

USER’S MANUAL

ELEM2 RULE INDUCTION SYSTEM
VERSION 3.0

A i j u n A n a n d N i c k C e r c o n e

U N I V E R S I T Y O F W A T E R L O O

D E P A R T M E N T O F C O M P U T E R S C I E N C E

M A C H I N E L E A R N I N G G R O U P

U N I V E R S I T Y O F W A T E R L O O

D E P A R T M E N T O F C O M P U T E R S C I E N C E

M A C H I N E L E A R N I N G G R O U P

2

USER ’ S MANUAL
ELEM2 RULE INDUCTION SYSTEM VERSION 3.0

TABLE OF CONTENTS

TABLE OF CONTENTS... 2

INTRODUCTION.. 3

DATA PREPARATION .. 3

FILE NAMES .. 3

TRAINING DATA FILE... 3

DATA DESCRIPTION FILE... 4

TEST DATA FILE... 6

GENERATING RULES .. 6

HOW TO RUN THE RULE INDUCTION PROGRAM ... 6

FILES GENERATED BY THE SYSTEM ... 8

HOW TO INTERPRET THE RULES... 8

TESTING RULES.. 10

HOW TO RUN THE TESTING PROGRAM... 10

FILES GENERATED BY THE TESTING PROGRAM .. 10

CROSS VALIDATION.. 11

HOW TO RUN THE CROSS VALIDATION PROGRAM .. 11

FILES GENERATED BY THE CROSS VALIDATION PROGRAM .. 11

EXAMPLES.. 12

EXAMPLE 1 ... 12

Problem Description.. 12

Training data and its description... 12

Generating rules without using pruning .. 13

Generating rules with the pruning option.. 14

EXAMPLE 2 ... 15

Problem Description.. 15

Training and Testing data.. 16

Rules generated by elem2 .. 16

Testing on the test data .. 18

EXAMPLE 3 ... 19

Dataset Description ... 19

Generating Rules ... 20

EXAMPLE 4 ... 22

Dataset description.. 22

Cross validation... 22

ACKNOWLEDGEMENT ... 23

REFERENCES ... 24

 3

INTRODUCTION

ELEM2 [1] is a rule induction system that generates rules from a set of data and uses the
generated rules to classify (new) cases in another set of data. In this manual, we describe how to use
the ELEM2 (Version 3.0) rule induction system. The system contains three executable programs:
elem2v3.exe, test.exe and cvelem2.exe. The program elem2v3.exe is a rule induction program that
generates a set of classification rules from a set of training data. The program test.exe is a
classification program, which uses the rules generated by elem2v3.exe and classifies the cases in a test
data file. The program cvelem2.exe is a cross-validation program that can be used to evaluate
ELEM2 on a data set using n-fold cross-validation. To run these programs, the user has to prepare
the training and testing data. In this manual, we describe how to prepare these data files, how to run
the three programs with the data files from the command line of an operating system, and how to
interpret the result files generated from the programs. We also illustrate the use of the ELEM2
system by running the programs with some examples, which demonstrates the use of elem2v3.exe,
test.exe and cvelem2.exe.

 DATA PREPARATION

In this section, we describe how to prepare the training data file, test data file and their
description file. The training data file is used by ELEM2 to generate rules. The test data is used to
test generated rules. The description file describes the training or testing data and is required by the
system for rule induction and cross validation.

FILE NAMES

All files read and written by the ELEM2 system are in plain text format and have a name of
filestem.extension, where extension characterizes the type of information contained in the file. A filestem
can be any string of characters that is acceptable as a file name to your operating system. The
maximum length of a filestem is 60 characters.

