitable for describing the computations that these systems are
designed to achieve. The most commonly recognised language is PROLOG.
When a computer is programmed in PROLOG, the actual way the computer carries
out the computation is specified partly by the logical declarative semantics of
PROLOG, partly by what new facts PROLOG can "infer" from the given ones, and only
partly by explicit control information supplied by the programmer. Computer Science
concepts in areas such as artificial intelligence, database theory, software engineering
knowledge representation, etc., can all be described in logic programs.
Topics covered may include the following:

• Logical preliminaries: syntax and semantics of first order predicate logic and its
Horn logic fragment

• Logical foundations of logic programming: unification, the resolution rule, SLD-
resolution and search trees

• PROLOG as a logic programming system
• Programming techniques and applications of PROLOG
• Constrained logic programming systems

At the end of this course a student will be familiar with fundamental logic programming
concepts and will have some programming expertise in PROLOG.

 61

Prerequisites: General prerequisites; CSE3401 3.0; one of CSE3101 3.0 or CSE3341
3.0

CSE 4411 3.0 Database Management Systems
This course is the second course in database management. It introduces concepts,
approaches, and techniques required for the design and implementation of database
management systems.
Topics may include the following:

• Query Processing
• Transactions
• Concurrency Control
• Recovery
• Database System Architectures
• Distributed Databases
• Object-Oriented Databases

Suggested reading:
• R. Elmasri and S.B. Navathe, Fundamentals of Database Systems, 2nd Ed.,

Benjamin Cummings, 1994.

Prerequisites: General prerequisites; CSE2021, CSE2031, CSE3421 3.0

CSE 4412 3.0 Data Mining
Data mining is computationally intelligent extraction of interesting, useful and
previously unknown knowledge from large databases. It is a highly inter-disciplinary
area representing the confluence of machine learning, statistics, database systems
and high-performance computing. This course introduces the fundamental concepts of
data mining. It provides an in-depth study on various data mining algorithms, models
and applications. In particular, the course covers data pre-processing, association rule
mining, sequential pattern mining, decision tree learning, decision rule learning, neural
networks, clustering and their applications. The students are required to do
programming assignments to gain hands-on experience with data mining.

Suggested reading:
• Jiawei Han and Micheline Kamber, Data Mining -- Concepts and Techniques,

Morgan Kaufmann, Second Edition, 2006.
• Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining,

Addison Wesley, 2006.
• Ian H. Witten and Eibe Frank, Data Mining -- Practical Machine Learning Tools

and Techniques (Second Edition), Morgan Kaufmann, 2005.
• Margaret H. Dunham, Data Mining -- Introductory and Advanced Topics,

Prentice Hall, 2003.

Prerequisites: General prerequisites; CSE3101 3.0; CSE3421 3.0; one of MATH2030
3.0 or MATH1131 3.0

 62

CSE 4413 3.0 Building E-Commerce Systems
A study of technological infrastructure for Electronic Commerce on the Internet
discussing terminology, possible architectures, security and cryptography, content
presentation, web protocols, adaptive and intelligent agents, data mining, and vertical
applications.
Topics covered may include the following:
• Basic e-commerce concepts. Examples of e-commerce stores
• Internet as the infrastructure for e-commerce; network layers and protocols; network

and transport layer; TCP/IP; web server design; DNSs, URLs, and HTTP; proxies,
caching

• Security and encryption; basic concepts of computer cryptography; symmetric and
asymmetric cryptosystems; DES; public key cryptosystems; RSA; Diffie-Hellmann;
elliptic codes; PGP; breaking computer cryptography with massive parallelism

• Electronic store content and presentation; HTML, CGI, Dynamic HTML, JavaScript.
Applets; push and pull content; MIME and cookies; future representations — XML,
WAP

• Intelligent e-commerce; data mining in e-commerce; agents; product and merchant
brokerage; mobile agents; negotiations

Prerequisites: General prerequisites; CSE3213 3.0; CSE3421 3.0

CSE 4421 3.0 Introduction to Robotics (integrated with CSE5324 3.0)
The course introduces the basic concepts of robotic manipulators and autonomous
systems. After a review of some fundamental mathematics the course examines the
mechanics and dynamics of robot arms, mobile robots, their sensors and algorithms
for controlling them. A Robotics Laboratory is available equipped with a manipulator
and a moving platform with sonar, several workstations and an extensive collection of
software.
The course includes 12 hours of supervised lab sessions.

