
1

Preface

In choosing to study Computer Science you have chosen a career in an exciting and
rapidly changing discipline. As a computer scientist, you may become involved in
many of the great changes in the future, for the computer will play a central role in
these changes.

It is important, therefore, that you not only develop the practical and theoretical skills of
a professional computer scientist but that you also try to obtain an understanding of
the impact of computers on society. For that reason we would strongly encourage you
to select your elective courses outside Computer Science in areas where you will
broaden your knowledge of society. One way to do this is to select isolated courses
that catch your interest; however, a more productive approach is to consider taking a
concentration of courses in an area outside of Computer Science.

So in planning your course selection you should be thinking ahead and asking
yourself not only which courses will give you a good Computer Science degree, but
which courses will make you a good professional computer scientist. That implies a
sound technical background, a broad education, professional ethics and a social
conscience. You can't get all that in your first year but you can at least make a start.

Lastly we would like to remind you that Computer Science is an art as well as a
science which means you cannot learn it entirely from a book - you must also practise
it. We recommend a maximum of three Computer Science courses per term.

2

The Department

Computer Science Department
York University

4700 Keele Street
Toronto, Ontario M3J 1P3

www.cs.yorku.ca

Office hours 9:00-12:00, 2:00-4:00

Peter Cribb, Undergraduate Director 125 CCB Tel. (416)736-5334
Email: enquiries@cs.yorku.ca

John Amanatides, Graduate Program Director 125 CCB Tel. (416)736-5334
www.cs.yorku.ca/grad/

Michael Jenkin, Chair 126 CCB Tel. (416)736-5053
 Fax (416)736-5872

3

CSAC Accreditation

All Computer Science honours programmes offered in the Faculty of Pure and Applied
Science and the Faculty of Arts, with the exception of the BA honours minor, are
accredited by the Computer Science Accreditation Council (CSAC).

The Computer Science Accreditation Council is an autonomous body established by
the Canadian Information Processing Society (CIPS). The purpose of accreditation is
to identify those institutions that offer computer programmes worthy of recognition.
The objectives of the Council are:

• to formulate and maintain high educational standards for Canadian universities
offering computer and information science programmes, and to assist those
institutions in planning and carrying out education programmes.

• to promote and advance all phases of computer and information science
education with the aim of promoting public welfare through the development of
better educated computer professionals.

• to foster a cooperative approach to computer and information science education
between industry, government, and educators to meet the changing needs of
society.

Graduation from an accredited Computer Science Programme simplifies the process
of professional certification as an Information Systems Provider or ISP. The ISP
designation is formally recognized by the provinces of Ontario and Alberta. More
information on professional accreditation and the accreditation process can be found
on the CIPS web page at www.cips.ca.

4

Admission to the Computer Science Major

The educational background of students who seek admission to a Computer Science
degree programme generally belongs to one of two categories. The requirements for
each are outlined below.
In each case a student must first have been admitted to either the Faculty of Arts (for
the BA degree) or the Faculty of Pure and Applied Science (for the B.Sc. degree).
Each Faculty has certain admission requirements that must be met. The requirements
described below are in addition to these faculty admission (which are not described
here).

1. Entry with only secondary school background
If a student’s only academic background is at the OAC level admission to a
Computer Science major requires:
• an overall OAC average of 77%.
• at least 2 mathematics OACs (one must be calculus) with an average over all

mathematics credits (i.e. an average over all 3 if 3 OACs were taken) of 75%
with no mathematics grade less than 65%.

For students from outside Ontario with only secondary school credits the York
University Admissions Office will assess the equivalency of that educational
background.

2. Entry with post-secondary academic background
This category includes the following:

• students who are already admitted to York University and wish to change
their major.

• students who transfer from other universities in Canada.
• students who have completed courses at any post-secondary educational

institution anywhere in the world.
• students who have completed courses at a community college in Canada

or CEGEP in Quebec.

Admission to a Computer Science degree programme requires:
• a B (6.0) average over all courses taken.

5

• at least 6 credits of mathematics, with a B (6.0) average over all major
stream mathematics credits taken and/or a B+ (7.0) average over all
service stream mathematics credits.

The York University Admissions Office will assess the conversion of grades from
other institutions to the York University grade scale.

If you have any post-secondary education you may not gain admission under
category 1 above.

Changing your Major to Computer Science?
Please note that category 2 above applies to you if you are already a York University
student and want to change your major - that is:

• a B (6.0) average over all courses taken at York University.
• at least 6 credits of mathematics, with a B (6.0) average over all

mathematics credits taken and/or a B+ (7.0) average over all service
stream mathematics credits.

NOTE: Students who have a post-secondary education from an institution other than
York University, and who then take courses at York University before applying to major
in Computer Science, must meet the B (6.0) average in York University courses. That
is, the B average will be applied to both the previous academic record and to the York
University academic record.

6

Access to Courses

Voice Response Enrolment System
Students enrol in courses using the York University Voice Response Enrolment
System, typically in the few months prior to the start of each term. Computer Science
courses frequently reach their class size maximum, in which case the following
procedures are followed.

Waiting Lists
Full courses are removed from VRES and students are invited to apply via a waiting
list form. Waiting list applications are accepted up until the middle of the first week of
each term. A waiting list application does not constitute enrolment in a course. The
student must check with the Department as to the result of their application and use a
VRES Special Permission Window assigned to them if their application is successful.

Processing Waiting Lists
Waiting list applications are not treated on a first-come first-served basis. Decisions
are made according to the following criteria:

• normal progress through the degree (i.e. 1000-level courses in year one,
2000-level in year two, etc.). There is no guarantee that students will be able
to take 3000-level computer science courses in the same term as they are
completing a 2000-level computer science course for example.

• the closer to graduation, the higher the priority.

Limits on Course Enrolment
A maximum of two 2000-level Computer Science courses in one term is permitted.
Three 3000- or 4000-level courses per term is normal. Specialized honours students
may take four upper level computer science courses. In the summer term students
are not permitted to take more than 6 credits in Computer Science. Under no
circumstances will students be permitted to take five computer science courses in one
term. If any student enrols in more than four upper year or two 2000-level computer
science courses per term they will be removed from whichever courses the
department requires space. The Department also reserves the right to move students

7

from a course in one term to the same course in the next term should such steps be
necessary to ensure equitable access to courses. This includes movement from fall to
winter or winter to summer.

Prerequisites
Students are responsible for ensuring they enrol only in courses for which they meet
the prerequisites. Prerequisites include a minimum GPA over computer science
courses. Students will be removed from a course if they do not meet the prerequisites,
at any time before or during the course.

Courses Outside the Department
Students wishing to take Computer Science courses at Atkinson College or at another
institution should either consult the Atkinson’s Course Equivalent/Exclusion tables or
submit a Letter of Permission (LOP) form. The Atkinson’s Course Equivalent/Exclusion
table is available at the Office of Science Academic Services and published in the
university’s Undergraduate Lecture Schedule.

For the purpose of satisfying departmental degree requirements, the number of
Computer Science (COSC) credits taken outside the Department of Computer Science
may not exceed 6 credits in core courses and 12 credits in total.

Core Courses:

Core courses include all 1000- and 2000-level Computer Science courses, the 3000-
level computer science courses satisfying the breadth requirement, and any required
3000- and 4000-level computer science courses, ie. COSC3101 3.0, COSC4101 3.0,
COSC4111 3.0.

8

Recent & Current (99/00) Academic Changes

1. GPA Prerequisite in Computer Science
 The Computer Science GPA prerequisite for 2000-level and higher Computer

Science courses is 4.5 (for both Ordinary and Honours programme). Note: This
is a prerequisite for continuing to take Computer Science courses and not a
graduation requirement.

2. Graduation Requirements (This is a new requirement for BSc. degree only -

previously existed for BA)
 Students admitted to York University for 1999/2000 and subsequent years, the

Senate of York University will require a minimum overall grade-point average of
4.0 in order to be eligible to graduate in an undergraduate Ordinary degree
programme.

 Students admitted to York University for 1999/2000 and subsequent years, the
Senate of York University will require a minimum overall grade-point average of
5.0 in order to be eligible to graduate in an undergraduate Honours degree
programme.

3. Course Deletions and Additions

• COSC3411 3.0, File Structures and Data Management, will no longer be
offered.

• COSC3412 3.0, Introduction to Database Management Systems is replaced
by COSC3421 3.0, Introduction to Database Systems.

• COSC3461 3.0, Human Computer Interaction, is offered for the first time.

4. The BA (Ordinary) and B.Sc. (Ordinary) require MATH2320 3.0 rather than
MATH2090 3.0

5. Non-COSC, non-MATH courses
 All Honours programmes, with the exception of the BA minor, require completion

of at least 30 credits that are not COSC and not MATH.

6. Organisation and Management Seminar Course

9

 There is a new course COSC3002 1.0, Organisation and Management Seminar.
All students are encouraged to take this course since it provides important insight
into the social responsibilities of a Computer Science professional.

7. New Prerequisites to Some Upper Level Courses.

COSC3311 3.0, COSC3321 3.0 and COSC4302 3.0 require COSC2031 3.0 as a
prerequisite since programming in C or C++ is an important part of these
courses.

10

Programmes Offered

For detailed information you are advised to first read the appropriate sections of the
York University Undergraduate Calendar (click on Calendars in the York University
web page - www.yorku.ca); secondly, read this supplemental Calendar, and thirdly,
see an advisor in the Department of Computer Science at one of the regularly
scheduled advising sessions.

Computer Science is available as a major programme leading to an Honours (four
year) degree in either Arts (B.A.) or Pure and Applied Science (B.Sc.). It may also be
combined with most subjects in both Arts and Science leading to a four-year double
major degree (B.A. or B.Sc.).

The recommended courses in computer science and mathematics are identical in
most programmes in the first two years of study so that students can make their final
decisions as to which programme to graduate in after they have more exposure to the
discipline.

Ordinary vs. Honours
An Ordinary programme requires 90 credits (normally completed in three years of
study) and a grade point average of 4.0 over all courses (B.A. and B.Sc.). An honours
programme requires 120 credits (normally completed in four years of study), more
specialization, a higher minimum performance (a grade-point-average of 5.0), and in
some cases different courses than an Ordinary degree.

Both Arts and Science programmes are structured in such a way that a student who
embarks on an honours programme can meet the requirements for an Ordinary
degree by the end of the third year and can at that time graduate with either a B.A. or
B.Sc.

If you have the grade point average to be eligible for an honours programme (5.0),
you will be listed as an honours student for administrative purposes. The Ordinary
programme is not accredited by the CSAC.

11

Specialized Honours
Students selecting this programme take more courses in computer science and
mathematics than for a major programme during their four years of study.

Space and Communication Sciences Stream
This is a specialized honours BSc stream in computer science combined with a
concentration of courses in the Departments of Earth and Atmospheric Science, and
Physics and Astronomy. Students select courses on knowledge-based programming,
numerical methods, data communications, electronics, space communications and
physics of the space environment. Fourth year features electives from an extensive
list of topics from all three departments.

Entry is highly competitive as the first year is limited to approximately 40 places.
Candidates are required to have an A average in high school. It is also a very
demanding programme as students must maintain a Science grade point average of
6.0.

BSc Honours Double Major (formerly Combined Honours - prior to 99/00)
The intention of a combined programme is for students to major in two subjects while
maintaining a 5.0 average. In general, students complete enough course work in
each subject to obtain the equivalent of an honours degree. Degrees may require
Honours Double Major students to take more than the minimum of 120 credits to
satisfy the honours requirements of each subject.

BA Double Major/Major-Minor
In the Faculty of Arts a combined programme consists of either a double major or a
major and a minor. In the latter case computer science can be either the major or the
minor subject. Consult advisors in both departments if you are planning a combined
programme.

BA Honours Double Major Programme in Computer Science and Mass
Communications Studies
This double major programme differs from a standard double major programme in
that the second major is in an interdisciplinary programme. In this double major
programme, students are required to complete at least 7 Computer Science courses
(i.e. 42 credits), two of which must be at the 4000 level. Students are also required to

12

complete 6 courses in Mass Communications Studies, one of which must be at the
4000 level.

BA Honours Double Major Programme in Computer Science and Women's
Studies
The requirements of this programme are similar to those stated for the double major
in mass communications studies except the second major is in women's studies.

13

Elective Courses

Students in Computer Science sometimes feel their study in this discipline is quite
isolated from the other programmes in their Faculty, and place little emphasis on their
choice of other courses, even though about a quarter of their courses are electives.
This is a mistake – computer science supports applications in every information-using
discipline. In order to make creative and effective use of your skills in computing, you
need to know much more of the natural world, the man-made world, and the world of
ideas, than can be learned in courses in computing.

There are many choices for elective courses. For example courses in economics,
philosophy (logic), psychology, linguistics, physics and chemistry to name just a few
whose announced content meshes with issues and problems studied in computer
science.

Not only should you consider taking individual courses in other subjects but you
should also consider taking a concentration of courses which together form a
coherent or complementary package. Such a concentration may come from one
discipline (one of the sciences, for example, because of their hierarchical structure)
but it may also come from two or three disciplines on related concepts presented from
different perspectives. It may also be necessary to take specific prerequisites before
you can take a desired elective course; such combinations also form coherent
concentrations.

To further emphasize the importance of elective courses, all honours programmes,
except the BA minor, now require at least 30 credits from non-COSC and non-MATH
courses.

14

Industrial Internship Programme

The Industrial Internship Programme allows students to take a year off from their
studies to gain valuable job experience and earn money while completing their
degree. Students resume their studies when the internship term finishes. (A student's
file becomes inactive during their internship; students must arrange to have their file
reactivated in the spring of the year in which they will return.) Job assignments can be
from 8 to 16 months depending on the corporation. Participating corporations include
IBM, Celestica and Nortel for example.

Any 2nd or 3rd year student with a B average (or better) in MATH and COSC courses
may apply to this programme. Qualifications may also depend on specific job
postings. Job opportunities are posted in the fall, and students apply by submitting a
completed application form, a nonrefundable fee, their resume and York University
transcripts to the Computer Science Administrative Office (126 CCB) at the beginning
of January. The Department forwards the student’s application to companies which
the student has selected. The companies select from these applications the students
they wish to interview, and the Department then arranges on-campus interviews. Job
offers are typically extended in the February/March time frame for positions starting in
May.

In cases where the internship project involves significant learning of an academic
nature students may receive credit for work done in connection with the internship by
enrolling in the project course, COSC4080 3.0. The same rules apply for such
internship projects as for the usual COSC4080 3.0 projects except that the work is not
done at York University and is not done in a single academic term.

Students who are interested in doing a project as part of their internship should
contact the course director of COSC4080 3.0 when they have enough experience on
the job to be able to suggest a project topic which is compatible with the work they are
asked to do and which has significant academic content.

It is the student's responsibility to ensure that the employer is willing to have the
student report on her/his work in written and oral presentations. Work which cannot

15

be generally disclosed is not suitable for a COSC4080 3.0 project. Email
intern@cs.yorku.ca

16

Admission to the Graduate Programme in Computer Science

Admission to the MSc programme is highly competitive.

The ideal preparation for graduate studies in Computer Science is the completion of
the Specialized Honours Programme in Computer Science in the Faculty of Pure and
Applied Science at York University (please consult the Computer Science degree
requirements, the degree checklist, and the course descriptions), or its equivalent
(including senior level courses in theoretical computer science). Your grade point
average in the last two years, should be at least B+ to enter the competition for
admission. Of course, the higher your grades the more likely you will be a successful
candidate.

Need to upgrade a degree?
If you already have a Computer Science degree then you would upgrade, if
necessary, your background to be equivalent to the Specialized Honours Programme
in Computer Science. A comparison of the degree programme you completed with the
Specialized Honours programme will show you what you are missing.

If you have an Ordinary degree, then you will need to upgrade your degree to the
Honours level.

It is recommended that you become familiar with the Unix, C/C++ and the X-window
system environment.

How to upgrade a degree
Obtain the Undergraduate Programme Supplemental Calendar and the Graduate
Programme FAQ sheet from CCB125 (or the web site). Compare the courses you
have taken in your previous degree(s) with the descriptions of Computer Science
courses at York University, checking off on the Specialised Honours degree checklist
form those courses that you think are very similar to ones you have already taken as
part of your previous degree(s).

Count how many Computer Science courses you would need to take for the
Specialised Honours degree. If this number is greater than 3 go to the York
Admissions Office (Atkinson College building, room 150) and apply for admission to

17

the undergraduate degree programme. If the number is 3 or less go to the York
Admissions Office and apply for admission as a special undergraduate student.

There is no need to make an appointment with the Undergraduate Programme
Director or the Graduate Programme Director. Neither person can officially tell you
how many courses in the undergraduate programme you will get credit for, and they
cannot estimate it any better than you can yourself.