TRAINING DATA FILE

The training data file is used to represent the training cases from which ELEM2 constructs
decision rules. Training cases are described in terms of condition attributes and a decision attribute.
The decision attribute, also called the class attribute, is used to describe the class that a case belongs
to. Each value of the decision attribute represents a class. For example, if a case in a risk-evaluating
domain belongs to a low, medium, or high class, then the decision attribute (say, named as risk) for the
training data in this domain has a value domain which contains low, medium, and high, each of which
represents a class. Condition attributes are used to describe the conditions under which a case
belongs to a certain class. Each condition attribute also has a name and a value domain. For example,
age can be a condition attribute for the risk-evaluating domain and it takes a value between 0 and
150. A case in the training data file is represented by values of a set of condition and decision
attributes

4

The training data file used by ELEM2 is named as filestem.dat. Each line in the file describes one
case, providing the values of all the condition and decision attributes, separated by spaces or tabs.
For example,

20 9.8 red 0 12.7 8.5 1

9 10.6 blue 2 11.6 7.9 0

are two cases in a training data file, where each case consists of values for six condition attributes and
one class attribute. The attribute values must appear in the same order in all the cases and in the same
order that the attributes are given in the description file (see below). The order of cases themselves
does not matter. Numeric values may be given in integer, fixed-point, or floating-point form, so that
all the following are acceptable as attribute values:

7, 12.7, +2.5, -.3, -23E-5, 0.000026

DATA DESCRIPTION FILE

The description file is fundamental to the induction task. The file, named filestem.fmf, provides
information about each attribute and class, including attribute names, class names, attribute types,
priorities of attributes, attribute values for symbolic attributes, and a numeric range for each
continuous attribute.

The description file consists of a series of entries, Each entry occupies one line and describes
one attribute.1 An entry starts with a “<” and ends with a “>”. There are three kinds of attributes:
symbolic, integer, and real-valued attributes. A symbolic attribute has discrete values; an integer attribute
has integer values; and a real-valued attribute has continuous values. Depending on the type of the
attribute, the entry can be in one of the following formats:

1. For a symbolic attribute, its entry takes the following fomat:

<C/D/X Priority Name S Number_of_values List_of_values>

where C/D/X takes the values of C, D or X and indicates whether the attribute is a condition
attribute (indicated by C), a decision (class) attribute (indicated by D), or an ignored attribute
(indicated by X),2 Priority specifies the priority of this attribute among all the condition
attributes and takes an integer value with lower number indicating higher priority, Name
specifies the name3 for this attribute, S means symbolic attribute, Number_of_values indicates
the number of symbolic values of the attribute, and List_of_values lists the symbolic values. For
example, a condition attribute color has the values of red, blue, yellow and green. Suppose its priority
is 5. The entry for this attribute is

1 The maximum number of attributes currently allowed by ELEM2 (V2.0) is 100.

2 If an attribute is labeled as an X attribute, then its corresponding column of data in the training data file will be ignored by
the induction program. We allow X attributes in a training set because at times a data set contains irrelevant attributes, such
as the index of the training cases, which is usually irrelevant to the learning task.

3 An attribute name can be any string of characters without spaces in between. The maximum length of an attribute name is
19 characters.

 5

<C 5 color S 4 red blue yellow green>

2. For an integer or real-valued attribute, its entry takes one of the following three formats,
depending on how you would like the attribute to be discretized:

 <C/D/X Priority Name I/R>

or

<C/D/X Priority Name I/R Min_value Max_value D Number_of_partitions>

or

<C/D/X Priority Name I/R Min_value Max_value M List_of_cutpoints>

where C/D/X, Priority, Name have the same meaning as for symbolic attributes, I/R takes
the values of I or R and indicates whether the attribute is an integer or a real-valued attribute,
Min_value gives the minimum value of the attribute and Max_value is the maximum value for
the attribute. If the first format is used, ELEM2 invokes an automatic supervised discretization
method4 to symbolize the values of this attribute in the training cases. For example, if a real-
valued condition attribute named pressure has the priority of 3 and you would like to use the
automatic supervised method to discretize this attribute, then its entry in the description file is

<C 3 pressure R>

If the second format is used, ELEM2 uses an equal width interval binning method that divides
the range of values for this attribute into Number_of_partitions equal sized bins, where
Number_of_partitions is a user-supplied parameter in the entry. For example, if you would like
to discretize the above pressure attribute into 10 equal sized value ranges, the entry for this
attribute in the description file is (suppose the range of values for this attribute is between 0 and
500):

<C 3 pressure R 0 500 D 10>

which means that the value range of the pressure attribute is divided into [0, 50], (50, 100], ……,
(450, 500].