Prerequisites: General prerequisites; MATH1025 3.0, MATH1310 3.0, CSE2031 3.0

CSE 4422 3.0 Computer Vision (integrated with CSE5323 3.0)
This course introduces the fundamental concepts of vision with emphasis on computer
science. In particular the course covers the image formation process, colour analysis,
image processing, enhancement and restoration, feature extraction and matching, 3-D
parameter estimation and applications. A Vision Laboratory is available equipped with
cameras, workstations, image processing software and various robots where students
can gain practical experience.
The course includes 12 hours of supervised lab sessions.

Prerequisites: General prerequisites; MATH1025 3.0; MATH1310 3.0; CSE2031
3.0

CSE 4425 3.0 Introductory Computational Bioinformatics

 63

This course is intended to provide an introduction to theoretical and practical
foundations necessary to a computer scientist working in the bioinformatics field.
Topics of the course will include:
1. Molecular biology for computer scientists

• The cell and the molecules of life: DNA, RNA, chromosomes, genes,
transcription, translation, splicing, replication, recombination

• The Central Dogma of Molecular Biology
• Proteins: structure and functions

2. Sequence analysis algorithms
• Scoring matrices
• Gaps
• Pairwise global and local alignment: dynamic programming algorithms for

general gap penalty and affine gap penalty
• Multiple global alignment: dynamic programming algorithm and heuristic

algorithms
• Progressive alignment algorithm, CLUSTAL

3. NCBI, National Center for Biotechnology Information
4. BioJava: Java tools for processing biological data
5. Biological databases

• Databases containing nucleotides and Proteins information: GeneBank, PDB,
EST, UniGene, etc. (data formats, methods to connect different databases)

• Databases containing literature information: PubMed, Public Library of Science
• Heuristic algorithms for search in biological databases: BLAST, FASTA
• New algorithms for search in a biological database

6. Phylogenetic trees
• Algorithms for Reconstruction of Phylogenetic Trees: distance based and

character based
• Algorithms for the Maximum Parsimony and Maximum Likelihood Problems
• Subtrees and Supertrees: Algorithms
• Evaluation of Phylogenies Using Bootstrapping

7. Introduction to Microarray Data Analysis for Gene Expression
• Normalization
• Pearson correlation
• Algorithms for Hierarchical Cluster Analysis of Microarray Data
• An Open Problem: Annotation of Microarray Data

Prerequisites: General prerequisites

CSE 4431 3.0 Advanced Topics in 3D Computer Graphics (integrated with
CSE5331 3.0)
This course discusses advanced 3D computer graphics algorithms. Topics may
include direct programming of graphics hardware via pixel and vertex shaders, real-
time rendering, global illumination algorithms, advanced texture mapping and anti-
aliasing, data visualization, etc.

 64

• Human Factors—Response Time and Display Rate; Presentation Styles—
Balancing Function and Fashion (Layout, Colour); Societal Impact of User
Interfaces (Information Overload); Computer Supported Cooperative Work
(CSCW, Synchronous and Asynchronous); Information Search and
Visualisation (Queries, Visualisation, Data Mining)

• Real-time image generation (rendering) techniques and direct programming of
graphics hardware via pixel and vertex shaders are technology that is increasingly
used in computer games. Furthermore, these are also often used for
computationally intensive applications as graphics hardware has far surpassed the
raw computational power of traditional CPU’s.

• Advanced texture mapping and anti-aliasing algorithms are used to create better
quality images, that show less digital artefacts.

• Global illumination algorithms are used to generate images that are
indistinguishable from real photos. Such images are used in the film industry,
architecture, games, and lighting design.

• Visualization is a key technology for dealing with large data volumes, which are
typically generated by computational simulations (weather forecasting, aerodynamic
design, etc.) or by sensor networks (satellites, geology, etc.). In these fields,
visualization in graphical form enables humans to understand the vast amounts of
data and the phenomena that they represent.

Scheduled lab sessions involve practical experimentation with advanced computer
graphics and will support the development, presentation and demonstration of a
comprehensive student design project. Two-hour lab sessions will be held during 6
weeks of the course.