18

The Service Programme

The Department also offers a variety of courses at the 1000-level which are of interest
to students wanting to learn about computers and computer use without majoring in
Computer Science. In some cases, degree programmes offered by other
departments may require these courses in their programmes.

The starting courses for non-majors are COSC1520 3.0, COSC1530 3.0, Introduction
to Computer Use I & II and COSC1540 3.0, Computer Use for the Natural Sciences.
The course COSC1530 3.0, Introduction to Computer Use II is an introduction to
computer programming and may be taken as preparation for COSC1020 3.0 if the
student lacks background in this area. Students taking the 1500 series courses are
not eligible to take the 2000-level Computer Science courses without successful
completion of COSC1020 3.0 and COSC1030 3.0.

19

York University Computer Club

The York University Computer Club (YUCC) is an organization of students in the
Department of Computer Science. They nominate students to serve on department
committees, sponsor informational and social events and facilitate communications
among computer science students and faculty members. They can be reached by
electronic mail at yucc@ariel.cs.yorku.ca.

20

Computer Facilities

Undergraduate students work in the Ariel Lab, the Department of Computer Science
undergraduate computing laboratories. First and second year students have access
to 37 colour NCD X-terminals, and 20 Sunworkstations, including 15 Sun Ultra-1
workstations. Third and fourth year students are granted access to the Senior Lab
consisting of 20 Sun Ultra-5 workstations. Senior students may also use a variety of
specialty laboratories in their courses including the Robotics Laboratory, the Real-
Time Laboratory, and the Multimedia Laboratory.

• The Robotics Laboratory consists of a CRS+ robot arm, an RWI B12 mobile robot,
Sun workstations with video acquisition hardware, and NCD terminals.

• The Digital Logic Laboratory provides hands-on experience in computer design.

• The Real-Time Laboratory provides a high-performance Sun workstation, a PC
and industry-standard software tools for the design and analysis of real time
systems. The laboratory has a Marklin digital train set with computer controlled
and monitored locomotives, turnouts and position sensors. The Sun workstation
and the PC are used to control the set.

• The Multi-media Laboratory provides video and audio and multi-media author
tools.

All workstations and computers in the Department are connected up to the campus
network backbone, providing access to all significant systems in the University, as well
as computers around the world via Internet.

Access to the Ariel Lab machines requires an authorized account and a password, as
issued by the Department. Each student receives an Ariel account, providing a
personal space for storing files, electronic mail, and course work. Students are
automatically given access to the machines required to do their course work.
However, students who would like to work on a project outside of assigned class work
may ask a faculty member to act as their supervisor, and if necessary, a special
account can be arranged for that project.

21

Computer Use Policy

Working in a laboratory situation requires cooperative behaviour which does not
harm other students by making any part of the department’s computer systems
unusable such as locking out terminals, running processes which require lots of
network traffic (such as playing games on multiple terminals), or using the facilities to
work on tasks which are not related to computer science course work. Essentially, all
users of common facilities need to ask themselves whether or not their behaviour
adversely affects other users of the facility and to refrain from engaging in "adverse
behaviour". Good manners, moderation and consideration for others are expected
from all users. Adverse behaviour includes such things as excessive noise, occupying
more space than appropriate, harassment of others, creating a hostile environment
and the displaying of graphics of questionable taste. Lab monitors are authorized to
ensure that no discomfort is caused by such practices to any user.

The department policy on computer use prohibits attempting to break into someone
else's account, causing damage by invading the system or abusing equipment, using
electronic mail or file transfer of abusive or offensive materials, or otherwise violating
system security or usage guidelines. As well, we expect you to follow Senate policies
(see the link Official York Policies, under Administrative Services at www.yorku.ca)

The department computer system coordinator, in conjunction with the department and
York Computing Services, will investigate any suspected violation of these guidelines
and will decide on appropriate penalties. Users identified as violating these
guidelines may have to make monetary restitution and may have their computing
privileges suspended indefinitely. This could result in your being unable to complete
computer science courses, and a change in your major.

Adverse behaviour may also violate University, Provincial and Federal laws; for
example duplication of copyrighted material and theft of computer services are both
criminal offenses. In such cases the University, Provincial or Federal authorities may
act independently of the Department. The police may be asked to investigate and
perpetrators may be liable for civil and/or criminal prosecution. The Department of
Computer Science does not assume any liability for damages caused by such
activities.

22

23

Computer Science Awards

Unless otherwise stipulated students in both the Faculty of Pure and Applied Science
and the Faculty of Arts are eligible for these awards. Plaques commemorating the
achievement awards are maintained by the department.

Mark A. Levy Computer Science Award
Up to five prizes will be awarded to outstanding Faculty of Pure and Applied Science
students enrolled in third or fourth year computer science courses.

Nancy Waisbord Memorial Award
This is a cash award presented annually to a graduating student who has consistently
demonstrated excellence in Computer Science.

Computer Science Academic Achievement Award
Up to two cash awards will be presented to outstanding graduating students in an
Honours programme. These awards are funded by contributions from faculty
members in the Department.

Other Awards
Students in the Department are encouraged to apply for Summer Science awards.
These awards pay students a salary over the summer while they are working on a
research project under the supervision of a faculty member. Normally students who
have completed at least their 2nd year may apply and typically a grade average of B+
is required.

In addition, faculty sometimes employ undergraduate research assistants over the
summer period. While not an award administered by NSERC, such positions are only
offered to the best students in the Department.

Prestigious Awards

The Faculties of Arts and Pure and Applied Science also award various medals
to their top graduating students. These include the Governor General's Silver
Medal (Faculty of Arts) and the Gold Medal of Academic Excellence (Faculty of
Pure and Applied Science).

24

Academic Policies

Advising
Academic advising is available on an individual or a group basis in the Department of
Computer Science. Group advising provides help in choosing courses to fulfil degree
requirements. Individual faculty advising is available to discuss academic issues
relevant to computer science such as recommended mathematical skills, theoretical
versus applications oriented courses, areas of specialization, graduate studies and
career paths.

It is ultimately the responsibility of each student to ensure that they meet all degree
requirements of both the Department, and the Faculty of Pure and Applied Science or
the Faculty of Arts. Written information and programme check lists are provided to
assist you in making appropriate choices. It is recommended that you take advantage
of advising opportunities to answer any questions you may have.

Group advising is scheduled by year level during March and early April. In addition,
individual advising appointments may be made through the Undergraduate Office.

Academic Honesty
The Faculty of Arts, Faculty of Pure and Applied Science and the Department have
policies on academic honesty and their enforcement is taken very seriously.
Academic honesty is essentially giving credit where credit is due. When a piece of
work is submitted by a student it is expected that all unquoted and uncited ideas
(except for common knowledge) and text are original to the student. Uncited and
unquoted text, diagrams, etc., which are not original to the student, and which the
student presents as their own work is academically dishonest. The deliberate
presentation of part of another student's program text or other work as your own
without acknowledgment is academically dishonest, and renders you liable to the
disciplinary procedures instituted by the Faculty of Pure and Applied Science.

The above statement does not imply that students must work, study and learn in
isolation. The Department encourages students to work, study and learn together,
and to use the work of others as found in books, journal articles, electronic news and
private conversations. In fact, most pieces of work are enhanced when relevant
outside material is introduced. Thus faculty members expect to see quotes,
references and citations to the work of others. This shows the student is seeking out

25

knowledge, integrating it with their own work, and perhaps more significantly,
reducing some of the drudgery in producing a piece of work.

As long as appropriate citation and notice is given students cannot be accused of
academic dishonesty.

A piece of work, however, may receive a low grade because it does not contain a
sufficient amount of original work. In each course, instructors describe their
expectations regarding cooperative work and define the boundary of what is
acceptable cooperation and what is unacceptable. When in doubt it is the student’s
responsibility to seek clarification from the instructor. Instructors evaluate each piece
of work in the context of their course and given instructions.

You should refer to the appropriate sections of the York University Undergraduate
Calendar for further information and the penalties when academic dishonesty occurs.

Concerns about Fairness
The Department's faculty members are committed to treating all students fairly,
professionally, and without discrimination on nonacademic grounds including a
student’s race or sex. Students who have concerns about fair treatment are
encouraged to discuss the matter with their instructor or the course director. If this is
not possible or does not resolve the problem, the matter should be brought to the
attention of the Undergraduate Director, and if necessary, the Department Chair, for a
departmental response.

Moving to New Programme Requirements
Whenever new programme requirements are introduced the following policies apply:

• The starting year in computer science is defined as the first academic year in
which you took or will take COSC1020 3.0, if you take courses in consecutive
years. If you have a break in your studies then your starting year changes to the
year in which you are readmitted.

• If requirements change you may continue with your studies using the
requirements in effect in your starting year. In this case the degree checklists in
this calendar may not apply to you. You should use the degree checklists from
your starting year.

26

• If requirements change you may elect to graduate under the new requirements
but you must meet all of them. You are not permitted to mix and match old and
new requirements.

27

Appeal Procedures

The Department expects a student's disagreement with an evaluation of an item of
course work (assignment report, class test, non-final examination, oral presentation,
laboratory presentation, class participation) to be settled with the instructor informally,
amicably and expeditiously.

With respect to a formal appeal, there are different procedures for course work and
for final examinations and final grades. Of necessity, a formal appeal must involve
only written work.

Course Work
An appeal against a grade assigned to an item of course work must be made within
14 days of the grade being made available.

In the case of a multi-sectioned course (where the instructor is not the course
director), a second appeal may be made to the course director within 14 days of the
decision of the instructor.

If a student feels that their work has not been fairly reappraised by the course director,
then they may appeal for a reappraisal by the departmental petitions committee.
Such a request is made in writing using the appropriate form obtained from the
Undergraduate Office. The request must be made within 14 days of the decision of
the course director.

Final Exams and Final Grades
An appeal for reappraisal of a final grade must be made in writing on a standard
departmental form, obtained from the Undergraduate Office, within 21 days of
receiving notification of the grade.

The departmental petitions committee will discuss the appeal with the course director
to ensure that no grade computation, clerical or similar errors have been made. If
such an error is discovered, a correction will be made and the student and the
Registrar's Office will be notified.

If a final examination is to be reappraised then the departmental petitions committee
will select a second reader for the examination paper. The petitions committee will

28

consider the report of the second reader and recommend a final grade, which may be
lower than the original grade. The student will receive the report of the petitions
committee and the Registrar's Office will be informed of any grade change. The
decision of the department petitions committee can only be appealed on procedural
grounds to the Executive Committee of the Faculty.

29

Grading System

Grading at York University is done on a letter scale. The following table shows the
grading scale used. The number in parenthesis is the grade point which is used to
determine the grade point average. The grade point average is a credit weighted
average of all relevant courses.

A+ (9) Exceptional

Thorough knowledge of concepts and/or techniques and exceptional skill or great
originality in the use of those concepts and techniques in satisfying the
requirements of a piece of work or course.

A (8) Excellent

Thorough knowledge of concepts and/or techniques together with a high degree
of skill and/or some elements of originality in satisfying the requirements of a piece
of work or course.

B+ (7) Very Good

Thorough knowledge of concepts and/or techniques together with a fairly high
degree of skill in the use of those concepts and techniques in satisfying the
requirements of a piece of work or course.

B (6) Good

Good level of knowledge of concepts and/or techniques together with a
considerable skill in using them in satisfying the requirements of a piece of work or
course.

C+ (5) Competent

Acceptable level of knowledge of concepts and/or techniques together with
considerable skill in using them to satisfy the requirements of a piece of work or
course.

C (4) Fairly Competent

Acceptable level of knowledge of concepts and/or techniques together with some
skill in using them to satisfy the requirements of a piece of work or course.

D+ (3) Passing

30

Slightly better than minimal knowledge of required concepts and/or techniques
together with some ability to use them in satisfying the requirements of a piece of
work or course.

D (2) Barely Passing

Minimum knowledge of concepts and/or techniques needed to satisfy the
requirements of a piece of work or course.

E (1) Marginally failing.

F (0) Failing.

31

Course Descriptions : 1000-Level

Courses in Computer Science have three class hours a week for one term (3
credit–course numbers end in "3.0"), unless otherwise indicated. Courses with
second digit 5 (e.g. 1520, 1530, 1540, 3530) may be taken to satisfy Faculty degree
requirements but do not count as Computer Science credits and the grade from such
courses is not included in calculating the Computer Science grade-point-average.

COSC 1020 3.0
Introduction to Computer Science I (same as AS/ITEC1020 3.0)
Introduction to computation, computing machinery, algorithms and programming via
theoretical concepts and practical skills. Problem solving via the structure, design and
analysis of algorithms and their implementation as effective, correct and efficient
programs. Control and data structures of a structured programming language (Java).

This course is introductory to the discipline in that it is the first in a hierarchy of
courses; it is not a survey course. The emphasis is on the development of a theoretical
conceptual basis and the acquisition of the intellectual and practical skills required for
further study. The course is intended for prospective computer science majors, i.e.
those with a well-developed interest in computing as an academic field of study and
with strong mathematical, analytical and language abilities; it is not intended for those
whose interest is casual, nor for those who require remedial work in the necessary
background.

Warning: The work for this course includes a substantial number of exercises which
require problem analysis, program preparation, testing, analysis of results,
documentation, and submission of written reports. The course is demanding in terms
of time, and requires the student to put in many hours of work per week outside of
lectures. During the first few weeks there is a scheduled laboratory. After that
students book time in the computer laboratory on an as needed basis.

Recommendation: You will benefit if you have prior practical experience with
programming as well as using a computer. Students who wish to take a one-course
exposure to the practical aspects of computing should consider enrolling in
COSC1520 3.0 and COSC1530 3.0 instead (see the following descriptions).

32

Prerequisites: If no university-level mathematics: OAC Calculus and one other OAC in
mathematics (normally Finite Mathematics or Algebra and Geometry) with an average
grade of 75 percent in all OAC mathematics and no grade less than 65 percent;
otherwise: at least 6 credits of university-level mathematics with a grade average over
all MATH credits of C+ or better [B+ or better if it is a service course (second digit is 5)].

Recommended: Previous programming experience; for example, a high school
programming course or SC/AS/COSC1530 3.0.

Degree Credit Exclusion: AK/COSC2410 6.0, AK/COSC2411 3.0

COSC 1030 3.0
Introduction to Computer Science II (same as AS/ITEC1030 3.0)
This course is a continuation of COSC1020 and covers some of the fundamentals of
software development, various data structures (arrays, queues, stacks, trees, lists),
and algorithms that use these structures (sorting, searching). An object oriented
approach will be introduced. Students will use the Unix operating system with the X
Window System.

Prerequisites: COSC1020 3.0

Degree Credit Exclusion: AK/COSC2410 6.0, AK/COSC2412 3.0

COSC 1520 3.0
Introduction to Computer Use I
This course is appropriate for students who are not majoring in Computer Science,
but who would like an introduction to the use of the computer as a problem-solving
tool. No previous computing experience is assumed, but the course does involve
extensive practical work with computers, so some facility with problem-solving and
symbolic operations will be very helpful.

An introduction to the use of computers focusing on concepts of computer technology
and organization (hardware and software), and the use of applications and
information retrieval tools for problem solving.

Topics to be studied include: the development of information technology and its
current trends; analysis of problems for solution by computers, report generation, file

33

processing; spreadsheets; database; numeric and symbolic calculation; the functions
of an operating system; interactive programs.

Students should be aware that like many other computer courses, this course is
demanding in terms of time, and should not be added to an already heavy load.
There is scheduled and unscheduled time in the Glade laboratory. The course is not
appropriate for students who want more than an elementary knowledge of computing
and it cannot be used as a substitute for COSC1020 3.0/1030 3.0: Introduction to
Computer Science.

Advice: If it is possible, we suggest that you enrol for the summer or winter term.

Note: This course is not open to students who have passed or are taking COSC1020
3.0. This course counts as elective credits towards satisfying Faculty degree
requirements but does not count as Computer Science major credits.

Prerequisites: none

COSC 1530 3.0
Introduction to Computer Use II
Concepts of computer systems and technology - e.g., software engineering,
algorithms, programming languages, theory of computation. Practical work focuses on
problem solving using a high-level programming language. The course requires
extensive laboratory work.

Note : This course is designed for students who are not Computer Science majors, but
may be used as preparation by those who wish to major in Computer Science but lack
programming background. Students who plan to major in Computer Science must
also take SC/AS/COSC1020 3.0 and SC/AS/COSC1030 3.0. This course does not
count as a Computer Science major credit.

Prerequisites: none

Degree Credit Exclusions: SC/AS/COSC1540 3.0. This course is not open to any
student who has passed or is taking SC/AS/COSC1020 3.0.