 If the third format for the attribute entry is used, ELEM2 discretizes the attribute using the
provided cut-points. For example, if you want to discretize the pressure attribute into ranges of
[0, 80], (80, 120], (120, 170], (170, 250], (250, 400], and (400, 500], then the attribute’s entry in the
data description file is as follows:

<C 3 pressure R 0 500 M 80 120 170 250 400>

Note that either the second or the third format has to be used for a decision attribute if the
decision attribute is an integer (I) or a real-valued (R) attribute. That is, the user has to provide

4 A supervised discretization method makes use of the class labels in the training cases in the discretization process, while
unsupervised methods do not utilize the class labels. The supervised discretization method used in ELEM2 is based on an
entropy minimization theory [3].

6

either the number of equal width intervals or the cutpoints for a decision attribute of type I or R.
ELEM2 cannot use a supervised method to discretize a decision attribute automatically.

An example for a description file is

 <C 3 a1 I>

 <C -2 a2 R 0 5.0 D 5>

 <C 0 a3 I –30 60 M –5 0 20 35 51>

<C 1 color S 4 red blue yellow green>

 <D 0 class S 2 0 1>

where there are four condition attributes and a decision attribute in total. The attribute a2 has the
highest priority among the three condition attributes and a1 the lowest. The order of these entries
should be consistent with the order of attribute values in each case in the training data file. In this
example there are three integer or real-valued attributes, named a1, a2 and a3 respectively. The
attribute a1 will be discretized using an automatic supervised discretization method, the attribute a2
will be discretized into 5 equal width intervals, and a3 will be discretized using the specified cut-
points.

Depending on the training data file, the entry for the decision attribute is not necessary to be the last
one. If no attribute is specified as a decision attribute, i.e., all the attributes are labeled as either C or
X, then the last attribute with C is considered to be the decision attribute. If more than one attributes
are specified as decision attributes, ELEM2 only considers the first attribute with D is the decision
attribute and others as condition attributes. The value for the priority of a decision attribute does not
affect the induction results because priority is designed to specify the relative importance of
condition attributes. However, a number must be provided for the priority of a decision attribute for
the purpose of syntax checking of the description file.

TEST DATA FILE

To evaluate the classification rules the system has produced from the training data, you may
reserve part of the available data as a test data set or generate a separate test data set. The test data
appears in the file filestem.tst, in exactly the same format as the training data file. Testing the
classification rules is optional.

GENERATING RULES

HOW TO RUN THE RULE INDUCTION PROGRAM

After training data and description files have been prepared, inducing rules from the training data
can be as simple as running the following command:

elem2v3.exe filestem

 7

in a Command Prompt window under the directory where elem2v3.exe, filestem.dat and filestem.fmf
reside. The options that can be used with this command are

 –p (Default: no pruning)

This option allows the program to use a pruning technique [1] to post-prune the rules in
order to deal with possible noise in the training data. It is used as follows:

elem2v3.exe filestem –p

The default is no pruning, in which case the program generates rules that fit the training data
as well as possible. Use of the pruning option is recommended.