Prerequisites: General prerequisites; CSE2021 4.0; CSE3431 3.0
Course Credit Exclusion: COSC4331 3.0

CSE 4441 3.0 Human Computer Interaction (integrated with CSE5351 3.0)
• Introduction (Goals, Motivation, Human Diversity)
• Theory of Human-Computer Interaction (Golden Rules, Basic Principles,

Guidelines)
• The Design Process (Methodologies, Scenario Development)
• Expert Reviews, Usability Testing, Surveys and Assessments
• Software Tools (Specification Methods, Interface-Building Tools)
• HCI Techniques
• Interaction Devices (Keyboards, Pointing Devices, Speech Recognition,

Displays, Virtual Reality Devices)
• Windows, Menus, Forms and Dialog Boxes
• Command and Natural Languages (Command Line and Natural Language

Interfaces)
• Direct Manipulation and Virtual Environments
• Manuals, Help Systems, Tutorials
• Hypermedia and the World Wide Web (Design, Creation, Maintenance of

Documents)

 65

The topics of this course will be applied in practical assignments and/or group projects.
The projects will consists of a design part, an implementation part and user tests to
evaluate the prototypes.

Suggested reading:
• Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human-Computer

Interaction, 3rd ed, Prentice Hall, 2004.

Prerequisites: General prerequisites; CSE3461 3.0
Course Credit Exclusion: COSC4341 3.0

CSE 4452 3.0 Digital Signal Processing: Theory and Applications
Digital signal processing (DSP) has become the foundation of various digital systems
and communication and entertainment applications in today’s computer era. This
course consists of two parts. The first part introduces students to the fundamental DSP
concepts, principles and algorithms. In the second part, it covers some important DSP-
based applications in the real world.
The topics to be covered may include:
Part A: DSP theory

Review of discrete-time systems and sampling, review of Z-transforms, discrete
Fourier transform (DFT), Fast Fourier transform (FFT); digital filter design -
classical filter theory, FIR filters, IIR filters, filter banks, adaptive digital filters,
spectral estimation and analysis

Part B: DSP applications (selectively covered by the instructor)
1. Embedded DSP systems: Introduction to DSP processors, architecture and

programming, design of embedded DSP systems with TMS320 series
2. Speech and audio processing: Digital waveform coding: PCM, u-law, A-law, Time

domain analysis, Short-time spectrum analysis, Linear prediction analysis, Pitch
detection and tracking, Speech coding, Music processing

3. Image processing: Two-dimensional signals and systems, Image compression,
Image enhancement and restoration, radar and sonar signal processing: array
signal processing

This course is designed to cover most of DSP theory and algorithms and some
selected important DSP applications. In lab projects, students will design and
implement some DSP systems in selected application areas, such as speech and
audio processing or image processing, by using either particular DSP hardware (such
as TMS 320 series DSP chips) or software simulation, to get hands-on experience of
DSP system design.
The course components include: lectures, assignments, 12 supervised lab hours for 2-
3 lab projects, one midterm test, one final exam.

Prerequisites: General prerequisites; CSE3451 3.0

CSE 4461 3.0 Hypermedia and Multimedia Technology
The course focuses this year on the design and implementation of hypermedia
presentation systems. "Hypermedia" refers to the non-linear organisation of digital

 66

• Human Factors: presence, immersion, simulator sickness (frame-rate, latency,
vergence vs. accommodation, visual vs. vestibular, etc), training (fidelity, transfer)

information, in which items (such as a word in a text field or a region of an image) are
actively linked to other items. Users interactively select and traverse links in a
hypermedia presentation system in order to locate specific information or
entertainment, or to browse in large archives of text, sound, images, and video. Well-
structured hypermedia gives users a way of coping with the "navigation" problem
created by availability of low-cost, fast access, high-density storage media.
We will explore the following topics.
• The historical roots of hypermedia: Bush, Engelbart, and Nelson
• The digital representation of media: rich text, sound, speech, images, animation,

and video
• Enabling technologies for creating hypermedia
• The role of scripting and mark-up languages
• Networked hypermedia (e. g. HTTP browsers); performance and compression

issues
• Development Tool Kits
• Distribution and Intellectual Property Issues
Students will be expected to familiarise themselves quickly with the Macintosh
interface and basic features of the operating system. Students will be asked to
schedule themselves for at least six-hours/week lab time in the Department's
Multimedia Lab, as the course work will involve a significant amount of exploration and
development of multimedia/hypermedia materials. Students will be divided into small
teams with specific responsibilities for individual exploration and programming tasks
assigned in connection with the course topics. Tasks may take the form of constructing
presentations, prototype applications, or the programming of useful scripts. The teams
will be asked to write short reports on their work that will be presented in class.