COSC 1540 3.0
Computer Use for the Natural Sciences

34

Introduction to problem solving using computers - top down and modular design;
implementation in a procedural programming language - control structures, data
structures, subprograms; application to simple numerical methods, modelling and
simulation in the sciences; use of library subprograms. This course is intended for
students in the Faculty of Pure and Applied Science.

Note: This course is not open to any student who has passed or is taking COSC1020 3.0. This
course counts as elective credits towards satisfying Faculty degree requirements but
does not count as Computer Science major credits.

Suggested Reading:

• Nyhoff and Leestma, Fortran 77 for Engineers and Scientists, 3rd Edition, Maxwell
Macmillan

• Keiko Pitter et. al., Every Student's Guide to the Internet (Windows version),
McGraw-Hill (1995)

Prerequisites: none.

Degree Credit Exclusions: COSC1530 3.0, SC/ACMS 1010 2.0.

35

Course Descriptions: 2000-Level

General Prerequisites
Before enrolment is permitted in any 2000-level computer science course the
following must be met.

• COSC1030 3.0 completed.

• MATH1090 3.0 completed
• A cumulative grade point average of 4.5 or better over completed Computer

Science courses (including only the most recent grades in repeated courses
for Science students).

Specific prerequisites may also apply to individual courses. Taking more than two
2000-level Computer Science courses per term is not permitted.

COSC 2001 3.0
Introduction to Theory of Computation
The course introduces different theoretical models of computers. Topics covered may
include the following.

• Finite automata and regular expressions. Practical applications ie. text editors.
• Pushdown automata and context-free grammars. Practical applications e.g. parsing

and compilers.
• Turing machines. Turing machines as a general model of computers. Introduction

to the halting problem and NP completeness.
• Prerequisites: general prerequisites.

COSC 2011 3.0
Fundamentals of Data Structures (same as AS/ITEC2011 3.0)
This course discusses the fundamental data structures commonly used in the design
of algorithms. At the end of this course, students will know the classical data
structures, and master the use of abstraction, specification and program construction
using modules. Furthermore, students will be able to apply these skills effectively in
the design and implementation of algorithms.

Topics covered may include the following.

36

• Review of primitive data types and abstract data type – arrays, stacks, queues and
lists.

• Searching and sorting. A mixture of review and new algorithms.
• Priority queues.
• Trees: threaded, balanced (AVL-, 2-3-, and/or B-trees), trees
• Graphs: representations; transitive closure; graph traversals; spanning trees;

minimum path; flow problems

Prerequisites: general prerequisites.

COSC 2021 3.0
Computer Organization (same as AS/ITEC2021 3.0)
Computers can be usefully viewed as having a structure organized into several levels,
ranging from high-level programming languages such as Pascal or C to digital logic
circuits. Each level provides specific resources for the programmer which are created
by the structure at the next lower level.

This course intends to provide students basic understanding of computers at the
lowest levels of this structure. The ways in which data are represented in memory and
transformed by machine instructions are explored.

The major functional blocks of a computer including main memory, control unit, ALU,
input/output bus structures, interrupt system, DMA channels, and peripheral devices
are studied. Some assembler programming and microprogramming will be required.

Suggested Reading:
• Tanenbaum, A.S., Structured Computer Organization, 3rd ed., Prentice-Hall,

1990.
• Stallings, Wm., Computer Organization and Architecture, 2nd ed., Macmillan,

1990.

Prerequisites: general prerequisites.

COSC 2031 3.0
Fundamentals of Unix, C and C++

1 The programming languages C and C++ are taught as a second programming
language. The course assumes some programming experience, typically that

37

obtained in the first-year computer science course. The emphasis is on practical
exploration of a particular strength of C, rather than its use as a general-purpose
language. C is a tool-making tool for working at a low-level; it is a programming
language designed for, and used in, the writing of utilities that access the
primitives of the underlying machine architecture and the operating system.

2 The UNIX programming environment is considered at both

a. the command level (man 1): shells, utilities, filters, etc., and

b. the system call (man 2) and standard library (man 3) levels.

The focus in [2b] is on some Unix operating system user-interface primitives,
e.g. fork/exec, file descriptors, read/write, etc. The emphasis here, as in [1], I
s on practical exploration.

3 C++ is first introduced as an improved C, e.g. with its use of reference parameters.
Its object-oriented features are then looked at in comparison to C and to (object-
oriented) Java, which students should know from introductory courses.

Suggested Readings:

• Kernighan and Ritchie, The C Programming Language.

• Richard Stevens, Advanced Programming in the UNIX Environment.

• Ira Pohl, C++ for C Programmers.

Prerequisites: general prerequisites.

Course Descriptions: 3000-Level

General Prerequisites
Before enrolment is permitted in any 3000-level computer science course (except
service courses – 35xx x.x) the following prerequisites must be met.

• COSC2011 3.0 completed.
• One of COSC2001 3.0 or COSC2021 3.0 completed.
• A cumulative grade point average of 4.5 or better over completed Computer

Science courses (including only the most recent grades in repeated courses
for Science students).

• MATH1300 3.0 and MATH1310 3.0 completed.

38

• One of MATH2090 3.0, MATH2221 3.0, or MATH2320 3.0 completed.

Specific prerequisites may also apply to individual courses.

Warning: Although Java is used in introductory courses, some upper level
courses assume students have a working knowledge of C++, and/or the C
programming language, therefore students may want to plan on completing
COSC2031 3.0 before entering third year.

COSC 3001 1.0
Organization and Management Seminar in Space and Communication Sciences
(same as SC/EATS3001 1.0 and SC/PHYS3001 1.0)
A seminar course taught by guest speakers from industry, government and the
university. Content changes from year to year, but includes such topics as
professional ethics, communications regulations, space law, space science policy,
project management, privacy and security issues in computing.

Prerequisites: Eligibility to proceed in the Specialized Honours stream in SCS beyond
the 2000-level requirements.

Degree Credit Exclusions: EATS 3001 1.0, PHYS 3001 1.0, COSC3002 1.0

COSC3002 1.0
Organization and Management Seminar
A seminar course taught by guest speakers from industry, government and the
university. Content changes from year to year, but includes topics such as
professional ethics, communications regulations, project management, privacy and
security, legal issues in computing.

Prerequisites: general 3000-level prerequisites

Degree Credit Exclusions: EATS 3001 1.0, PHYS 3001 1.0, COSC3001 1.0

COSC 3101 3.0
Design and Analysis of Algorithms
This course is intended to teach students the fundamental techniques in the design of
algorithms and the analysis of their computational complexity. Each of these

39

techniques are applied to a number of widely used and practical problems. At the
end of this course, a student will be able to: choose algorithms appropriate for many
common computational problems; to exploit constraints and structure to design
efficient algorithms; and to select appropriate tradeoffs for speed and space.

Topics covered may include the following:

• Review: fundamental data structures, asymptotic notation, solving recurrences.
• Sorting and order statistics: heapsort and priority queues, randomized quicksort

and its average case analysis, decision tree lower bounds, linear-time selection.
• Divide-and-conquer: binary search, quicksort, mergesort, polynomial

multiplication, arithmetic with large numbers.
• Dynamic Programming: matrix chain product, scheduling, knapsack problems,

longest common subsequence, some graph algorithms.
• Greedy methods: activity selection, some graph algorithms.
• Amortization: the accounting method, eg, in Graham's Scan convex hull algorithm.
• Graph algorithms: depth-first search, breadth-first search, biconnectivity and

strong connectivity, topological sort, minimum spanning trees, shortest paths.
• Theory of NP-completeness.

Suggested reading:

• T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, McGraw-Hill
and The MIT Press, 1991.

• P. Gloor, S. Dynes, I. Lee, Animated Algorithms CD-ROM, The MIT Press 1993.
• D.E. Knuth, The Stanford GraphBase: A platform for combinatorial computing,

Addison-Wesley & The ACM Press, 1993.

Prerequisites: general prerequisites, including MATH2320 3.0 (SCS students may
enrol without MATH2320 3.0 or concurrently with MATH2320 3.0)

NOTE: This course is required of all specialized honours students in computer
science – except those in the SCS stream.

COSC 3111 3.0
Introduction to Program Verification

40

Every program implicitly asserts a theorem to the effect that if certain input conditions
are met then the program will do what its specifications or documentation says it will.
Making that theorem true is not merely a matter of luck or patient debugging; making
a correct program can be greatly aided by a logical analysis of what it is supposed to
do, and for small pieces of code a proof that the code works can be produced hand-
in-hand with the construction of the code itself. Good programming style works in part
because it makes the verification process easier and this in turn makes it easier to
develop more complex algorithms from simple ones.

The course will provide an introduction to the basic concepts of formal verification
methods. It will also include the use of simple tools to aid in verification.

Topics covered will include the following:

• The role of formal verification in the software life-cycle; verification vs. testing and
validation.

• Introduction to propositional calculus; checking for tautologies and contradictions;
annotating code with assertions.

• Symbolic execution; proving relative correctness for small code segments;
establishing termination.

• Creating specifications with quantifiers; translating specifications into code.

Suggested readings:

• Gries and Schneider, A Logical Approach to Discrete Mathematics, Springer-
Verlag, 1993.

• R. Backhouse, Program Construction and Verification, Prentice-Hall, 1986

Prerequisites: general prerequisites, including MATH 2090.03

COSC 3121 3.0
Introduction to Numerical Computations I
(same as AS/SC/MATH 3241 3.0)
This course is concerned with an introduction to matrix computations in linear algebra
for solving the problems of linear equations, non-linear equations, interpolation and
linear least squares. Errors due to representation, rounding and finite approximation
are studied. Ill-conditioned problems versus unstable algorithms are discussed. The
Gaussian elimination with pivoting for general system of linear equations, and the

41

Cholesky factorization for symmetric systems are explained. Orthogonal
transformations are studied for computations of the QR decomposition and the
Singular Values Decompositions (SVD). The use of these transformations in solving
linear least squares problems that arise from fitting linear mathematical models to
observed data is emphasized. Finally, polynomial interpolation by Newton's divided
differences and spline interpolation are discussed as special cases of linear
equations. The emphasis of the course is on the development of numerical
algorithms, the use of intelligent mathematical software and the interpretation of the
results obtained on some assigned problems.

Topics covered may include the following:

• Preliminaries - linear algebra, computer programming and mathematical software
• Number Systems and Errors - machine representation of numbers, floating-point

arithmetic, simple error analysis, ill-conditioned problems and unstable algorithms
• Solution of Systems of Linear Equations - Gaussian elimination and its

computational complexity, pivoting and stability, special structures (Cholesky's
factorization for positive definite systems, banded systems, storage and
computational complexities) error analysis, condition number and iterative
refinement

• Solution of Overdetermined Systems of Linear Equations by Linear Least Squares
Approximations - linear least squares problems, normal equations, orthogonal
transformations (Given's and Householder's), QR and Singular Values
Decompositions (SVD), SVD and rank-deficient problems, computational
complexities versus robustness

• Interpolation - Newton's divided differences spline interpolation; banded linear
systems, error analysis for interpolation. Other interpolations (rational, B-splines)

Prerequisites: for Computer Science majors - general prerequisites,
including MATH2221 3.0;

for others - COSC1540 3.0 or COSC2011 3.0 or COSC2031 3.0;
MATH1010 3.0 or MATH1014 3.0 or MATH1310 3.0;
MATH1025 3.0 or MATH2021 3.0 or MATH2221 3.0.

Degree Credit Exclusion: MATH3241 3.0

42

COSC 3122 3.0
Introduction to Numerical Computations II
(same as AS/SC/MATH3242 3.0)
The course includes a study of algorithms and computer methods for differentiation,
integration, and solution of ordinary differential equations. Nonlinear equations of
one variable, systems of nonlinear equations, optimization of functions of one and
several variables and their relation to nonlinear equations are also covered. The
emphasis of the course is on the development of numerical algorithms, the use of
intelligent mathematical software and the interpretation of the results obtained on
some assigned problems.

Topics covered may include the following:

• Solution of Nonlinear Equations and Unconstrained Optimization - single
nonlinear equation; systems of nonlinear equations; unconstrained
optimization.

• Numerical Differentiation and Integration - methods of estimating derivatives;
error analysis for differentiation; the rectangle and trapezoid rule for integration;
Simpson's rule; Romberg's integration; adaptive quadrature routines; truncation
and round-off errors in integration; improper integrals.

• Solution of Ordinary Differential Equations - introduction; analytical versus
numerical solutions; basic numerical methods; Euler's, Heun's methods; Taylor
series methods; order of a method; local and global errors; Runge-Kutta
methods; Predictor-corrector methods; systems of differential equations;
boundary value problems.

Prerequisites: COSC3121 3.0; MATH2270 3.0

Degree Credit Exclusion: MATH3242 3.0

COSC 3201 3.0
Digital Logic Design

• Boolean Algebra and Logic Gates. How complex functions on data at the bit-
representation level can be built up from simple primitives such as And, Or and Not
(or just Nand or Nor). Implementation of logic functions using these primitives.
Families of logic circuits.

43

• Combinatorial circuits, implementing functions whose output depends only on
their inputs. Canonical forms of Boolean functions and their simplification using
Karnaugh maps and the Quine-McClusky method. Complex combinatorial units,
such multiplexers, encoders, arithmetic-logic units(ALU), read-only memory(ROM),
and programmable arrays.

• Sequential circuits, implementing functions whose output depends on their history
as well as their current input. Construction of basic, clocked, master-slave, and
edge-triggered flip-flops. Higher level (register-transfer) constructs such as
registers, counters and read-write memory(RAM).

• Theoretical design concepts, such as finite state machines.
• Hands-on digital logic hardware laboratory.

Suggested readings:

• John Hays, Introduction to Logic Design, Addison Wesley, 1993.
• M.M. Mano, Digital Design, Prentice Hall, 1991.

Prerequisites: general prerequisites, including COSC2021 3.0.

COSC 3211 3.0
Data Communication

• Physical and Electrical. How complex periodic signals propagate through guided
media such as twisted pairs, co-axial cable, point-to-point microwave links, and
fibre optics, and through the unguided medium of broadcast electromagnetic
radiation. Frequency-domain (Fourier, spectral) analysis. Noise. Limiting
relationship between signal-rate and bandwidth (Nyquist) and between data-rate
and bandwidth and signal-to-noise ratio (Shannon).

• Data encoding. How analogue and digital data are carried in some encoded form
by analogue and digital signals.

Data Signal

 Analogue Analogue : amplitude, frequency, phase modulation.

 Digital Analogue : amplitude, frequency, phase shift keying.

44

 Analogue Digital : sampling, quantisation, pulse code
modulation.

 Digital Digital : NRZ-L, NRZI, Bipolar-AMI and Manchester.

• Data Link. How frames of data bits are transmitted in a controlled and reliable way
between physically (i.e. directly) linked nodes in a network. Protocols for flow
control, and error detection and control.

• Multiplexing and switching. How unrelated data streams may share common
pathways. Time-division and frequency-division multiplexing. Circuit switching.
Space-division switching. Packet switching.

• Networks. LAN (local area networks). Ethernet (CSMA/CD), token bus and token
ring. Virtual circuits and datagrams.

• Basics of the TCP/IP protocol suite.

Prerequisites: general prerequisites, including COSC2021 3.0 and MATH2090 3.0

COSC 3212 3.0
Computer Networks
This course covers the upper layers in the OSI(TCP/IP) reference models. Topics
covered include:

• Introduction: Local area networks, high speed local area networks, Metropolitan
Area networks, and wireless networks.

• Network layer: Routing, congestion control, traffic shaping, Internetworking, IP,
IPv6, and network layer in ATM networks.

• Transport layer: Transport protocols, transport connection management, TCP,
UDP, and the ATM Adaptation Layer (AAL) protocols.

• Application layer: Remote Procedure Calling (RPC), network security, Abstract
Syntax Notation (ASN), multimedia and data compression.

Prerequisites: general prerequisites; COSC3211 3.0

COSC 3301 3.0
Programming Language Fundamentals

45

The topic of programming languages is an important and rapidly changing area of
computer science. This course introduces students to the basic concepts and
terminology used to describe programming languages. Instead of studying particular
programming languages, the course focuses on the "linguistics" of programming
languages, that is, on the common, unifying themes that are relevant to programming
languages in general. The algorithmic, or procedural, programming languages are
particularly emphasized. Examples are drawn from early and contemporary
programming languages, including Fortan, Algol 60, PL/I, Algol 68, Pascal, C, C++,
Eiffel, Ada 95, and Java.

This course is not designed to meet the needs of the student who wishes to learn to
program in a particular programming language. However, any student who
completes this course should be able to learn any new programming language with
relative ease.

Topics covered may include the following:

• Classification of programming languages: language levels, language
generations, language paradigms.

• Programming language specification: lexical, syntactic, and semantic levels of
language definition.

• Data, data types, and type systems; simple types, structured types, type
composition rules.