-q rule_quality_no (Default: 1)

The option allows the user to choose one of the 12 rule quality formulas [4] encoded in the
elem2v3.exe program by specifying a number between 1 and 12, inclusive. The selected
formula is used in the ELEM2’s post-pruning and classification procedures. The 12 formulas
are shown in the following table (see [4] for the description of these formulas):

Formula
Number

Rule Quality Formula

1 Measure of Discrimination

2 Weighted Sum of Consistency and Coverage

3 C2

4 C1

5 Degree of Logical Sufficiency

6 Coleman’s Formula

7 Product of Consistency and Coverage

8 G2 Likelihood Ratio Statistic

9 Measure of Information

10 Pearson Chi-Square Statistic (Version 1)

11 Cohen’s formula

12 Pearson Chi-square Statistic (Version 2)

The default value of this option is 1, in which case the formula Measure of Discrimination is
used. An example of using this option is

elem2v3.exe filestem –p –q 5

which causes the elem2v3.exe program to use Degree of Logical Sufficiency as the rule quality
formula.

 In summary, the elem2v3.exe program can be invoked as

8

elem2v3.exe filestem [-p] [-q rule_quality_no]

The two options can appear in either order and either of them can be missing.

FILES GENERATED BY THE SYSTEM

The program elem2v3.exe generates some intermediate and results files with the same filestem as
used by the training data and description files. The intermediate files are generated at the beginning
of the program execution, and will be deleted automatically by the program after rules are generated.
As a user, you will not have to worry about the intermediate files, other than to make sure that you
do not delete or modify them while they are still relevant. The intermediate file extensions are: fmc1,
qzf, qzf1, and neg.

Three results files are generated by the program. Their extensions are:

• rule, containing description and information about the rules that generated by the program.
This file is the results file for users.

• intr, also containing description of rules, but in a format not readable by users. The file is for
the program test.exe to read induced rules in order to classify testing data.

• fmc, containing the information about condition and decision attributes, especially the
cutpoints that the system generated for continuous attributes. This file is needed when
running test.exe. It serves as a data description file for test.exe as filestem.fmf for elem2v3.exe.

HOW TO INTERPRET THE RULES

We describe how to interpret the generated rules in the file filestem.rule. A rule is listed according
to the class value it predicts. For example, if there are two classes in the problem, denoted as 0 and 1
respectively in the entry for the decision attribute of the file filestem.fmf as follows:

<D 0 Class 2 0 1>

then in the file filestem.rule, the rules that predict Class=0 is listed first under the title “Rules for
Class=0” before the rules predicting Class=1, which are listed later under the title “Rules for
Class=1” as follows:

 Rules for Class=0

Rule 1:

(a1=1)(a2!=1)(a5!=1)

Rule Accuracy = 1.000000

Rule Quality = 2.096910

The positive cases covered by the rule are: (31 cases)

11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32

 9

33 34 35 36 38 39 40 41 43 44 45

The negative cases covered by the rule are: (0 cases)

Rule 2:

(a1!=1)(a2=1)(a5!=1)

Rule Accuracy = 1.000000

Rule Quality = 1.780275

The positive cases covered by the rule are: (20 cases)

46 47 50 51 52 53 54 55 56 57 58 59 60 61 91 92 94 95 96 97

The negative cases covered by the rule are: (0 cases)

 :

 :

 :

 Rules for Class=1

Rule 1:

(a5=1)

Rule Accuracy = 1.000000

Rule Quality = 2.041687

The positive cases covered by the rule are: (29 cases)

9 10 14 31 37 42 48 49 66 67 71 77 78 80 84 85 88 89 90 93

98 100 102 103 105 108 113 117 121

The negative cases covered by the rule are: (0 cases)

Rule 2:

(a1=3)(a2=3)

Rule Accuracy = 1.000000

Rule Quality = 1.681937

The positive cases covered by the rule are: (17 cases)

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

The negative cases covered by the rule are: (0 cases)

 :

 :

 :

Rule Numbers are:

 Rule number for Class=0 is 4

 Rule number for Class=1 is 4

Total number of rules = 8

Average Length of the rules = 2.375000

10

Evaluation on training data: accuracy = 100.0000%

Description of each rule consists of the condition part of the rule, rule accuracy on the training
data, rule quality in which higher numbers indicate better rules, and the positive and negative cases
covered by the rule. The condition part of a rule consists of one attribute-value pair or a conjunction
of two or more attribute-value pairs. For example, the second rule for Class=1 is interpreted as

If the attribute a1 is equal to 3 and the attribute a2 is equal to 3, then Class=1

At the end of the file filestem.rule, a summary is given which states how many rules are generated
for each class, the total number of rules, average length of the rules (in terms of the number of
attribute-value pairs in the condition part of rules), and classification accuracy of the rules evaluated
over the training data.

TESTING RULES

 After rules are generated, you can test the predictive performance of the rules on another set of
available data, called test data. The test data should appear in the file filestem.tst. The file can be the
same as or different from the training data file filestem.dat, but it must be in the same format.

HOW TO RUN THE TESTING PROGRAM

The command for invoking the testing program is

test.exe filestem

This program reads attribute descriptions from filestem.fmc and the rules from filestem.intr. It uses these
rules to classify the cases in the file filestem.tst, then compares the class it predicts for each case with
the class label for that case in the filestem.tst file, and calculates the predictive accuracy of the rules
over these testing cases.

FILES GENERATED BY THE TESTING PROGRAM

The test.exe program also generates some intermediate and results files. The intermediate files
will be deleted by the program after testing is done. The extensions of these files are qzf and qzf1.
Users should not be concerned with intermediate files other than to avoid deleting or modifying
them while the program is still running. Two results files are generated by test.exe. Their extensions
are

 11

• tcover, containing information about rules, the test cases covered by each rule, and at the
end the predictive accuracy of the rules on the testing data. The content of this file is the
same as the filestem.rule except that the cases covered by each rule and the predictive accuracy
are in terms of testing data, not the training data.

• result, containing all the cases in the filestem.tst file with the predicted class at the end of each
case. An example of this file is given in the next section.

CROSS VALIDATION

 The cross validation program is to evaluate the ELEM2 rule induction system on a data set by
using n-fold cross validation. At the expense of computational resources, cross validation gives a
more reliable estimate of accuracy of a learning system than a single run on a held-out test set. A n-
fold cross validation program randomly partitions a data set into n disjoint subsets, then provides the
learning program with n-1 of them as training data and uses the remaining one as test cases. This
process is repeated n times using different possible test subsets. Each time a classification accuracy is
obtained on the test subset. The mean of the accuracies from the n runs and the standard deviation
of the accuracy are then calculated to measure the testing performance.

HOW TO RUN THE CROSS VALIDATION PROGRAM

 The command for invoking the cross validation program is

cvelem2.exe elem2_rule_induction_program filestem n [-p] [-q rule_quality_no]

where elem2_rule_induction is the name of the ELEM2 rule induction program to be evaluated, filestem
is the prefix of the data file (filestem.dat) that the cross validation is conducted on, and n is the
number of folds. Similar to the elem2v3.exe program, two options (-p and –q rule_quality_no) can be
used with cvelem2.exe. They are used in the same way as used with elem2v3.exe and passed from the
cvelem2.exe program to the rule induction program to be evaluated (such as elem2v3.exe). Other
inputs to the cvelem2.exe program, which are not shown in the command, include a filestem.fmf file
and the test.exe program. The filestem.fmf file provides description of the data in filestem.dat. The
test.exe program is used to classify test cases during cross validation. An example of running
cvelem2.exe is

cvelem2.exe elem2v3.exe iris 10 –p –q 3

which conducts 10-fold evaluation on the elem2v3.exe program on the data set iris.dat with the
pruning option and the rule quality formula C2.