Prerequisites: General prerequisites; CSE3461 3.0
Course Credit Exclusion: COSC4361 3.0

CSE 4471 3.0 Introduction to Virtual Reality
This course introduces the basic principles of Virtual Reality and its applications. The
necessary hardware and software components of interactive 3D systems as well as
human factors are discussed. The material is reinforced by practical assignments and
projects.
The topics will be approximately as follows:
• Introduction: applications, human sensory/motor system & capabilities
• Review of interactive 3D graphics programming. Real-time rendering (levels-of-

detail, impostors, etc.), graphics hardware, distributed rendering.
• Virtual Reality Technology (VR): VR input devices, filtering & tracking, VR output

devices, Augmented Reality (AR) hardware, spatial audio, haptics
• Virtual Environments (VE): event driven simulation, procedural animation, physics-

based modelling, collision detection & response, simulation & rendering in parallel,
interaction with VE, haptic and auditory simulation

 67

• Incident Response - response methods, emergency response teams, forensics
principles and methodology, computer crime detection and investigation

• Applications: training, collaborative virtual environments, medical, visualisation &
decision support, design, entertainment, augmented reality, space applications,
teleoperation, computer games.

The scheduled lab sessions involve practical experimentation with virtual environments
and will support the development, presentation and demonstration of a comprehensive
student design project. Two-hour lab sessions will be held alternate weeks in the
Virtual Reality lab.

Prerequisites: General prerequisites; MATH1025 3.0; MATH1310 3.0; CSE2021 4.0;
CSE2031 3.0; CSE3431 3.0 (may be waived on an individual basis,
please consult the instructor).

Course credit exclusion: COSC4471 3.0

CSE 4481 4.0 Computer Security Laboratory
This course provides a thorough understanding of the technical aspects of computer
security. It covers network, operating system, and application software security.
Computer laboratory projects provide exposure to various tools in a hands-on setting.
• Access Control - Identification, authentication, and authorisation; trust management.
• Network Security - attacks, intrusion detection, auditing and forensics, firewalls,

malicious software, packet monitoring and other tools/techniques for finding network
security related problems.

• Operating System Security - threats, vulnerability, and control, password
management, accounts and privileges

• Application Software Security - design of secure systems, evaluation, Java security,
buffer overflows, database security, client-side and server-side securities, tamper
resistant software and hardware, finding vulnerabilities, developing patches, patch
distribution.

• Thinking Evil (understand the enemy so that you can design better software and
systems) - how to build a virus, trojan, worm, (how to detect them and break them);
real-world vulnerability detection.

This is a lecture based course with a laboratory of 3 hours per week.

Prerequisites: General prerequisites; CSE3221 3.0, CSE3481 3.0

CSE 4482 3.0 Computer Security Management: Assessment and Forensics (not
offered until 2009/10)
� Information Security Fundamentals - basic terminology and concepts: confidentiality,

integrity, availability, authentication, auditing, information privacy, legal aspects, etc.
• Security Policies - security plan (how to develop one), policies, procedures, and

standards, acceptable use policies, compliance and enforcement, policy-based
management systems (how they work, examples).

• Access Controls - physical, technical, and data access, biometrics
• Risk Management - risk analysis and threat quantification, contingency planning,

disaster recovery.

 68

• Inappropriate Insider Activity: the problem, the cure?
• Ethics

Prerequisites: Any 12 credits at the 3000-level

CSE 4491 3.0 Simulation and Animation for Computer Games (not offered in
2010/11)

This course presents the conceptual foundation of simulation and animation methods
used in the Digital Media industry, including computer games. Students will get an
understanding of the theory and techniques behind making objects "move" in an
interactive environment. The course covers all aspects, including manual animation,
(semi-)automatic animation through simulation of the movement of linkages and body-
parts, animation through recordings of real motions (motioncapture), the simulation of
physics for rigid bodies, liquids, gases, plants, and deformations, as well as
combinations of these methods.

Topics covered:

• Principles of "Classic" Animation

• Spaces, Transformations, and Rotations

• Interpolation Methods

• Interpolation-Based Animation

• Kinematic Linkages

• Inverse Kinematics

• Motion Capture

• Physically Based Animation

• Liquids & Gases

• Modeling and Animating Human Figures

• Facial Animation

• Modeling Behavior

• Special Models for Animation

After successful completion of this course, students are expected to be able to
understand the concepts behind and to implement:

• various interpolation methods to move objects in a virtual

Public presentation evaluation: 30%

69

• environment in a believable manner

• a system to simulate rigid, animated objects

• movement of animated figures consisting of multiple limbs

• examples of physically based animations, such as particles,

• liquids, and deformations.

• simple methods for motion capture and interpolation for captured

• motion data.