• Control primitives, control structures, control composition rules.
• Subprograms: functions and procedures; argument-parameter binding;

overloading.
• Global program structure: modules, generic units, tasks, exceptions.

• Object-oriented language features: classes, encapsulation, inheritance,
polymorphism.

• Critical and comparative evaluation of programming languages.

Prerequisites: general prerequisites, including COSC 2001 3.0.

COSC 3311 3.0
Software Design

46

 “A program which does not work is undoubtedly wrong; but a program which does
work is not necessarily right. It may still be wrong because it is hard to understand or
because it is hard to maintain as the program requirements change; or because its
structure is different from the structure of the problem.” (M. A. Jackson)

This course introduces the topic of software design through lectures, supplementary
readings and a set of small design problems. The course deals with the problem of
designing software that can be used, understood and modified by people other than
the original designer.

Software design is in itself a large topic as design can deal with various classes of
programs and systems: small, medium and large; batch; real time; distributed; and
interactive (visual and graphical). Every design class has its own problems. In this
course we deal with small to medium programs and small systems that work without
critical time constraints (although time will be considered).

We examine design methods such as JSP (Jackson System Programming), Data Flow,
SADT (Structured Analysis and Design Technique), top down, bottom up and
structured design methods. We show how theoretical notions from finite state
machines and grammars are related to and used in the design process.

Some of the low level techniques we look at are: abstract data types; backtracking;
divide and conquer; structure clash resolution; process inversion; coroutines; and
error handling.

Design issues are related to the other phases of developing a program:
requirements analysis, specification, implementation, testing, and maintenance.

Upon leaving the course, you can expect to be able to design, implement and modify
programs and systems of programs which transform sequences from one form to
another. You will understand the role of tools and frames in the design process. You
will be able to evaluate program designs and design methods.

Prerequisites: general prerequisites, including COSC 2001 3.0 and MATH2090 3.0;
COSC2031 3.0

47

COSC 3321 3.0
Operating System Fundamentals
This course is intended to teach students the fundamental concepts that underlie
operating systems, including multiprogramming, concurrent processes, CPU
scheduling, deadlocks, memory management, file systems, protection and security.
Many examples from real systems are given to illustrate the application of particular
concepts. At the end of this course, a student will be able to understand the principles
and techniques required for understanding and designing operating systems.

Prerequisites: general prerequisites, including COSC2021 3.0; COSC 2031 3.0

COSC 3331 3.0
Object-Oriented Programming and Design
Introduction to the theoretical and practical methods of object-oriented software
construction. Topics include: single and multiple inheritance, type hierarchies,
polymorphism, operator overloading, object persistence, class library design, generic
classes, and design by contract.

This course is a detailed introduction to the methodology and practice of Object-
Oriented software construction, one of the major areas of software engineering
practice and research.

A source program in an object-oriented programming environment is based on
independently defined abstract program units called object classes or types; the
object instances of the classes are created in the program and interact through
message passing at run-time. Each object is a program unit which packages both a
coherent collection of data elements and the methods (routines) for their
manipulation. The object encapsulates its data elements, which means that the object
class has an interface which defines all and only what is visible about the object
instances to other objects in the program environment. These techniques promote the
reuse of reliable code and reduce the frequency of the kinds of programming which
arise in attempting to integrate the different parts of a complex program.

48

The course will introduce the theoretical concepts of object-oriented programming
and design, and present examples using the object-oriented programming language
Eiffel. Eiffel will be compared to other OO languages, like C++, Java, Smalltalk,
Python, Delphi.

• Abstract Data Types as a basis for information hiding. Other software engineering
principles such as the open-closed principle and the single point principle.

• The construction of a hierarchy of data types in which types are derived from one
or more ancestor types by inheritance and refinement.

• A discussion of overloading, redefining, hiding of member functions.
• Design by contract including preconditions, postconditions class invariants, loop

invariants, etc. Contracts and exception handling. Contracts and testing.
• Polymorphism and genericity as an approach to code reuse.
• Static versus dynamic binding of methods to method calls.
• Techniques of object-oriented design: identifying objects and classes; identifying

semantics of objects and classes; identifying class hierarchies; identifying when
to use polymorphism.

• The BON notation for seamless OO design and analysis.
• Multiple inheritance and repeated inheritance.
• Object persistence. Class STORABLE.
• Class library design to provide reusable software components.

Prerequisites: general prerequisites

Degree Credit Exclusion: COSC3010A 3.0

COSC 3401 3.0
Introduction to Symbolic Computation
The course will introduce and explore programming concepts used in symbolic and
knowledge-based computing. It is intended to give the student a programming
background which will be useful for further work in logic programming, expert
systems, and artificial intelligence.

The programming language Prolog will be considered in detail. Prolog is a
declarative programming language based on the concept of a logical assertion. It is
widely used for constructing knowledge-based and expert systems.

49

The course will develop the following concepts.

• Terms as representations of facts

• Logical clauses as rules

• Recursive programming techniques

• Backward-chaining vs. forward-chaining

• Goal search through backtracking

• Building logical databases for knowledge-based problem-solving

• Representing mathematical knowledge by rewrite rules

• Natural language processing using grammar rules

Prerequisites: general prerequisites, including MATH 2090 3.0

COSC 3402 3.0
Introduction to Concepts of Artificial Intelligence
Artificial Intelligence (AI) deals with building a system which can operate in an
intelligent fashion. Neat as this simple definition is, it obscures the complex nature of
intelligence. At the time of the Dartmouth Conference (1956), regarded by many as
the start of AI, some researchers believed it would be possible to create a "thinking
machine" in a matter of a few years. That was close to 40 years ago, and we are still
far from our goal, but we have learned a lot on the way.

In this course, we begin by discussing differing definitions of artificial intelligence and
go on to examine fundamental concepts in AI, building on material introduced in
COSC3401 3.0: Introduction to Symbolic Computation. Topics to be covered include
reasoning under uncertainty, search, constraint propagation, planning and problem
solving.

Prerequisites: general prerequisites; COSC3401 3.0; MATH2320 3.0

COSC 3408 3.0
Simulation of Discrete Systems
Simulation is a technique for dealing with problems that do not admit exact (or
"analytic") solutions via mathematical analysis. A model of the system to be studied is
constructed, and then the model is run to see how it performs, either to predict how

50

the system will behave, or, if the behaviour of the system is known, to test the validity of
the model of the system. A computer is a tool for supporting a large amount of activity
in the running of the model.

A "discrete system" simulation is one which admits a discrete-event model that can be
run in discrete steps that match the structure of the model. (For simulation of
continuous systems see COSC 3418 3.0)

Examples of discrete systems studied by simulation include games and other dynamic
systems involving small populations where it is feasible to model individual's
behaviour. Major sub-topics include the generation and use of random numbers,
queuing systems, and the visual presentation of behaviour.

Prerequisites: general prerequisites; MATH2560 3.0.
Degree Credit Exclusion: MATH4930B 3.0

COSC 3418 3.0
Simulation of Continuous Systems
Simulation is a technique for dealing with problems that do not admit exact (or
"analytic") solutions via mathematical analysis. A model of the system to be studied is
constructed, and then the model is run to see how it performs, either to predict how
the system will behave, or, if the behaviour of the system is known, to test the validity of
the model of the system. A computer is a tool for supporting a large amount of activity
in the running of the model.

A "continuous system" may either be presumed to be inherently continuous or it may,
at a fine enough scale, be actually composed of discrete events. However, in
simulation, a "continuous system" is one for which the model, due to practical
necessity, is described by continuous variables regardless of its physical structure.
However, the running of a continuous model involves, also of necessity, discrete
steps. Thus central to continuous system simulation is the problem of approximation.
(For simulation of discrete systems see COSC 3408 3.0)

Examples of continuous systems studied by simulation include dynamic systems
involving very fine variations or large populations. Major sub-topics include chaotic
behaviour, the numerical solution of differential equations by finite methods, and
related issues of stability and errors.

51

Prerequisites: general prerequisites; MATH2560 3.0.

COSC 3421 3.0 (same as AS/ITEC3421 3.0)
Introduction to Database Systems
Concepts, approaches and techniques in database management systems (DBMS).
Logical model of relational databases. An introduction to relational database design.
Other topics such as query languages, crash recovery and concurrency control.

The purpose of this course is to introduce the fundamental concepts of database
management, including aspects of data models, database languages, and database
design. At the end of this course, a student will be able to understand and apply the
fundamental concepts required for the design and administration of database
management systems.

Topics may include the following:
• Overview of Database Management Systems
• Relational Model
• Entity-Relational Model and Database Design
• SQL
• Integrity Constraints
• Crash Recovery
• Concurrency Control

Prerequisite: ITEC/COSC2011 3.0
Degree Credit Exclusion: AS/SC/COSC3412 3.0

COSC3461 3.0 (same as AS/ITEC3461 3.0)
Human-Computer Interaction
This course introduces the concepts and technology necessary to design, manage
and implement interactive software. Students work in small groups and learn how to
design user interfaces, how to realize them and how to evaluate the end result.

Introduction (goals, motivation, human diversity)
Theory of Human-Computer Interaction (golden rules, basic principles, guidelines)
The Design Process (methodologies, scenario development)

52

Expert Reviews, Usability Testing, Surveys and Assessments
Software Tools (specification methods, interface-building tools)
HCI Techniques
• Interaction Devices (keyboards, pointing devices, speech recognition, displays,

virtual reality devices...)
• Windows, Menus, Forms and Dialog boxes
• Command and Natural Languages (command line and natural language

interfaces)
• Direct Manipulation and Virtual Environments
• Manuals, Help Systems, Tutorials
• Hypermedia and the World Wide Web (design, creation, maintenance of

Documents)
Human Factors
• Response Time and Display Rate
• Presentation Styles: Balancing Function and Fashion (layout, colour)
• Societal Impact of User Interfaces (information overload)
Computer Supported Cooperative Work (CSCW, synchronous and asynchronous)
Information Search and Visualization (queries, visualization, data mining)

Prerequisites: ITEC/COSC2011 3.0

Degree Credit Exclusion: Not open to students who successfully completed
AS/SC/COSC4341 3.0, AS/SC/COSC4361 3.0 before FW99

COSC 3530 3.0 (x-listed BC3030 3.0)
Technical and Professional Writing
This writing-intensive course is for upper-year students enrolled in Computer Science,
Space and Communication Sciences, and other Science-related fields. Students will
develop confidence and competence in professional and technical writing. Focus is
on communication of complex information in a clear, sensible style. Articles, end-user
documentation and technical reports will be critically evaluated in class. Outside
speakers from industry will be invited to provide a real-world perspective on needs.

Note: This course counts as elective Science credits toward satisfying Faculty degree
requirements but does not count as Computer Science major credit. The grade for
this course is not included in the calculation of the Computer Science grade point

53

average (GPA). However, this course is recommended by the Computer Science
department for students who wish to pursue a professional career.

This course may be taken using the Pass/Fail grading option. Science students who
wish to take it on a Pass/Fail basis must have completed at least 24 credits and have
taken no more than 9 previous Pass/Fail credits.
Web site: www.yorku.ca/bethune/courses/3030.html

Corequisite: concurrent enrolment in at least one course in the third or fourth year of
Computer Science, Physics, other applied science or permission of the instructor.
English language proficiency is expected.

Degree Credit Exclusions: SC/BC3050 3.0.

Course Descriptions: 4000-Level

General Prerequisites
Before enrolment is permitted in any 4000-level computer science course the
following requirements must be met.

• COSC2001 3.0, COSC2011 3.0, COSC2021 3.0 completed.

• at least 12 credits in COSC courses at the 3000-level completed.

• a cumulative grade point average of 4.5 or better over completed computer
science courses (including only the most recent grades in repeated courses
for Science students).

• MATH2090 3.0 completed

Specific prerequisites may apply to individual courses.

COSC 4001 6.0 (same as SC/EATS4001 6.0 and SC/PHYS4001 6.0)
Space and Communication Sciences Workshop
Individual projects will be assigned by mutual agreement between the student and a
faculty member. The work may be done under supervision by the faculty member, or

54

under supervision of an industrial associate to that faculty member. The projects will
be self-contained problems of a design nature, and will be pursued in the manner of
a space project. Thus, the first step is to define the requirements of the design, the
second to carry out a review of previous work, and the third to execute the design.
Following that, the design shall be tested, normally through simulation, and
conclusions drawn. A report of professional quality shall be written and submitted.

Prerequisites: Satisfactory completion of the 3000-level courses in the Space
and Communication Science core

Degree Credit Exclusions: COSC4080 3.0, EATS4001 6.0, PHYS4001 6.0

COSC 4080 3.0
Computer Science Project
This is a course for advanced students, normally those in the fourth year of an
honours programme, or students who have completed six full computer science
courses. Students who have a project they wish to do, need to convince a member of
the faculty in the department that it is appropriate for course credit. Alternatively,
students may approach a faculty member in the department (typically, one who is
teaching or doing research in the area of the project) and ask for project suggestions.
Whatever the origin of the project, a ‘contract’ is required. It must state the scope of
the project, the schedule of work, the resources required, and the criteria for
evaluation. The contract must be signed by the student and his/her project supervisor
and be acceptable to the course director.

Internship students may elect to receive credit for their internship as a project course.
This is outlined further at the beginning of this calendar. A 'contract' is still required.

Prerequisites: general prerequisites; permission of the course director. Restricted
to students who have completed 36 credits in Computer Science.

Degree Credit Exclusion: COSC 4001 6.0

55

COSC 4101 3.0 (x-listed COSC 5101 3.0)
Advanced Data Structures
The course discusses advanced data structures: heaps, balanced binary search
trees, hashing tables, red--black trees, B--trees and their variants, structures for
disjoint sets, binomial heaps, Fibonacci heaps, finger trees, persistent data structures,
etc. When feasible, a mathematical analysis of these structures will be presented, with
an emphasis on average case analysis and amortized analysis. If time permits, some
lower bound techniques may be discussed, as well as NP-completeness proof
techniques and approximation algorithms.
The course may include the following topics:

• Amortized and worst-case analysis of data structures.

• Data structuring paradigms: self-adjustment and persistence.

• Lists: self-adjustment with the move-to-front heuristic.

• Search trees: splay trees, finger search trees.

• Heaps: skew heaps, Fibonacci heaps.

• Union-find trees.

• Link-and-cut trees.

• Multidimensional data structures and dynamization.

Prerequisites: general prerequisites, including COSC 3101 3.0; MATH2320 3.0

COSC 4111 3.0 (x-listed COSC 5111 3.0)
Automata and Computability
This course is the second course in the theory of computing. It is intended to give
students a detailed understanding of the basic concepts of abstract machine structure,
information flow, computability, and complexity. The emphasis will be on appreciating
the significance of these ideas and the formal techniques used to establish their
properties. Topics chosen for study include: models of finite and infinite automata, the
limits to computation, and the measurement of the intrinsic difficulty of computational
problems.

Prerequisites: general prerequisites, including COSC3101 3.0; MATH2320 3.0.

56

COSC 4201 3.0 (x-listed COSC 5501 3.0)
Computer Architecture
This course presents the core concepts of computer architecture and design ideas
embodied in many machines and emphasizes a quantitative approach to
cost/performance tradeoffs. This course concentrates on uniprocessor systems. A few
machines are studied to illustrate how these concepts are implemented; how various
tradeoffs that exist among design choices are treated; and how good designs make
efficient use of technology. Future trends in computer architecture are also discussed.

Topics covered may include the following:

• Fundamentals of computer design

• Performance and cost

• Instruction set design and measurements of use

• Basic processor implementation techniques

• Pipeline design techniques

• Memory-hierarchy design

• Input-output subsystems

• Future directions

Prerequisites: general prerequisites,

including COSC 3201 3.0 and COSC3321 3.0

COSC 4211 3.0 (x-listed COSC5422 3.0)
Performance Evaluation of Computer Systems
Topics covered may include the following:

• Review of Probability Theory - probability, conditional probability, total probability,
random variables, moments, distributions (Bernoulli, Poisson, exponential,
hyperexponential, etc.)

57

• Stochastic Processes - Markov chains and birth and death processes

• Queuing Theory - M/M/1 Queuing system in detail; other forms of queuing systems
including limited population and limited buffers.

• Application - A case study involving use of the queuing theory paradigm in
performance evaluation and modeling of computer systems such as open
networks of queues and closed queuing networks. Use of approximation
techniques, simulations, measurements and parameter estimation.

Prerequisites: general prerequisites,

including COSC 3211 3.0 and COSC3408 3.0

COSC 4242 3.0 (x-listed COSC 5325 3.0)
Signals and Systems
The study of computer vision, graphics and robotics requires background in the
concept of discrete signals, filtering, and elementary linear systems theory. Discrete
signals are obtained by sampling continuous signals.

In this course, students review the concept of a discrete signal, the conditions under
which a continuous signal is completely represented by its discrete version, linear
time-invariant systems.
Topics covered may include the following:

• Continuous and discrete signals

• Linear time-invariant systems

• Fourier analysis in continuous time

• Fourier analysis in discrete time

• Sampling

• Filtering, image enhancement

• Laplace transform

58

• Z transform

• Linear feedback systems

• Random signals, image coding

• Kalman filtering

• Statistical pattern recognition

Prerequisites: general prerequisites; COSC3121 3.0 or MATH3241 3.0.

Degree Credit Exclusions:

EATS4020 3.0, MATH4130B 3.0, MATH4830 3.0, PHYS4060 3.0.

COSC 4301 3.0 (x-listed COSC5423 3.0)
Programming Language Design
This course is a continuation of COSC3301 3.0 Programming Language
Fundamentals. Like its predecessor, the course focuses on the linguistics of
programming languages; that is, on the common, unifying themes that are relevant to
programming languages in general. Both algorithmic and nonalgorithmic language
categories are examined. Current techniques for the formal specification of the syntax
and semantics of programming languages are studied. Skills are developed in the
critical and comparative evaluation of programming languages.

Prerequisites: general prerequisites, including COSC 3301 3.0

COSC 4302 3.0 (x-listed COSC5424 3.0)
Language Processors
This course is concerned with a variety of theoretical and practical questions that are
raised by the need to implement programming languages. The implementation of a
programming language is accomplished by writing a computer program that functions
as a "translator" or "language processor". Language processors can be categorized
as compilers, cross-compilers, interpreters, assemblers, and pre-processors.
However, the different kinds of translators generally exhibit a common internal

59

structure consisting of standardized "phases": the scanner, parser, and semantics.
Because of this common structure, it is appropriate to study language processors as a
unified group. However, the course emphasizes the most important class of language
processors: compilers.

As a practical exercise, students are required to design and implement components of
a compiler.

Topics covered may include the following:

• Phases of translation, single-pass and multi-pass translation, phase interleaving.

• Lexical analysis, or scanning: finite-state automata, practical simplifications of
finite-state automata.

• Syntactic analysis, or parsing: shift-reduce parsing, operator precedence parsing,
top-down parsing, bottom-up parsing, backtracking, look-ahead, efficiency
considerations.

• Context conditions, semantic analysis, code generation.

• Data structures for translators, symbol tables.

• Optimization: local optimizations, register optimization, global optimization, control
flow analysis, data flow analysis.

• Error analysis: error trapping and recovery.

Prerequisites: general prerequisites, including COSC 3301 3.0; COSC2031 3.0

COSC 4311 3.0
System Development
System Development deals with the construction of systems of interacting processes.
The course focuses on abstraction, specification, and analysis in software system
development. Abstraction and specification can greatly enhance the
understandability, reliability and maintainability of a system. Analysis of concurrency
and interaction is essential to the design of a complex system of interacting processes.

The course is split into three parts. The first part discusses a semiformal method,
Jackson System Development (JSD) by Michael Jackson. JSD is used to build an
understanding of what system development entails and to develop a basic method of
constructing practical systems of interacting processes. JSD gives precise and useful

60

guidelines for developing a system and is compatible with the object oriented
paradigm. In particular, JSD is well suited to the following:

• Concurrent software where processes must synchronize with each other.

• Real time software. JSD modeling is extremely detailed and focuses on time at the
analysis and design stages.

• Microcode. JSD is thorough, it makes no assumptions about the availability of an
operating system.

• Programming parallel computers. The JSD paradigm of many processes may be
helpful.

The second part of the course discusses the mathematical model CSP
(Communicating Sequential Processes by C.A.R. Hoare). While CSP is not suitable to
the actual design and development of a system of interacting processes, it can
mathematically capture much of JSD. Consequently, it is possible to use formal
methods in analyzing inter-process communication arising out of JSD designs.

The third part of the course discusses Z notation and its use in the specification of
software systems. Z has been successfully used in many software companies -- such
as IBM and Texas Instruments -- to specify and verify the correctness of real systems.

Prerequisites: general prerequisites, including COSC 3311 3.0, and
COSC3111 3.0 or COSC3321 3.0.

COSC 4321 3.0 (x-listed COSC 5421 3.0)
Operating System Design
An operating system has four major components: process management, input/output,
memory management, and the file system. This project - oriented course puts
operating system principles into action. This course presents a practical approach to
studying implementation aspects of operating systems. A series of projects is
included, making it possible for students to acquire direct experience in the design
and construction of operating system components. A student in this course must
design and implement some components of an operating system and have each
interact correctly with existing system software. The programming environment is C++

61

under Unix. At the end of this course, a student will be able to design and implement
the basic components of operating systems.

A solid background in operating systems concepts, computer architecture, C, and
UNIX is expected.

Prerequisites: general prerequisites, including COSC 3321 3.0.

COSC 4331 3.0 (x-listed COSC 5331 3.0)
Computer Graphics
This course introduces the student to the fundamental algorithms of 3-D computer
graphics and image synthesis.

The first half of the course covers window systems, display hardware, graphical
primitives, scan conversion, two and three-dimensional transformations and the
mathematics of planar geometric projection.

The second half concentrates on raster algorithms and image synthesis. Some of the
topics include visible surface algorithms, modeling, shading, global illumination, anti-
aliasing and texture mapping.

Students are expected to be familiar with C and UNIX and will be using the X window
environment on the undergraduate workstations.

Prerequisites: general prerequisites: MATH2221 3.0

COSC 4341 3.0
Interactive System Design
Recent studies have shown that on average, 50% of the costs of modern application
programs come from the development of the program's user interface. At the same
time, users of programs are becoming increasingly aware and critical of poorly
designed user interfaces. The modern system designer must, therefore, be capable
of creating systems that are easy to use and that truly address the needs of the users,
while still managing to remain within budget.

This course introduces the concepts and technology necessary to manage the design
and implementation of interactive software. Students will learn methods for designing
software matched to the goals, tasks and skills of the eventual users of the system. A

62

development methodology is presented in which each development stage involves
evaluation of the quality of the system design. Units in the course will cover User
Needs Analysis, User Interface Design, Task-Oriented Specification, Architecture
Design of Interactive Systems, System Implementation, and User Testing and
Evaluation.

Prerequisites: general prerequisites.

Degree Credit Exclusion: SC/AS/COSC3431 3.0

COSC 4351 3.0 (x-listed COSC5341 3.0)
Real-Time Systems Theory
In real-time computing systems the correctness of the system depends not only on the
logical result of the computation but also on the time at which the results are
produced. For example, a computer controlling a robot on the factory floor of a flexible
manufacturing system, must stop or turn the robot aside in time to prevent a collision
with some other object on the factory floor. Other examples of current real-time
systems include communication systems, traffic systems, nuclear power plants and
space shuttle and avionic systems.

Real-time programs in many safety-critical systems are more complex than sequential
programs or concurrent programs that do not have real-time requirements. This
course will deal with the modelling, simulation, specification, analysis, design and
verification of such real-time programs. The objective of the course is to expose the
student to current techniques for formally proving the correctness of real-time
behaviour of systems.

Topics covered may include the following:

• Techniques for expressing syntax and semantics of real-time programming
languages

• Modelling real-time systems with discrete event calculi (e.g. Petri net and state
machine formalisms)

• Specification of concurrency, deadlock, mutual exclusion, delays and timeouts
• Scheduling of tasks to meet hard time bounds.

63

• CASE tools for analysis and design. At the end of the course the student will be
able to model and specify real-time systems, design and verify correctness of
some real-time systems.

Prerequisites: general prerequisites, including COSC 3311 3.0 or COSC3321 3.0 or
COSC3111 3.0.

COSC 4352 3.0 (x-listed COSC5342 3.0)
Real-Time Systems Practice
In real-time computing systems the correctness of the system depends not only on the
logical result of the computation but also on the time at which the results are
produced. For example, a computer controlling a robot on a factory floor must stop the
robot in time to prevent a collision. Other examples of real-time systems include
communication systems, traffic systems, nuclear power plants and avionic systems.
Real-time systems are complex and require a knowledge of reactive programs for
their design. A reactive program maintains an ongoing non-terminating interaction
with its environment rather than computing some final value on termination.

The course will focus on the design, construction and verification of soft and hard real-
time systems. Topics may include: models of concurrent processes with access to a
clock (e.g. by fair transition systems with timeouts and clock variables), semaphores
and synchronization, process communication and fairness, temporal logic for
specifying safety properties (e.g. freedom from deadlock), liveness and real-time
response, verification of real-time systems using temporal logic model-checking tools
such as StateClock/STeP, and examples from real-time programming languages (Ada
and Java).

Prerequisites: general prerequisites, including COSC 3301 3.0 or COSC3311 3.0 or
COSC3321 3.0

COSC 4361 3.0
Human-Computer Communication:
The course focuses this year on the design and implementation of hypermedia
presentation systems. "Hypermedia" refer to the non-linear organization of digital
information, in which items (such as a word in a text field or a region of an image) are
actively linked to other items. Users interactively select and traverse links in a

64

hypermedia presentation system in order to locate specific information or
entertainment, or to browse in large archives of text, sound, images, and video. Well-
structured hypermedia give users a way of coping with the "navigation" problem
created by availability of low-cost, fast access, high-density storage media.

We will explore the following topics.

• The historical roots of hypermedia: Bush, Engelbart, and Nelson;
• The digital representation of media: rich text, sound, speech, images, animation,

and video;
• Enabling technologies for creating hypermedia;
• The role of scripting and markup languages;
• Networked hypermedia (e. g. HTTP browsers); performance and compression

issues;
• Development Tool Kits;
• Distribution and Intellectual Property Issues.

Students will be expected to familiarize themselves quickly with the Macintosh
interface and basic features of the operating system. Students will be asked to
schedule themselves for at least six hours/week lab time in the Department's
Multimedia Lab (161 CCB), as the course work will involve a significant amount of
exploration and development of multimedia/hypermedia materials. Students will be
divided into small teams with specific responsibilities for individual exploration and
programming tasks assigned in connection with the course topics. Tasks may take the
form of constructing presentations, prototype applications, or the programming of
useful scripts. The teams will be asked to write short reports on their work which will be
presented in class.

Prerequisites: general prerequisites.

COSC 4401 3.0 (x-listed COSC 5326 3.0)
Artificial Intelligence
This course will be an in-depth treatment of one or more specific topics within the field
of Artificial Intelligence. Possible topics include the following:

• Machine learning: deduction, induction, abduction, explanation-based learning,
learning k-DNF.

65

• Statistical learning: reinforcement learning, genetic learning algorithms,
connectionist learning systems, supervised and unsupervised.

• Statistical and structural pattern recognition.
• Speech recognition.
• Artificial intelligence programming paradigms: search, pattern-directed inference,

logic- and object-oriented programming, symbolic mathematics, constraint
satisfaction and symbolic relaxation, building problem solvers, efficiency issues.

• Sensor-based robotics: path planning, position estimation, map-building, object
recognition, robotic sensor and actuator hardware, software, and interfacing.

Contact the course director for information regarding the focus of the course this year.

Prerequisites: general prerequisites, including COSC 3402 3.0

COSC 4402 3.0 (x-listed COSC 5311 3.0)
Logic Programming
Logic programming has its roots in mathematical logic and it provides a view of
computation which contrasts in interesting ways with conventional programming
languages. Logic programming approach is rather to describe known facts and
relationships about a problem, than to prescribe the sequence of steps taken by a
computer to solve the problem.

One of the most important problems in logic programming is the challenge of
designing languages suitable for describing the computations which these systems
are designed to achieve. The most commonly recognized language is PROLOG.

When a computer is programmed in PROLOG, the actual way the computer carries
out the computation is specified partly by the logical declarative semantics of
PROLOG, partly by what new facts PROLOG can "infer" from the given ones, and only
partly by explicit control information supplied by the programmer. Computer Science
concepts in areas such as artificial intelligence, database theory, software
engineering knowledge representation, etc., can all be described in logic programs.

Topics covered may include the following:

• Logical preliminaries: syntax and semantics of first order predicate logic and its
Horn logic fragment;

66

• Logical foundations of logic programming: unification, the resolution rule, SLD-
resolution and search trees;

• PROLOG as a logic programming system;
• Programming techniques and applications of PROLOG;
• Constrained logic programming systems.

At the end of this course a student will be familiar with fundamental logic programming
concepts and will have some programming expertise in PROLOG.

Prerequisites: general prerequisites,

 including COSC 3401 3.0, and COSC3101 3.0 or COSC3111 3.0.

COSC 4411 3.0 (x-listed COSC5411 3.0)
Database Management Systems
This course is the second course in database management. It introduces concepts,
approaches, and techniques required for the design and implementation of database
management systems.

Topics may include the following:

• Query Processing
• Transactions
• Concurrency Control
• Recovery
• Database System Architectures
• Distributed Databases
• Object-Oriented Databases

Suggested Readings: R. Elmasri and S.B. Navathe, Fundamentals of Database
Systems, 2nd Ed., Benjamin Cummings, 1994.

Prerequisites: general prerequisites, including COSC3412 3.0 or SC/AS/COSC3421
3.0

COSC 4421 3.0 (x-listed COSC 5324 3.0)
Introduction to Robotics
The course introduces the basic concepts of robotic manipulators and autonomous
systems. After a review of some fundamental mathematics the course examines the

67

mechanics and dynamics of robot arms, mobile robots, their sensors and algorithms
for controlling them. A Robotics Laboratory is available equipped with a manipulator
and a moving platform with sonars, several workstations and an extensive collection
of software.

Prerequisites: general prerequisites; MATH2221 3.0

COSC 4422 3.0 (x-listed COSC 5323 3.0)
Computer Vision
Computer Vision is a very challenging problem with wide applications. It spans
several disciplines within science and engineering: computer science, computer
engineering, photogrammetry, telecommunications, robotics, medicine and the list
goes on. This course introduces the fundamental concepts of vision with emphasis on
computer science.

In particular the course covers the image formation process, color analysis, image
processing, enhancement and restoration, feature extraction and matching, 3-D
parameter estimation and applications. A Vision Laboratory is available where
students can gain practical experience. The Lab includes several workstations
equipped with video cameras, digitizers and image processing software.

Prerequisites: general prerequisites, including COSC3121 3.0

68

Required Mathematics Courses

The introductory courses MATH1090 3.0, MATH1300 3.0, and MATH1310 3.0 are
required of all Computer Science majors. Students who have not taken OAC calculus
should consult advisors in the Mathematics Department to determine which courses
they should take before attempting MATH1300 3.0. In addition some combination, or
all of, the following courses are also required, depending on the degree programme -
MATH2090 3.0, MATH2221 3.0, and MATH2320 3.0.

Mathematics Substitute Course List

Course Acceptable Substitutions
for COSC degree requirements

MATH1025 3.0 MATH2021 3.0, MATH2221 3.0
MATH1090 3.0 MATH1120 3.0
MATH1300 3.0 MATH1000 3.0, MATH1013 3.0
MATH1310 3.0 MATH1010 3.0, MATH1014 3.0
MATH2221 3.0 MATH1025 3.0, MATH2021 3.0

MATH 1090 3.0
Introduction to Sets and Logic (formerly MATH1120 3.0)
The syntax and semantics of propositional and predicate logic. Applications to
program specification and verification. Optional topics include set theory and
induction using the formal logical language of the first part of the course.

By taking this course, students will master the syntax and manipulations of
propositional and predicate logic, as well their informal semantics. The proper
understanding of propositional logic is fundamental to the most basic levels of
computer programming, while the ability to correctly use variables, scope and
quantifiers is crucial in the use of loops, subroutines, and modules, and in software
design. Logic is used in many diverse areas of computer science including digital
design, program verification, databases, artificial intelligence, algorithm analysis, and
software specification. We will not follow a classical treatment of logic. Instead we will
use an “equational” treatment. This equational approach will also be the basis for the
topics in discrete mathematics treated in MATH2090.

69

Prerequisite: One OAC in mathematics or equivalent or AK/MATH1710 6.0.

Degree Credit Exclusions : AS/SC/MATH1120 3.0, AS/SC/AK/MATH1190 3.0.
This course is not open to any student who has taken or is taking any 3000-level or
higher-level Math course.

MATH 1300 3.0
Differential Calculus With Applications
Limits, derivatives with applications, antiderivatives, fundamental theorem of calculus,
beginnings of integral calculus.

Other topics include continuity, the Mean Value Theorem, curve sketching,
L'Hospital's rule, maxima and minima, and (time permitting) applications of
integration theory.

The final grade may be based on assignments, quizzes, class tests and a final
examination worth at least 30%.

Prerequisites: OAC Calculus or AS/SC/MATH1500 3.0 or

AS/SC/MATH1515 3.0 or
AK/MATH1710 6.0 or equivalent.