Prerequisites: General prerequisites; CSE3431, MATH1310

CSE 4700 6.0 Digital Media Project (not offered in 2010/11)

This is an honours thesis course in Digital Media. Although a course coordinator will be
assigned to the course, the bulk of the course will take place through the interaction
between a supervisor and the group of students. After two organizational meetings in
September, the students will work with their supervisor directly. The course requires an
initial project proposal that will be submitted to and approved by the supervisor and the
course coordinator (director). This is, in essence, a contract for the project to follow.
The supervisor will evaluate the performance of the students in early January. The
format of this evaluation will vary from project to project, but the requirements of this
evaluation will be specified in the original project proposal. At the beginning of the
course, the course director (coordinator) will establish a date and format for the public
presentation of all Digital Media projects. Normally held between reading week and the
third last week of term, this presentation will normally consist of either a short public
oral or poster presentation of the project. (The actual format may change from year to
year.) All of the faculty associated with the Digital Media program will be invited to
attend this presentation. The individual supervisor will mark this presentation and the
final report due at the end of the term.

The actual nature of the project will vary from student to student. Projects will involve
the design, implementation and evaluation of a Digital Media work. The expectation is
that all projects will involve creation of a digital media artefact and possibly also the
evaluation of human interaction with the product, including an analysis of these results
in the presentation and final report. For projects that will involve significant subject
testing and performance evaluation, it is expected that a complete draft
implementation of the system will be available by January. Supervisors may be faculty
from either the Department of Computer Science and Engineering or the Faculty of
Fine Arts or the Communication Studies program of the Division of Social Science,
Faculty of LA&PS.

Marking Scheme:
Mid-term evaluation: 30%

 70

Final report: 40%

Prerequisites: Only open to students in the final year of the Digital Media program.
Course Credit Exclusions: CSE4080 3.0; CSE4081 6.0; CSE4082 6.0; CSE4084 6.0

Access to Courses
York Enrolment System
Students enrol in courses using the Registration and Enrolment Module (REM), via a
Web interface, typically in the few months prior to the start of each term. CSE courses
occasionally reach their class size maximum, in which case the following procedures
are followed. (See http://www.cse.yorku.ca/undergrad/guides/enroll.html for an
expanded description and interpretation of the enrolment policy outlined below.)

Application for Normal progress
We are committed to ensuring that students majoring in Computer Science, Computer
Engineering, Computer Security and Digital Media can make timely progress towards
meeting degree requirements. However, students who wish to take more CSE courses
than they need or who wish to repeat a course they either dropped or in which they
obtained unsatisfactory grades in the immediately preceding term can only be
accommodated if space permits.

Normal progress is consistent with completion times of four and three years for full-
time students in the 120 credit and 90 credit degree programs respectively. This
entails
� Normally taking 1000-level courses in calendar year one, 2000-level in calendar

year two, etc.
� Taking up to a total of three courses per term (four in the cases of computer

engineering due to their heavier degree requirements) that are any combination of
2000- 3000- and 4000-level courses that the prerequisite structure permits.
� When close to graduation being able to take necessary courses within the limits

specified above.

Limits on Course Enrolment
A maximum combined number of three (four for computer engineering) 2000- 3000-
or 4000-level CSE courses are permitted in any given fall or winter term, subject to
prerequisites being met. In the summer term students are not permitted to take more
than two CSE courses.

Removal from Courses
If any student enrols in more than the allowed number of courses per term they will be
de-enrolled from whichever courses the Department requires space.

Prerequisites
Students are responsible for being aware of the prerequisites of the CSE courses into
which they plan to enrol, and for ensuring that they enrol only if they meet the
prerequisites. Prerequisites include a minimum GPA over computer science courses.

http://www.cse.yorku.ca/undergrad/guides/enroll.html

 71

In the course of prerequisite auditing that the Undergraduate Office performs – a
process that starts at the beginning of each term – students will be removed from a
course if they do not meet the prerequisites. Due to the manual and time consuming
process of prerequisite auditing, removal from courses in the case of non-compliance
may take place at any time before the start, or during, the course.

Courses outside the Department
Students wishing to take Computer Science courses at another institution should
submit a Letter of Permission (LOP) form to the Undergraduate Office. For the purpose
of satisfying degree requirements, the number of computer science course (CSE
courses) credits taken outside the Department of Computer Science and Engineering
may not exceed 6 credits in core computer science courses, and 12 CSE credits in
total, for the duration of the student’s program of study. Transfer Credit assessed at
the point of Admission is included as credit taken outside the Department.

Definition of Core Courses
These are courses required in all degree programs in Computer Science and
Computer Security. The core computer science courses are CSE1001, CSE1019,
CSE1020, CSE1030, CSE2001, CSE2011, CSE2021, CSE2031, CSE3101, CSE3221,
and CSE3311. Core mathematics courses are MATH1300 3.0, MATH1310 3.0, and
MATH1090 3.0.

Normal Order of Study
This section presents a summary of course requirements only for the computer
science programs, by suggesting the normal order in which courses should be taken.
See also p.70 under the heading “Limits on Course Enrolment”. Students are strongly
encouraged to consult the checklists for each program type (computer science,
computer security, digital media and computer engineering) at the end of this calendar
(hard copy version) or on-line at the URL
 http://www.cse.yorku.ca/cscurrent_students/undergrad_students/index.html

Archived checklists for previous years, and earlier versions of the supplemental
calendar are found at the URL http://www.cse.yorku.ca/undergrad/csCalendars.html

The terms “first year”, “second year”, etc., below indicate the year of study for normal
progress by full-time students.

1000-level — first year
• Fall — CSE1001 1.0, CSE1020 3.0, CSE1019 3.0, MATH1300 3.0
• Winter — CSE1001 1.0 (continued from the fall term – this course meets once

every two weeks and spans fall and winter terms) CSE1030 3.0, MATH1310 3.0.
• Additional credits satisfying general education, Faculty, second major program,

or elective requirements for an approximate grand total of 30 credits.
* Normal progress is one CSE course per term (in the context of this restriction

1019 is viewed as a MATH course, and 1001 does not add to the count, due its
small credit weight).

http://www.cse.yorku.ca/cscurrent_students/undergrad_students/index.html
http://www.cse.yorku.ca/undergrad/csCalendars.html

 72

2000-level — second year
• CSE2001 3.0, CSE2011 3.0, CSE2021 4.0, CSE2031 3.0
• Specialised Honours: MATH1090 3.0, MATH1025 3.0, MATH2030 3.0
 Other Honours programs: MATH1090 3.0; MATH2030 3.0

BA and BSc (90-credit) programs: MATH1090 3.06
• Additional credits satisfying general education, Faculty, second major program,

or elective requirements for an approximate grand total of 30 credits.
• Normal progress is three CSE courses per term.

3000-level — third year
• 9 CSE credits at the 3000-level satisfying the breadth requirement — CSE3101

3.0, CSE3221 3.0, CSE3311 3.0
• BA and BSc (90-credit) programs: CSE34xx 3.0

All BA and BSc Honours (120-credit) programs: CSE3000 3.0 and CSE3401 3.0
• BA and BSc (90-credit) programs: 6 additional CSE 3000-level credits

BA and BSc Specialised Honours programs: 3 additional CSE 3000-level credits
• Additional credits satisfying general education, Faculty, second major program,

or elective requirements for an approximate grand total of 30 credits.
• Normal progress is three CSE course per term.

4000-level — fourth year, honours programs only
• 12 CSE credits at the 4000-level (except for the Honours Minor BA degree which

normally requires a maximum of 6 credits at the 4000-level), including one of
CSE4111 3.0 or CSE4101 3.0 or CSE4115 3.0 for the Specialised Honours
programs

• 6 additional CSE credits at the 3000- or 4000-level for Specialised Honours
programs

• Additional credits satisfying general education, Faculty, second major program,
or elective requirements for an approximate grand total of 30 credits.

• Normal progress is three CSE courses per term

Prerequisites for Computer Science and Engineering Courses7
It is required that students fulfil the prerequisites for courses they wish to take.
There are both general prerequisites that are required for all CSE courses at the
specified level and specific prerequisites for each course that are in addition to the
general prerequisites. Both types of prerequisites include CSE courses and

6 Although MATH1090 is not a 3000-level general prerequisite it is required for some 3000-level
core courses and therefore students should plan to complete it in year two.
7 In exceptional circumstances some prerequisites or co requisites may be waived at the discretion
of the undergraduate director in consultation with the course director. All petitions to have pre-
and co requisites waived must be submitted to the undergraduate office. Course directors may
not waive prerequisites.

 73

mathematics courses, and in most cases there are grade requirements in the
prerequisite courses. The prerequisites are listed after each course description and
summarised in the following tables.
The prerequisites table is useful to determine what courses must be taken in order to
enrol in a particular course, or to determine if you are permitted to enrol in a course.