Degree Credit Exclusions: AS/SC/MATH1000 3.0, AS/SC/MATH1013 3.0,
AS/SC/MATH1505 6.0, AS/MATH1530 3.0, AS/AK/MATH1550 6.0,
AS/ECON1530 3.0, AK/MATH1410 6.0,

MATH 1310 3.0
Integral Calculus with Applications
Transcendental functions, differential equations, techniques of integration, improper
integrals, infinite series. Offered in both terms.

This is the second in a series of introductory calculus courses. It is designed to follow
MATH 1300 3.0.

70

Other topics include infinite sequences. Differential equations and their applications
will only be discussed to the extent that time allows.

The final grade may be based on assignments, quizzes, class tests, and a final
examination worth at least 30%.

Prerequisites: One of AS/SC/MATH 1000 3.0, AS/SC/MATH 1013 3.0, AS/SC/AK/MATH
1300 3.0, or, for non-Science students only, six credits: AS/MATH 1530 3.0 and

AS/MATH 1540 3.0, or AS/AK/MATH 1550 6.0; or AS/ECON 1530 3.0 and
AS/ECON 1540 3.0.

Degree Credit Exclusions: AS/SC/MATH 1010 3.0, AS/SC/MATH 1014 3.0,
AS/SC/MATH 1505 6.0, AK/MATH1410 6.0.

MATH 2090 3.0
Introduction to Mathematical Logic
(1) The title of this course no longer fits its content, and is likely to be changed after we
go to press.
(2) The official York Calendar description, and list of prerequisites, are also
superannuated, and fail to appear here because they are being updated.
(3) This course has Introduction to Logic for Computer Science (MATH1090, first
offered in Fall of 1998) as a strict prerequisite. Currently this strictness is unofficial, but
it is expected to receive faculty approval in the near future. Students who lack this
prerequisite must check with the department before enrolling.

A partial indication of the relevance of formal logic to programming is given in the
course entry for COSC 3111 in this year's supplemental calendar issued by the
Department of Computer Science.
“Every program implicitly asserts a theorem to the effect that the program will do what
its documentation says it will”. Proving that theorem “is not merely a matter of luck or
patient debugging making a correct program can be greatly aided by a logical
analysis of what it is supposed to do, and for small pieces of code a proof that the
code works can be produced hand-in-hand with the construction of the code itself”.

71

MATH 2090 is a continuation of MATH 1090 (Introduction to Logic for Computer
Science), and will use the mathematical logic learned in that course to study selected
topics in discrete mathematics. Students wanting further exposure to discrete math
may consider MATH 2320 3.0.

Topics will include sets, relations and functions, induction, and a study of the integers.

MATH 2221 3.0
Linear Algebra with Applications I
Systems of linear equations, linear and affine subspaces of Euclidean, the Gauss--
Jordan algorithm, matrices and matrix algebra, determinants, vector space concepts
for Euclidean n-space (linear dependence and independence, basis, dimension,
etc.), various applications.

Linear algebra is a branch of mathematics which is particularly useful in other fields
and in other branches of mathematics. Its frequent application in the engineering and
physical sciences rivals that of calculus. Computer scientists and economists have
long recognized its relevance to their discipline. Moreover, linear algebra is
fundamental in the rapidly increasing quantification that is taking place in the
management and social sciences.

Finally, ideas of linear algebra are essential to the development of algebra, analysis,
probability and statistics, and geometry.

This course and MATH 2222 3.0 together provide a standard full-year introduction to
linear algebra. While our focus will not be excessively theoretical, students will be
introduced to proofs and expected to develop skills in understanding and applying
concepts as well as results. Applications will be left mainly for MATH 2222 3.0.

Note that MATH 1540 3.0 may not be taken for credit by anyone who is taking, or
anyone who has taken, MATH 2221.

Prerequisite: OAC algebra or any university mathematics course.

Degree Credit Exclusions: AS/SC/MATH 1025 3.0, AS/SC/MATH 2021 3.0, AK/MATH
2220 6.0

72

MATH 2320 3.0
Discrete Mathematical Structures
This course covers the algebraic and combinatorial structures that are needed in
computer science. Topics include set theory, functions, relations, combinatorics,
elements of graph theory, posets, lattices, Boolean algebras, monoids, groups,
morphisms, congruence relations. Intended primarily, but not exclusively, for students
in Computer Science.

Consultation with the Department of Computer Science has led to the following list of
topics for emphasis: “Big oh” notation, complexity of formulae and algorithms, modular
arithmetic, recursive definitions, general inductions, counting principles, recurrence
relations and methods for solving them, trees and simple graph theory. The
emphasis will include examples arising from algorithms and the ability to carry out
analysis, problem solving, proofs and calculations which will be required in upper
level courses.

The course does not require previous knowledge of computer science. A student of
mathematics should enjoy this introduction to a variety of mathematical topics, many of
which are not covered elsewhere.

This course is a prerequisite for COSC 3101 3.0, COSC 3402 3.0, COSC 4101 3.0,
COSC 4111 3.0.

Prerequisite: AS/SC/AK/MATH 1090 3.0 or any 2000-level MATH course (without
second digit 5) or permission of the course director.

Degree Credit Exclusions: AK/MATH 2440 6.0, AK/MATH2442 3.0.

MATH 2560 3.0
Elementary Statistics I
Displaying and describing distributions, normal distribution. Relationships between
variables, regression and correlation. The need for design, experimental design and
sampling design. Sampling distributions, bias, variability. Probability models, random
variables, probability laws.

73

Statistics is a collection of methods for observing and analyzing numerical data in
order to make sensible decisions about them. In these courses the basic ideas of the
analysis of data and of statistical inference will be introduced.

Little mathematical background is required; high school algebra is sufficient.
Mathematical proofs will be minimal; reasoning and explanations will be based mostly
on intuition, verbal arguments, figures, or numerical examples. Most of the examples
will be taken from our daily life; many deal with the behavioural sciences, while others
come from business, the life sciences, the physical sciences, and engineering.

Although students will be making some use of the computer to calculate statistics, to
create statistical plots, and to obtain a better appreciation of statistical concepts, (no
previous experience in computing is required). Students will receive in class all the
necessary instruction about how to use the statistical computer package Minitab.

Students who have taken MATH 2560 3.0 will normally take MATH 2570 3.0 in the
second semester, where they will continue to investigate many basic statistical
methods.

Prerequisite: Ontario Grade 12 Advanced Mathematics.

Degree Credit Exclusions: AS/SC/MATH 1131 3.0, SC/BIOL 3080 3.0,
SC/BIOL 3090 3.0, AS/ECON 2500 3.0,
AS/SC/GEOG 2420 3.0, AS/SC/KINE2050 3.0,

AS/SC/PHED 2050 3.0, AS/SC/PSYC 2020 6.0,
AS/SC/PSYC 2021 3.0AS/SOCI 3030 6.0,

AK/MATH 1720 6.0, AK/MATH 2430 6.0,
AK/BIOL3080 6.0, AK/BIOL3080 3.0,
AK/PSYC2510 3.0.

Not open to any student who has successfully completed AS/SC/MATH 2030 6.0.

74

Degree Requirements - Faculty of Arts

Students should consult the York University Undergraduate Calendar for full details of
the degree requirements and relevant regulations (check the Calendars link at
www.yorku.ca).

Course Types

Degree requirements in the Faculty of Arts refer to the following categories of courses:

I. General Education Courses - Intended to provide a broad interdisciplinary
perspective, "General Education" courses, are offered by three academic units,
the Divisions of Humanities, Natural Science, and Social Science. The Faculty of
Arts Foundations courses are part of the General Education requirement and are
affiliated with the appropriate Faculty of Arts Colleges. These courses emphasize
critical skills, especially writing, and provide a supportive learning environment.
The connection to one of the Faculty of Arts Colleges - Calumet, Founders,
McLaughlin, Stong, or Vanier - enables students to participate more fully in
college life and co-curricular events.

II. Major (and Minor) Courses - In addition to taking courses which contribute
to their broad knowledge, students are required to specialize in a specific subject
or combination of subjects. The area of primary concentration is known as the
"Major"; an area of secondary concentration (if any) is known as the "Minor". It is
possible to have two "Majors".

III. Elective Courses - intended to broaden the educational experience of
students beyond their area of specialization, electives include most courses which
a student does not use to fulfil either General Education requirements or
Major/Minor requirements. Courses not considered to be electives are:
a) Major courses taken above the required number;
b) non-Major courses taken within the Major subject (e.g. most Atkinson COSC

courses);
c) courses outside the Major taken to fulfil major requirements (e.g.,

AS/MATH1090 3.0 and other MATH courses required for Computer Science);

75

d) courses which are cross-listed or designated as equivalents or exclusions for
courses offered by the Major Programme.

IV. Upper-Level Courses - courses at the 3000-level and/or 4000-level.
Honours degrees require at least 18 credits at the 4000-level and at least 36
credits at the 3000- and 4000-level.

Programme Types

The Faculty provides for the following types of programmes in Computer Science:

Honours Programmes - are 120 credit programmes, which require more
specialization, a higher minimum performance, and in some cases, different courses
than does an Ordinary programme.

In order to graduate with an Honours Degree, students must successfully complete a
minimum of 120 credits which fulfil one of the following requirements [a), b), c), or d)]:

a) Specialized Honours:

I. General Education: See General Education Requirements below;

II. Major Requirements:
• COSC1020 3.0, COSC1030 3.0, COSC2001 3.0, COSC2011 3.0, COSC2021

3.0,
• COSC3101 3.0 and 18 more credits at the 3000-level satisfying breadth in

COSC (see below),
• COSC4101 3.0 or COSC4111 3.0, and 9 more credits at the 4000-level in

COSC,
• 6 more credits at the upper level (3000- or 4000-) in COSC,
• MATH1090 3.0, MATH1300 3.0, MATH1310 3.0, MATH2090 3.0, MATH2221

3.0 and MATH2320 3.0,
• and at least 30 credits that are neither COSC or MATH;

III. Elective Courses: at least 18 credits;

IV. Upper-Level Courses:

76

a) 3000-level and 4000-level courses: at least 36 credits at the 3000-level or
4000-level;

b) 4000-level courses: at least 18 credits of these upper-level courses [including
at least 12 credits in the Major] must be at the 4000-level;

V. In-Faculty Courses: See In-Faculty Courses in the York University
Undergraduate Calendar;

VI. Standing Requirements: In addition to fulfilling the requirements described
above, students in this programme must achieve satisfactory academic standing
to enter, proceed, and graduate.

b) Honours (Major):

I. General Education: See General Education Requirements below;

II. Major Courses:
• COSC1020 3.0, COSC1030 3.0, COSC2001 3.0, COSC2011 3.0, COSC2021

3.0,
• 15 credits at the 3000-level satisfying breadth in COSC and 12 credits at the

4000 level,
• MATH1090 3.0, MATH1300 3.0, MATH1310 3.0, MATH2090 3.0, and one of

MATH2221 3.0 or MATH2320 3.0,
• and at least 30 credits that are neither COSC or MATH;

III. Elective Courses: at least 18 credits;

IV. Upper-Level Courses:
a) 3000-level and 4000-level courses: at least 36 credits at the 3000-level or

4000-level
b) 4000-level courses: at least 18 credits of these upper-level courses [including

at least 12 credits in the Major] must be at the 4000-level;

V. In-Faculty Courses: See In-Faculty Courses in the York University
Undergraduate Calendar;

VI. Standing Requirements: In addition to fulfilling the requirements described
above, students in this programme must achieve satisfactory academic standing
to enter, proceed, and graduate.

77

c) Honours (Minor):

A Minor in Computer Science must be combined with a Major in a different subject.
The Minor in Computer Science has the requirements listed under (2)(b).

I. General Education: See General Education Requirements below;

II. Major/Minor Courses: as defined by the specific programmes;
a) Major: usually at least 42 credits in the Major, at least 12 credits of which must

be at the 4000-level; and
b) Minor (in COSC):

• COSC1020 3.0, COSC1030 3.0, COSC2001 3.0, COSC2011 3.0,
COSC2021 3.0,

• 15 credits at the 3000-level satisfying breadth in COSC and 6 credits at the
4000 level,

• MATH1090 3.0, MATH1300 3.0, MATH1310 3.0, MATH2090 3.0, and one
of MATH2221 3.0 or MATH2320 3.0;

III. Elective Courses: Students who graduate in an Honours (Major/Minor)
programme are deemed to fulfil the Elective Course requirement;

IV. Upper-Level Courses:
a) 3000-level and 4000-level courses: at least 36 credits at the 3000-level or

4000-level
b) 4000-level courses: at least 18 credits of these upper-level courses [usually

including 12 credits - in the Major and 6 credits - in the Minor] must be at the
4000-level;

V. In-Faculty Courses: See In-Faculty Courses in the York University
Undergraduate Calendar;

VI. Standing Requirements: In addition to fulfilling the requirements described
above, students in this programme must achieve satisfactory academic standing
to enter, proceed, and graduate.

d) Honours (Double Major):

Students may combine a Major in COSC (as defined above) with a Major in a different
subject in the Faculty of Arts (either linked or unlinked), with an Honours Major in

78

some Fine Arts subjects or in Environmental Studies. Elective courses are deemed
fulfilled in these programmes; there must be at least 30 credits that are not COSC and
not MATH.

Ordinary Programme - in order to graduate with an Ordinary Degree a student must
successfully complete a 90 credit programme as follows:

1. General Education: see General Education Requirements below;

2. Major courses: students must complete at least 33 credits in Computer Science,
including:

• AS/COSC 1020 3.0, AS/COSC 1030 3.0, AS/COSC 2001 3.0, AS/COSC
2011 3.0 and AS/COSC 2021 3.0,

• 18 credits at the 3000-level satisfying the departmental breadth
requirement (see note below),

• In addition, students must complete AS/MATH 1090 3.0 and AS/MATH
1300 3.0 and AS/MATH 1310 3.0 and AS/MATH 2320 3.0;

3. Elective courses: at least 18 credits;

4. Upper-Level courses: at least 18 credits at the 3000-level or 4000-level and at
least 12 credits of which must be in the major subject;

5. Standing Requirements: in addition to fulfilling the requirements described
above, students in this programme must achieve satisfactory academic standing
to enter, proceed, and graduate.

General Education Requirements

Students will select their General Education requirements in accordance with the
following:

1. One 1000-level 9 credit Foundations course, in either the Division of Humanities
or the Division of Social Science - to be taken within the first 24 credits;

79

2. One 1000-level 6 credit course in the Division of Natural Science - to be taken
prior to graduation, and preferably within the first 42 credits;

3. One 2000-level 9 credit Foundations course, in either the Division of Humanities
or the Division of Social Science. If the 1000-level 9 credit Foundations course is
taken in the Division of Humanities, then the 2000-level 9 credit Foundations
course must be taken in the Division of Social Science (and vice versa) - to be
taken within the first 48 credits;

4. Breadth requirement - will be satisfied by successfully completing the General
Education/Foundations courses described above. (Breadth requirement is
described below.)

The Breadth requirement must be successfully completed before graduation and
requires at least 6 credits from each of the following areas:

Area I Area II
 Classical Studies Anthropology
 (Greek or Latin) Economics

English Geography
 French Studies Political Science

History Psychology
 Humanities Social Science
 Languages, Literatures, Sociology

& Linguistics
 Philosophy

Note: Mathematics, Computer Science, and Kinesiology and Health Science courses,
will satisfy neither requirement, unless they are cross-listed with a unit listed above.

Passed Courses:

A student who has received a passing grade for a course may not repeat that course
or take an equivalent or excluded course for degree credit.

80

Failing Grades:

Where a student retakes a course in which he/she has previously received a grade of
E or F and passes it, the passing grade is also calculated into the Grade Point
Average.

Honours Standing In Degree Programmes

Qualifying for Honours -

a) Students With No Previous Post-Secondary Education: Students who enter the
Faculty of Arts with no prior experience at a post-secondary educational
institution (such as a university or college) are automatically enrolled in an
Honours programme.

b) Transfer Students: Students who enter with prior experience at a post-
secondary educational institution are enrolled in an Honours programme if their
prior Cumulative Grade Point Average (including failed courses) is at least the
equivalent of 5.0 on the York scale. (Note: Courses taken at other post-secondary
institutions are not calculated as part of the student's grade point average at
York, nor do they appear on the York transcript.)

Continuing in Honours - To continue in an Honours programme, students must
maintain a Cumulative Grade Point Average of at least 5.0.

Graduating in Honours - To graduate in an Honours programme, students must pass
at least 120 credits which meet Faculty of Arts and programme requirements. The
Cumulative Grade Point Average for all courses taken must be at least 5.0.