Course Title Prerequisite(s)8
1000-Level
CSE1001 1.0 Research Directions in Computing See course description
CSE1020 3.0 Intro. to Computer Science I See course description
CSE1030 3.0 Intro. to Computer Science II CSE1020 3.0

2000-Level
General Prerequisites:

• CSE1030 3.0 completed with a grade of C+ or better

CSE2001 3.0 Intro. to the Theory of Computation General prerequisites,
 CSE1019 3.0

CSE2011 3.0 Fundamentals of Data Structures General prerequisites,
 CSE1019 3.0
CSE2021 4.0 Computer Organization General prerequisites
CSE2031 3.0 Software Tools General prerequisites
CSE2041 3.0 Net-Centric Computing General prerequisites

3000-Level
General Prerequisites9:

• CSE2011 3.0
• A cumulative GPA of 4.5 or better over all completed10 major Computer Science

courses (NB. CSE1019 3.0 is a major CSE course)

Theory and Numerical Computation Specific Prerequisites
CSE3101 3.0 Design and
Analysis of Algorithms

CSE2001 3.0, MATH1090 3.0,
MATH1310 3.0

CSE3121 3.0 Intro. to Numerical
Computations I

One of CSE1540 3.0, CSE2031 3.0,
CSE2501; one of MATH1010 3.0, MATH1310
3.0, or MATH1014 3.0; one of MATH1021 3.0,
MATH1025 3.0, or MATH2221 3.0

CSE3122 3.0 Intro. to Numerical CSE3121 3.0

8 A comma or a semicolon is interpreted as an “and” in a prerequisite list (unless this is
overridden by a phrase such as “one of”).
9 Applicable to all except CSE3121 3.0, CSE3122 3.0 below.
10 “Completed” is defined where the 3000 level and 4000 level general prerequisites are listed.

 74

Computations II

Systems
CSE3201 4.0 Digital Logic Design CSE2021 4.0. PHYS3150 3.0 is strongly

recommended
CSE3213 3.0 Computer Networks MATH1310 3.0
CSE3215 4.0 Embedded Systems CSE3201 4.0
CSE3221 3.0 Operating
System Fundamentals

CSE2021 4.0, CSE2031 3.0

Software Development
CSE3301 3.0 Programming
Language Fundamentals

CSE2001 3.0

CSE3311 3.0 Software Design CSE2001 3.0, CSE2031 3.0,
MATH1090 3.0

CSE3341 3.0 Intro. To
Program Verification

MATH1090 3.0

Applications
CSE3401 3.0 Functional and Logic
Programming

MATH1090 3.0

CSE3402 3.0 Intro. to Concepts of
Artificial Intelligence

CSE3401 3.0

CSE3421 3.0 Introduction to
Database Systems

CSE3431 3.0 Introduction to
3D Computer Graphics

CSE2031 3.0, MATH1025 3.0

CSE3451 4.0 Signals and Systems MATH1310 3.0
CSE3461 3.0 User Interfaces
CSE3481 3.0 Applied Cryptography CSE3213 3.0

Other Courses:
CSE3000 3.0 Professional Practice in
Computing

(Required of all CSE honours degrees.)

4000-Level

General Prerequisites11:
• CSE2011 3.0
• A cumulative GPA of 4.5 or better over all completed major computer science

courses

11 Applicable to all except CSE4161 below.

 75

Theory Courses Specific Prerequisites
CSE4101 3.0 Advanced Data Structures CSE3101 3.0
CSE4111 3.0 Automata and Computability CSE3101 3.0
CSE4115 3.0 Computational Complexity CSE3101 3.0
CSE4161 3.0 Introduction to Cryptography At least 12 credits from 2000-level

(or higher) MATH courses
(without second digit 5); or
CSE3101 3.0

Systems Courses
CSE4201 3.0 Computer Architecture CSE3201 4.0, CSE3221 3.0
CSE4210 3.0 Architecture and Hardware for
Digital Signal Processing

CSE3201 4.0, CSE3451 4.0

CSE4211 3.0 Performance Evaluation of
Computer Systems

MATH2030 3.0, CSE3213 3.0

CSE4213 3.0 Computer Networks II CSE3213 3.0
CSE4214 4.0 Digital Communications CSE3213 3.0, MATH2030 3.0,

one of CSE3451 4.0, EATS 4020
3.0, PHYS 4250 3.0

CSE4215 3.0 Mobile Communications CSE3213 3.0
CSE4221 3.0 Operating System Design CSE3221 3.0

Software Courses
CSE4301 3.0 Programming Language
Design

CSE3301 3.0

CSE4302 3.0 Compilers and Interpreters (CSE3301 3.0 recommended)
CSE4311 3.0 System Development CSE3311 3.0 or CSE3221 3.0
CSE4312 3.0 Software Engineering
Requirements