Degree Requirements - Faculty of Pure and Applied Science

General Education Requirements

General education courses are required within all BSc programmes. These non-
science courses provide a broad perspective on current scholarship and the diversity
of human experience. The courses are also expected to enhance students' critical
skills in reading, writing, and thinking and contribute to their preparation for post-
university life.

81

All BSc candidates must complete a minimum of 12 credits from two different areas of
study, including at least 3 credits from each area, subject to the restrictions noted
below. For the purposes of this regulation, "different area" means offered by different
academic units such as divisions, departments or Faculties and excluding courses
offered by similar departments in different Faculties (such as English in the Faculty of
Arts and Atkinson College). Subject to the restrictions listed below, courses in the
following areas may be taken in the Faculty of Arts, Atkinson College or Glendon
College.

Anthropology Classical Studies *
Economics English
History French Studies *
Humanities Geography **
Philosophy Languages, Literature & Linguistics *
Political Science Social Science
Sociology

The following courses offered by the Faculty of Environmental Studies and the Faculty
of Fine Arts may also be taken to satisfy Faculty of Pure and Applied Science general
education requirements: ES/ENVS1000 6.0, FA/INFA1900 6.0, FA/INFA2900 6.0 and
FA/VISA2550 6.0.

General education courses are normally taken at the 1000 or 2000 level, but higher-
level courses are acceptable, subject only to prerequisites and course access
specifications for enrolment.

Permission may be granted by the Office of Science Academic Services, on an
individual basis, for a student to take a course outside the areas and Faculties listed
above for general education credit, subject to the course fulfilling the Faculty of Pure
and Applied Science breadth and critical skills requirements for general education
courses, the student having the appropriate prerequisites and the course access
specifications permitting enrolment. A student who is in doubt regarding whether or
not any specific course will fulfill the Faculty of Pure and Applied Science general
education requirements should consult the Office of Science Academic Services.

82

Restrictions

1. Courses whose major focus is increased facility in the use of a language cannot
count as general education courses. Such courses are offered in the
departments marked with an * above.

2. Quantitative courses focusing on techniques of mathematics or statistics cannot
count as general education courses. For example, this applies to some
Economics courses.

3. Certain other types of courses cannot be used to satisfy general education
requirements. In particular,

(i) courses which are cross-listed as SC courses or which are eligible for SC
credit cannot count as general education courses; and

(ii) Geography courses (**) cannot be used to satisfy general education
requirements for BSc candidates majoring in Geography.

Note: General education courses may not be taken on a pass/fail basis (see “Pass/Fail
Grading Option" in Science section III of the University Undergraduate Calendar).

General Regulations

1. All students are required to observe the regulations of the University. Unless
otherwise stated, any changes in regulations become effective as announced.
This policy is not meant to disadvantage students as they proceed through their
studies, including those who have completed a number of courses. It is intended
to ensure that their preparation for courses is appropriate and current. Students
should consult closely with departments and the Faculty through the advising
process. (Students admitted to the Faculty prior to September 1995 are strongly
advised to follow current regulations, but may elect to graduate under the
regulations of the year in which they were admitted to the Faculty.)

2. It is the student's responsibility to enrol in only those courses for which the
student has successfully completed all designated prerequisites and to take
concurrently all specified corequisites not already completed successfully.

3. All degree candidates are required to indicate a choice of degree programme
(Ordinary, Specialized Honours, or Combined Honours) upon successful
completion of 24 credits. A minimum cumulative credit-weighted grade-point

83

average of 5.0 over all Science courses completed is required for Honours
programmes. For information about changing degree programmes see the
University Undergraduate Calendar.

4. Students admitted to York University for 1999/2000 and subsequent years, the
Senate of York University will require a minimum overall grade-point average of
4.0 in order to be eligible to graduate in an undergraduate Ordinary degree
programme.

5. Students admitted to York University for 1999/2000 and subsequent years, the
Senate of York University will require a minimum overall grade-point average of
5.0 in order to be eligible to graduate in an undergraduate Honours degree
programme.

6. All BSc degree candidates in Honours and Ordinary programmes must
successfully complete the following minimum requirements, normally at the 1000
level:

at least 24 Science credits, excluding SC/CHEM1500 4.0, SC/CHEM1520
4.0, SC/MATH1500 3.0, SC/MATH1510 6.0, SC/MATH1515 3.0,
SC/MATH1525 3.0, SC/PHYS1510 4.0, and all Natural Science courses, and
including at least 2 credits in introductory computer science, 6 credits in
approved mathematics courses, and 12 credits in courses with laboratories;

12 general education credits (see "General Education Requirements" in this
section of the Calendar).

7. Ordinary Programme - all B.Sc. degree candidates in all Ordinary programmes
must, through registration in courses at York University or elsewhere deemed
creditable towards the B.Sc. degree,

a) satisfy regulations 2, 3, 4 and 6;

b) present a total of at least 90 passed credits of which

• a minimum of 66 must be earned in Science courses,

• a minimum of 24 must be earned in one major Science subject area
(except in the case of General Science),

84

• a minimum of 18 must be earned in courses at the 3000-level or
higher;

c) satisfy the programme of study requirements specified below for the
Ordinary Programme.

8. To declare Honours requires successful completion of at least 24 credits and a
minimum cumulative credit-weighted grade-point-average of 5.0* over all
Science (SC) courses completed.

To proceed in each year of an Honours BSc programme requires a minimum
cumulative credit-weighted grade-point average of 5.0* over all Science (SC)
courses completed.

To graduate in an Honours BSc programme requires successful completion of all
Faculty requirements and departmental required courses and a minimum overall
grade-point-average of 5.0* (for students admitted prior to FW99/00 a minimum
grade-point-average of 5.0 over all Science (SC) courses is required).

* 6.0 for the Space and Communication Sciences Stream of Specialized Honours
and for Combined Honours with Biology

All candidates for the BSc degree in all Honours programmes must, through
registration in courses at York University or elsewhere deemed creditable
towards the BSc degree,

a) satisfy regulations 2, 3, 5 and 6;

b) present a total of at least 120 passed credits of which a minimum of 90 must
be earned in Science courses, a minimum of 30 must be earned in one
major Science subject area (Specialized Honours programmes only), or a
minimum of 18 in each of two major Science subject areas (Combined
Honours programmes only), a minimum of 42 must be earned in courses at
the 3000 or higher level;

c) satisfy the Faculty academic standards for Honours BSc programmes - see
"Academic Standards for Honours BSc Programmes" in section III of the
University Undergraduate Calendar;

85

d) satisfy the programme of study requirements specified below for the
declared Honours programme:

Computer Science B.Sc. Requirements

Note: The following degree requirements do not apply to students in the Space and
Communication Sciences Stream of Specialized Honours Computer Science; for
requirements of that stream, see the "Space and Communication Sciences"
Supplemental Calendar and section V of the York University Undergraduate
Calendar.

i) All degree candidates must complete the programme core:

• SC/COSC1020 3.0; SC/COSC1030 3.0;

• SC/COSC2001 3.0; SC/COSC2011 3.0; SC/COSC2021 3.0.

ii) All degree candidates must comply with general regulation 6 (see above) by
completing the following (in addition to SC/COSC1020 3.0 and SC/COSC1030
3.0 from the programme core):

• SC/MATH1090 3.0; SC/MATH1300 3.0; SC/MATH1310 3.0;

• 6 credits from SC/BIOL1010 6.0, SC/CHEM1000 6.0, SC/EATS1010 6.0,
SC/PHYS1410 6.0 or SC/PHYS1010 6.0; (Note: In this context,
SC/COSC1020 3.0 and SC/COSC1030 3.0 satisfy the other half of the
1000-level Science requirement for courses with laboratories.)

• at least 3 additional credits from SC/BIOL1010 6.0, SC/CHEM1000 6.0,
SC/EATS1010 6.0, SC/EATS1010 3.0, SC/EATS1011 3.0, SC/MATH1025
3.0, SC/PHYS1070 3.0, SC/PHYS1410 6.0 or SC/PHYS1010 6.0,
SC/BC1800 3.0;

• 12 general education credits (see "General Education Requirements" in
Science section IV).

iii) All degree candidates, in accordance with their declared programmes, must
comply with General Regulation 7 or 8 (above) and, in so doing, must also satisfy
the course, credit and standing requirements specified below.

86

iv) All degree candidates must satisfy a breadth requirement in Computer Science
by completing 3 credits at the 3000 level from Group A courses in each of four
areas:

• theory (second digit of course number is 1),

• hardware (second digit is 2),

• software (second digit is 3) and

• knowledge based (second digit is 4).

 Group A courses have odd course numbers; Group B courses have even course
numbers.

v) All Honours degree candidates must complete at least 30 credits which are
neither computer science nor mathematics.

Note: See the general prerequisites for 2000-, 3000- and 4000-level Computer
Science courses (under "Courses of Instruction") for information about cumulative
grade-point-average requirements in completed Computer Science courses.

Ordinary Programme

• SC/MATH 2320 3.0

• at least 18 credits from Computer Science courses at the 3000-level satisfying the
departmental breadth requirement, for an overall total of at least 33 credits from
Computer Science courses (including those within the programme core);

• additional elective credits as required for an overall total of at least 90 credits,
including at least 66 credits from Science courses.

Specialized Honours

• SC/MATH2090 3.0; SC/MATH2221 3.0; SC/MATH2320 3.0;

• SC/COSC3101 3.0; SC/COSC4101 3.0 or SC/COSC4111 3.0;

• at least 18 additional credits in Computer Science courses at the 3000 level
satisfying the departmental breadth requirement;

• at least 9 additional credits in Computer Science courses at the 4000 level;

87

• at least 6 additional credits in Computer Science courses at the 3000 or 4000
level, for an overall total of at least 54 credits in Computer Science courses
(including those within the programme core);

• additional elective credits as required from an overall total of at least 120
credits, including at least 90 credits from Science courses, at least 42 credits at
the 3000 or higher level, and at least 30 credits which are neither computer
science nor mathematics.

The Department of Computer Science also offers a Specialized Honours degree
stream in Space and Communication Sciences whose degree requirements are
specified in a separate entry in section V.

Honours Double Major

• SC/MATH2090 3.0; SC/MATH1025 3.0 or SC/MATH2221 3.0 or SC/MATH2320
3.0;

• at least 15 credits in Computer Science courses at the 3000 level satisfying the
departmental breadth requirement;

• at least 12 credits in Computer Science courses at the 4000 level, for an overall
total of at least 42 credits in Computer Science courses (including those within
the programme core);

• additional credits (including those required for the second major) as required
for an overall total of at least 120 credits, including at least 90 credits from
Science courses, at least 42 credits at the 3000 or higher level, and at least 30
credits which are neither computer science nor mathematics.

Residence Requirement

In order to qualify for a York University BSc. degree in any Ordinary or Honours
programme, a student must have successfully completed a minimum of 30 credits,
approved by the major department(s) at York University.

88

Computer Science Requirements

Breadth requirement
We have partitioned our courses into four areas. Students must take at least one
3000-level course identified as a Group A course from each area. Group A courses
have odd course numbers.

4000-level courses are also partitioned into the same four areas but they are not
further partitioned into groups A and B. Thus, whether the course number is even or
odd has no significance for 4000-level courses.

The four areas are as follows:

Theory – Course numbers COSC31xx 3.0, COSC41xx 3.0; topics: algorithms, data
structures and complexity, automata and computability, program verification,
scientific and numerical computing.

Hardware – Course numbers COSC32xx 3.0, COSC42xx 3.0; topics: digital logic,
architecture and data communication networks.

Software – Course numbers COSC33xx 3.0, COSC43xx 3.0; topics: programming
languages, software systems and operating systems.

Knowledge-Based Computing – Course numbers COSC34xx 3.0, COSC44xx 3.0;
topics: artificial intelligence, expert systems, logic programming, databases,
simulation, machine learning, robotics and computer vision.

Exceptions to Course Numbering
Service courses at all levels have the second digit 5. These courses do not satisfy
requirements in Computer Science and grades will not be included in the Computer
Science prerequisite grade-point-average calculation.

Other courses falling outside the course numbering conventions are the following.

• COSC3001 1.0 -- restricted to SCS stream students
• COSC3010 3.0 -- Special Topics course
• COSC4001 6.0 -- restricted to SCS stream students
• COSC4010 3.0 -- Special Topics course
• COSC4080 3.0 -- Computer Science Project

89

Normal Order of Study
This section presents a summary of the Department's course requirements, by
suggesting the normal order in which courses should be taken. There are also
checklists for each programme type at the back of this calendar.

Note: the Specialized Honours Space and Communication Sciences Stream has
exceptions from the general requirements; the exceptions are noted. The course
requirements of the SCS stream are described in the section on Programme
Checklists.

The indication of first year, second year, etc., indicates the year of study for normal
progress.

1000-level – first year

• Fall – COSC1020 3.0, MATH1090 3.0, MATH1300 3.0

• Winter – COSC1030 3.0, MATH1310 3.0.

• 15 additional credits satisfying general education, faculty, second major
programme, or elective requirements

2000-level – second year

• COSC2001 3.0, COSC2011 3.0, COSC2021 3.0

• MATH2090 3.0

• MATH2221 3.0 and MATH2320 3.0 - Specialized Honours programme;
MATH2221 3.0 or MATH2320 3.0 all other programmes

• 12 to 15 additional credits satisfying general education, faculty, second major
programme, or elective requirements

3000-level – third year

• 12 COSC credits at the 3000-level satisfying the breadth requirement including
COSC3101 3.0 for the Specialized Honours programme (except SCS)

• 9 additional COSC credits for the Specialized Honours Programme; or 3
additional COSC credits at the 3000-level for Combined Honours, Honours
Major and Honours Minor programmes

90

• 9 to 15 credits additional credits satisfying general education, faculty, second
major programme, or elective requirements

4000-level – fourth year, honours programmes only

• 12 COSC credits at the 4000-level (except for the Honours Minor B.A. degree
which requires 6 credits at the 4000-level), including one of COSC4111 3.0 or
COSC4101 3.0 for the Specialized Honours programme (except SCS).

• 6 additional COSC credits at the 3000- or 4000-level – Specialized Honours
programme (except SCS)

• 12 to 18 additional credits satisfying general education, faculty, second major
programme, or elective requirements

91

Prerequisites for Computer Science Courses
1

It is absolutely essential that students fulfill the prerequisites for courses they wish to
take.

There are both general prerequisites which are required for all COSC courses at the
specified level and specific prerequisites for each course which are in addition to the
general prerequisites. Both types of prerequisites include computer science courses
and mathematics courses, and in all cases there are grade requirements in the
prerequisite courses. The prerequisites are listed after each course description and
summarized in the following table.

The prerequisites table is useful to determine what courses must be taken in order to
enrol in a particular course, or to determine if you are permitted to enrol in a course.

Course Title Prerequisite(s)

1000-Level

COSC1020 3.0 Intro. to Computer Science I Refer to course description
COSC1030 3.0 Intro. to Computer Science II COSC1020 3.0

2000-Level

General Prerequisites:
• completed COSC1030 3.0
• completed MATH1090 3.0
• have a cumulative GPA of 4.5 or better for completed Computer Science

courses.

1 In exceptional circumstances some prerequisites or corequisites may be waived at the discretion of
the undergraduate director in consultation with the course director. All petitions to have pre- and
corequisites waived must be submitted to the undergraduate office. Course directors may not waive
prerequisites.

92

COSC2001 3.0 Intro. to Theory of Computation General prerequisites
COSC2011 3.0 Fundamentals of Data Structures General prerequisites
COSC2021 3.0 Computer Organization General prerequisites
COSC2031 3.0 Fundamentals of Unix, C and C++ General prerequisites

3000-Level

General Prerequisites (except 35xx x.x courses)
• completed COSC2011 3.0, and one of COSC2001 3.0 or COSC2021 3.0
• completed MATH1300 3.0 and MATH1310 3.0
• completed one of MATH2090 3.0, MATH2221 3.0 or MATH2320 3.0
• have a cumulative GPA of 4.5 or better over all completed Computer Science

courses.
Prerequisites

Theory Courses - Group A
COSC3101 3.0 Design and Analysis of Algorithms General prerequisites

including
MATH2320 3.0 (SCS

students may enrol without MATH2320
3.0 or concurrently with

MATH2320 3.0)
COSC3111 3.0 Intro. to Program Verification General prerequisites

including
MATH2090 3.0

COSC3121 3.0 Intro. to Numerical Computations I General prerequisites
including
MATH2221 3.0

Theory Courses - Group B
COSC3122 3.0 Intro. to Numerical Computations II COSC3121 3.0;

MATH2270 3.0

Hardware Courses - Group A

93

COSC3201 3.0 Digital Logic Design General prerequisites
including
COSC2021 3.0

COSC3211 3.0 Data Communication General prerequisites
including
COSC2021 3.0;
MATH2090 3.0

Hardware Courses - Group B
COSC3212 3.0 Computer Networks COSC3211 3.0

Software Courses - Group A
COSC3301 3.0 Programming Language Fundamentals General prerequisites

including
COSC2001 3.0

COSC3311 3.0 Software Design General prerequisites
including

COSC2001 3.0;
COSC 2031 3.0,

MATH2090 3.0
COSC3321 3.0 Operating System Fundamentals General prerequisites

including
COSC2021 3.0;
COSC2031 3.0

COSC3331 3.0 Object-Oriented Programming and Design General prerequisites

Knowledge-Based Computing - Group A
COSC3401 3.0 Intro. to Symbolic Computation General prerequisites

including
MATH2090 3.0

Knowledge-Based Computing - Group B
COSC3402 3.0 Intro. to Concepts of Artificial Intell. COSC3401 3.0;

MATH2320 3.0
COSC3408 3.0 Simulation of Discrete Systems MATH2560 3.0

94

COSC3418 3.0 Simulation of Continuous Systems MATH2560 3.0
COSC3421 3.0 Introduction to Database Systems ITEC/COSC2011 3.0
COSC3461 3.0 Human-Computer Interaction ITEC/COSC2011 3.0

Other Courses:
COSC3001 1.0 Org. & Management Seminar in SCS In 3rd year of SCS

stream
COSC3010 3.0 Special Topics in Computer Science Varies depending on

the topic

4000-Level

General Prerequisites:
• completed COSC2001 3.0; COSC2011 3.0; COSC2021 3.0
• completed MATH2090 3.0
• completed at least 12 credits in computer science 3000-level courses.

• a cumulative GPA of 4.5 or better over all completed computer science courses
Specific Prerequisites

Theory Courses
COSC4101 3.0 Advanced Data Structures COSC3101 3.0;

MATH2320 3.0
COSC4111 3.0 Automata and Computability COSC3101 3.0;

MATH2320 3.0

Hardware Courses
COSC4201 3.0 Computer Architecture COSC3201 3.0;

COSC3321 3.0
COSC4211 3.0 Performance Eval. of Computer Systems COSC3211 3.0;

COSC3408 3.0
COSC4242 3.0 Signals and Systems COSC3121 3.0

(MATH3241 3.0)

Software Courses

95

COSC4301 3.0 Programming Language Design COSC3301 3.0
COSC4302 3.0 Language Processors COSC3301 3.0;

COSC2031 3.0
COSC4311 3.0 System Development COSC3311 3.0;

COSC3111 3.0 or COSC3321 3.0
COSC4321 3.0 Operating System Design COSC3321 3.0
COSC4331 3.0 Computer Graphics MATH2221 3.0
COSC4341 3.0 Interactive System Design COSC3461 3.0
COSC4351 3.0 Real-Time Systems Theory COSC3111 3.0 or

COSC3311 3.0 or
COSC3321 3.0

COSC4352 3.0 Real-Time Systems Practice COSC3301 3.0 or
COSC3311 3.0 or
COSC3321 3.0

COSC4361 3.0 Human-Computer Communication COSC3461 3.0

Knowledge-Based Computing
COSC4401 3.0 Artificial Intelligence COSC3402 3.0
COSC4402 3.0 Logic Programming COSC3401 3.0;

COSC3101 3.0 or COSC3111 3.0
COSC4411 3.0 Database Management Systems COSC3412 3.0
COSC4421 3.0 Introduction to Robotics MATH2221 3.0
COSC4422 3.0 Computer Vision COSC3121 3.0

(MATH3241 3.0)

Other Courses:
COSC4001 6.0 Space and Comm. Sciences Workshop 3000-level of SCS

core
COSC4080 3.0 Computer Science Project permission of course

director, 36 COSC credits
COSC4010 3.0 Special Topics in Computer Science Varies depending on

the topic

96

Degree Checklists BSc Ordinary Degree

Checklist
1

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2320 3.0 3

3000-level One Group A course (odd numbered) from each area

Theory COSC31_____ 3 0 Software COSC33____ 3.0 6

Hardware COSC32_____ 3.0 Knowledge COSC34____ 3.0 6

Two more courses COSC3______ 3.0 COSC3______ 3.0 6

Faculty Requirements

General Education Courses 12

One of BIOL1010 6.0 CHEM100 6.0 EATS1010 6.0
PHYS1010 6.0 PHYS1410 6.0 6

At least 3 additional credits from the following:

BIOL1010 6.0 CHEM1000 6.0 EATS1010 6.0
EATS1010 3.0 EATS1011 3.0 BC1800 3.0
MATH1025 3.0 PHYS1010 6.0 PHYS1070 3.0
PHYS1410 6.0 3

12 more SC credits 6

 6

1 A cumulative grade point average of 4.0 over all courses is required to proceed in each year of the
programme and to graduate. In addition, the Departmental general prerequisite cumulative grade
point average over all COSC courses must be met to proceed in the programme.

97

12 more credits 6

 6

Total credits 90

98

BSc Specialized Honours Degree

Checklist
1

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2090 3.0 MATH2221 3.0 MATH2320 3.0 9

3000-level One Group A course (odd numbered) from each area

Theory COSC3101 3.0 Software COSC33____ 3.0 6

Hardware COSC32_____ 3.0 KnowledgeCOSC34____ 3.0 6

Three more courses:

COSC3______ 3.0 COSC3______ 3.0 COSC3______ 3.0 9

4000-level Four courses: COSC4101 3.0 or COSC4111 3.0 3

COSC4______ 3.0 COSC4______ 3.0 COSC4______ 3.0 9

Two courses (3000- or 4000-level)
COSC_______ 3.0 COSC_______ 3.0 6

Faculty Requirements

General Education Courses _____________ ______________ 12

One of BIOL1010 6.0, CHEM1000 6.0, EATS1010 6.0,
PHYS1010 6.0, PHYS1410 6.0 6

At least 3 additional credits from the following:
BIOL1010 6.0 CHEM1000 6.0 EATS1010 60
EATS1010 3.0 EATS1011 3.0 BC1800 3.0

1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year of the
programme and to graduate. In addition, the Departmental general prerequisite cumulative grade
point average over all COSC courses must be met to proceed in the programme.

99

MATH1025 3.0 PHYS1010 6.0 PHYS1070 3.0 PHYS1410 6.0 3

9 more SC credits
2

______________ ______________ ______________ 9

18 more credits ______________ ______________ ______________ 9

______________ ______________ ______________ 9
Total credits 120

2 At least three credits in total from the categories "9 more SC credits" and "18 more credits" must
be at the 3000- or 4000-level (for an overall total of 42 credits at 3000- or 4000-level). If
MATH1025 3.0 is taken, then 12 credits are required in this category, as MATH1025 3.0 is
considered equivalent to MATH2221 3.0 for Computer Science requirements and is counted twice in
the checklist.

100

BSc Honours Double Major Degree
(formerly Combined Honours before 99/00)

Checklist
1

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2090 3.0 MATH2221 3.0 or MATH2320 3.0 6

3000-level One Group A course (odd numbered) from each area

Theory COSC31_____ 3.0 Software COSC33____ 3.0 6

Hardware COSC32_____ 3.0 Knowledge COSC34____ 3.0 6

One more course COSC3______ 3 0 3

4000-level Four courses COSC4______ 3.0 COSC4______ 3.0 6

COSC4______ 3.0 COSC4______ 3.0 6
Faculty Requirements

General Education courses: ______________ _______________ 12

One of BIOL1010 6.0 CHEM1000 6.0 EATS1010 6.0
PHYS1010 6.0 PHYS1410 6.0 6

At least 3 additional credits from the following
BIOL1010 6.0 CHEM1000 6.0 EATS1010 6.0
EATS1010 3.0 EATS1011 3.0 BC1800 3.0
MATH1025 3.0 PHYS1010 6.0 PHYS1070 3.0
PHYS1410 6.0 3

Other Honours Subject and Other Courses

1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year of the
programme and to graduate. In addition, the Departmental general prerequisite cumulative grade
point average over all Computer Science courses must be met to proceed in the programme.

101

42 more credits
2

____________ ____________ ____________ ____________ ____________

____________ ____________ ____________ ____________ ____________

____________ ____________ ____________ ____________ ____________ 42

 Total credits 120

2 If MATH1025 3.0 is taken, then 45 credits are required in this category, as MATH1025 3.0 is
considered equivalent to MATH2221 3.0 for Computer Science requirements and is counted twice in
the checklist.

102

BSc Specialized Honours Degree, SCS Stream

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1013 3.0 9
COSC1030 3.0 MATH1014 3.0 MATH1025 3.0 9
PHYS1010 6.0 6
CHEM1000 6.0 or EATS1010 6.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2015 3.0 MATH2090 3.0 MATH2270 3.0 9
PHYS2020 3.0 PHYS2040 3.0 PHYS2211 1.0 7

One of PHYS2010 3.0 or EATS2470 4.0 3 or 4
One of CHEM2011 3.0 or COSC2031 3.0 or EATS2010 3.0 3

EATS2030 3.0 or PHYS1070 3.0 or PHYS2060 3.0

3000-level COSC3121 3.0 COSC3211 3.0 COSC3321 3.0 9
COSC/EATS/PHYS/3001 1.0 1
EATS/PHYS3280 3.0 3
PHYS3050 3.0 PHYS3250 3.0 6

One of COSC3311 3.0 or COSC3331 3.0 or COSC3401 3.0 3

One of any 3000-level COSC course not already taken

(without second digit 5)
or EATS3020 3.0 or EATS3030 3.0 or MATH3271 3.0
or MATH3410 3.0 or PHYS3020 3.0 or PHYS3070 3.0
or PHYS3080 3.0 or PHYS3150 3.0 or PHYS4120 3.0
or other approved courses 3

4000-level COSC4001 6.0 6
One of COSC4351 3.0 or COSC4352 3.0 3
One of COSC4301 3.0 or COSC4302 3.0 or COSC4321 3.0

or COSC4341 3.0 3
Two of COSC4242 3.0 or COSC4331 3.0 or COSC4421 3.0

or COSC4422 3.0 6
Two of 4000-level COSC courses not already taken as listed above

 or EATS4220 3.0 or EATS4230 3.0 or PHYS3070 3.0
 or PHYS4060 3.0 or PHYS4110 3.0 or PHYS4270 3.0 6
 or PHYS4450 3.0

Faculty Requirements

103

General Education Courses 12

Total credits 122 or 123

104

BA Ordinary Degree

Checklist
1

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2320 3.0 3

3000-level One Group A half course (odd numbered) from each area

Theory COSC31_____ 3.0 Software COSC33____ 3.0 6

Hardware COSC32_____ 3.0 Knowledge COSC34____ 3.0 6

Two more half courses:
COSC3_______ 3.0 COSC3______ 3.0 6

Faculty Requirements

General education
1000-level NATS__________ 6.0 6

One of HUMA__________ 9.0 or SOSC__________ 9.0 9

2000-level (Extra course required for breadth if not satisfied.)

One of HUMA__________ 9.0 or SOSC__________ 9.0 9

Electives 18 credits outside COSC requirements

_____________ _____________ _____________ 18

Additional course 3

1 A cumulative grade point average of 4.0 over all courses is required to graduate. In addition, the
Departmental general prerequisite cumulative grade point average over all COSC courses must be
met to proceed in the programme.

105

Total Credits 90

106

BA Honours Major Degree
Checklist1

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2090 3.0 MATH2221 3.0 or MATH2320 3.0 6

3000-level One Group A half course (odd numbered) from each area

Theory COSC31_____ 3.0 Software COSC33_____ 3.0 6

Hardware COSC32_____ 3.0 Knowledge COSC34_____ 3.0 6

One more half course: COSC3______ 3.0 3

4000-level Four half courses COSC4______ 3.0 COSC4______ 3.0 6

COSC4______ 3.0 COSC4______ 3.0 6
Faculty Requirements

General education
1000-level NATS__________ 6.0 6

One of HUMA__________ 9.0 or SOSC__________ 9.0 9

2000-level (Extra course required for breadth if not satisfied.)

One of HUMA__________ 9.0 or SOSC__________9.0 9

Electives 18 credits outside COSC requirements

1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year of the
programme. In addition, the Departmental general prerequisite cumulative grade-point-average over
all Computer Science courses must be met to proceed in the programme. To graduate requires a
cumulative grade-point-average of 5.0 over all courses.

107

_____________ _____________ _____________ 18

Upper level 3000-level _____________ 3

4000-level full _____________ 6

Additional courses _____________ _____________ _____________

_____________ 12

Total Credits 120

108

BA Honours Minor Degree

Checklist
1

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2090 3.0 MATH2221 3.0 or MATH2320 3.0 6

3000-level One Group A half course (odd numbered) from each area

Theory COSC31_____ 3.0 Software COSC33_____ 3.0 6

Hardware COSC32_____ 3.0 Knowledge COSC34_____ 3.0 6

One more half course: COSC3______ 3.0 3

4000-level Two half courses COSC4______ 3.0 COSC4______ 3.0 6

Faculty Requirements

General education
1000-level NATS__________ 6.0 6

One of HUMA__________ 9.0 or SOSC__________ 9.0 9

2000-level (Extra course required for breadth if not satisfied.)

One of HUMA__________ 9.0 or SOSC__________9.0 9

Honours Major subject

1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year of the
programme. In addition, the Departmental general prerequisite cumulative grade-point-average over
all Computer Science courses must be met to proceed in the programme. To graduate requires a
cumulative grade-point-average of 5.0 over all courses.

109

3000-level (to satisfy upper level requirement) ____________ 3

4000-level (to satisfy upper level requirement)

____________ ____________ 12

Additional courses ____________ ____________ ____________

____________ ____________ ____________

____________ ____________ ____________ 30

Total Credits 120

110

BA Specialized Honours Degree

Checklist
1

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2090 3.0 MATH2221 3.0 MATH2320 3.0 9

3000-level One Group A half course (odd numbered) from each area

Theory COSC31_____ 3.0 Software COSC33_____ 3.0 6

Hardware COSC32_____ 3.0 Knowledge COSC34_____ 3.0 6

Three more courses:
COSC3______ 3.0 COSC3______ 3.0 COSC3______ 3.0 9

4000-level Four courses COSC4101 3.0 or COSC4111 3.0 3

COSC4______ 3.0 3

COSC4______ 3.0 COSC4______ 3.0 6

Two courses (3000- or 4000-level)
COSC_______ 3.0 COSC_______ 3.0 6

Faculty Requirements

General education
1000-level NATS__________ 6.0 6

One of HUMA_________ 9.0 or SOSC_________ 9.0 9

1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year of the
programme. In addition, the Departmental general prerequisite cumulative grade-point-average over
all Computer Science courses must be met to proceed in the programme. To graduate requires a
cumulative grade-point-average of 5.0 over all courses.

111

2000-level (Extra course required for breadth if not satisfied)

One of HUMA__________ 9.0 or SOSC__________ 9.0 9

Electives 3 courses outside COSC requirements

______________ ______________ ______________ 18

Upper level 4000-level
2
 ______________ 6

Total Credits 120

2 Must be 4000-level only if you have taken less than 18 Computer Science credits at the 4000-level.
Otherwise the course can be at any level.

112

BA Honours Double Major Degree

Checklist
1

Computer Science Requirements Credit Count

1000-level COSC1020 3.0 MATH1090 3.0 MATH1300 3.0 9
COSC1030 3.0 MATH1310 3.0 6

2000-level COSC2001 3.0 COSC2011 3.0 COSC2021 3.0 9
MATH2090 3.0 MATH2221 3.0 or MATH2320 3.0 6

3000-level One Group A half course (odd numbered) from each area

Theory COSC31_____ 3.0 Software COSC33_____ 3.0 6

Hardware COSC32_____ 3.0 Knowledge COSC34_____ 3.0 6

One more half course COSC3______ 3.0 3

4000-level Four half courses COSC4______ 3.0 COSC4______ 3.0 6

COSC4______ 3.0 COSC4______ 3.0 6
Faculty Requirements

General education
1000-level NATS__________ 6.0 6

One of HUMA__________ 9.0 or SOSC__________ 9.0 9

2000-level (Extra course required for breadth if not satisfied above)

One of HUMA__________ 9.0 or SOSC__________ 9.0 9

Other Honours Major Subject and Other Courses

1 A cumulative grade-point-average of 5.0 over all courses is required to proceed in each year of the
programme. In addition, the Departmental general prerequisite cumulative grade-point-average over
all COSC courses must be met to proceed in the programme. To graduate requires a cumulative
grade-point-average of 5.0 over all courses.

113

3000-level (to satisfy upper level requirement) _____________ 3

4000-level (to satisfy upper level requirement)

_____________ _____________ 12

Additional courses _____________ _____________ _____________

_____________ _____________ _____________

_____________ _____________ _____________ _____________ 30

Total Credits 120