CSE3311 3.0

CSE4313 3.0 Software Engineering Testing CSE3311 3.0
CSE4351 3.0 Real-Time Systems Theory CSE3221 3.0
CSE4352 3.0 Real-Time Systems Practice CSE3221 3.0

Applications Courses
CSE4401 3.0 Artificial Intelligence CSE3402 3.0
CSE4402 3.0 Logic Programming CSE3401 3.0, one of CSE3101

3.0 or CSE3341 3.0
CSE4411 3.0 Database Management
 Systems

CSE2021 4.0, CSE2031 3.0,
CSE3421 3.0

CSE4412 3.0 Data Mining CSE3101 3.0, CSE3421 3.0, and
one of MATH2030 3.0 or
MATH1131 3.0

CSE4413 3.0 Building E-Commerce CSE3213 3.0, CSE3421 3.0

 76

 Systems
CSE4421 3.0 Introduction to Robotics MATH1025 3.0, MATH1310 3.0,

CSE2031 3.0
CSE4422 3.0 Computer Vision MATH1025 3.0, MATH1310 3.0,

CSE2031 3.0
CSE4431 3.0 Advanced Topics in 3D
Computer Graphics

CSE2021 4.0, CSE3431 3.0
(MATH1025 by transitivity from
CSE3431)

CSE4441 3.0 Human Computer Interaction CSE3461 3.0
CSE4452 3.0 Digital Signal Processing:
Theory and Applications

CSE3451 4.0

CSE4461 3.0 Hypermedia and Multimedia
 Technologies

CSE3461 3.0

CSE4471 3.0 Introduction to Virtual Reality MATH1025 3.0, MATH1310 3.0,
CSE2021 4.0, CSE2031 3.0,
CSE3431 3.0

CSE 4481 4.0 Computer Security Laboratory CSE3221 3.0, CSE3481 3.0
CSE 4482 3.0 Computer Security
Management: Assessment and Forensics

Any 12 credits at the 3000 level

CSE 4491 3.0 Simulation and Animation for
computer Games

CSE3431, MATH1310
(MATH1025 by transitivity from
CSE3431)

Other Courses
CSE4080 3.0 Computer Science Project Permission of course coordinator;

36 CSE credits
CSE4081 6.0 Intelligent Systems Project Open only to students in the

Intelligent Systems Stream;
permission of the instructor;
CSE3401 3.0 and CSE3402 3.0
with gpa>= 6.0

CSE4082 6.0 Interactive Systems Project Open only to students in the
Interactive Systems Stream;
permission of the instructor;
CSE3311 3.0 and CSE3461 3.0

CSE4084 6.0 Communication Networks
Project

Open only to students in the
Communication Networks Stream;
permission of the instructor;
CSE3451 4.0 and CSE3213 3.0
with gpa>= 6.0

CSE 4700 6.0 Digital Media Project Only open to students in the final
year of the Digital Media program.

 77

Degree Program Checklists

See URLs http://www.cse.yorku.ca/cscurrent_students/undergrad_students/index.html
(current) or http://www.cse.yorku.ca/undergrad/csCalendars.html (archive)

http://www.cse.yorku.ca/cscurrent_students/undergrad_students/index.html
http://www.cse.yorku.ca/undergrad/csCalendars.html

	Preface
	The Department
	Office hours 10:00 am – 4:00 pm

	Faculty
	CSAC and CEAB Accreditation
	A Note on Terminology
	Programs Offered by the Department
	Streams in Honours Computer Science Programs
	The Computer Security Program
	Degree Requirements
	Admission to Programs
	Digital Media Program
	Computer Engineering Program
	Graduate Program in Computer Science

	Industrial Internship Program
	Out of Major Elective Courses - Computer Science and Computer Security Programs
	The Service Program
	Recent Academic Changes
	Student Clubs
	The Student Ombuds Service
	Computer Facilities
	Computer Use Policy
	Computer Science and Computer Engineering Awards
	Academic Policies
	Appeal Procedures
	Grading System
	Courses Offered by the Department
	Course Descriptions: 1000-Level
	Course Descriptions: 2000-Level
	Course Descriptions: 3000-Level
	Course Descriptions: 4000-Level
	Access to Courses
	Normal Order of Study
	Prerequisites for Computer Science and Engineering Courses
	Theory and Numerical Computation Specific Prerequisites
	Theory Courses Specific Prerequisites

	Degree Program Checklists