FILES GENERATED BY THE CROSS VALIDATION PROGRAM

The cvelem2.exe program generates some intermediate and result files. The intermediate files are

the training, testing, intermediate or result files used or generated in each of the n runs. These files
will be deleted by the program after the evaluation is done. The cvelem2.exe program generates one
result file. Its extension is

12

• cv, containing the information about each run, such as the number of generated rules, the
average length of the rules and the predictive accuracy on the test subset. The file also
contains a summary of the results from the n runs, such as the average number of rules, the
average length of rules, the average testing accuracy and standard deviation over the n runs.

EXAMPLES

We illustrate the use of ELEM2 with some examples.

EXAMPLE 1

PROBLEM DESCRIPTION

This example is designed to illustrate how to use elem2v3.exe with or without pruning, the
option –p. The problem contains two classes and three symbolic condition attributes (A, B, and C),
each of which has two values (0 or 1). The two classes, denoted as D=1 and D=0 respectively, are
described as follows:

If (A=1) and (B=1) or (C=0), then D=1; otherwise D=0.

TRAINING DATA AND ITS DESCRIPTION

The training data file (example1.dat) contain all the eight possible examples, which are

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

The description file (example1.fmf) is as follows, in which we give all the attributes the same priority:

<C 0 A S 2 0 1>

<C 0 B S 2 0 1>

<C 0 C S 2 0 1>

<D 0 D S 2 1 0>

 13

GENERATING RULES WITHOUT USING PRUNING

Use the following command to generate rules that describe the data exactly without using the –p
option:

elem2v3.exe example1

The following rules are generated, which are contained in the file example1.rule.

 Rules for D=1

Rule 1:

(C=0)

Rule Accuracy = 1.000000

Rule Quality = 1.322219

The positive cases covered by the rule are: (4 cases)

1 3 5 7

The negative cases covered by the rule are: (0 cases)

Rule 2:

(A!=0)(B!=0)

Rule Accuracy = 1.000000

Rule Quality = 0.698970

The positive cases covered by the rule are: (2 cases)

7 8

The negative cases covered by the rule are: (0 cases)

 Rules for D=0

Rule 1:

(A=0)(C!=0)

Rule Accuracy = 1.000000

Rule Quality = 1.263241

The positive cases covered by the rule are: (2 cases)

2 4

The negative cases covered by the rule are: (0 cases)

Rule 2:

(B=0)(C!=0)

Rule Accuracy = 1.000000

Rule Quality = 1.263241

The positive cases covered by the rule are: (2 cases)

14

2 6

The negative cases covered by the rule are: (0 cases)

Rule Numbers are:

 Rule number for D=1 is 2

 Rule number for D=0 is 2

Total number of rules = 4

Average Length of the rules = 1.750000

Evaluation on training data: accuracy = 100.0000%

GENERATING RULES WITH THE PRUNING OPTION

If you consider the data set may contain noise, you can use the pruning option when running
elem2v3.exe as follows:

elem2v3.exe example1 –p

In this case, the file example1.rule contains the following generated rules:

 Rules for D=1

Rule 1:

(C=0)

Rule Accuracy = 1.000000

Rule Quality = 1.322219

The positive cases covered by the rule are: (4 cases)

1 3 5 7

The negative cases covered by the rule are: (0 cases)

Rule 2:

(A!=0)(B!=0)

Rule Accuracy = 1.000000

Rule Quality = 0.698970

The positive cases covered by the rule are: (2 cases)

7 8

The negative cases covered by the rule are: (0 cases)

 15

 Rules for D=0

Rule 1:

(C!=0)

Rule Accuracy = 0.750000

Rule Quality = 1.322219

The positive cases covered by the rule are: (3 cases)

2 4 6

The negative cases covered by the rule are: (1 cases)

8

Rule Numbers are:

 Rule number for D=1 is 2

 Rule number for D=0 is 1

Total number of rules = 3

Average Length of the rules = 1.333333

Evaluation on training data: accuracy = 87.5000%

Note that in this case the eighth example (1 1 1 1) is interpreted by ELEM2 as a noisy case for the
class D=0.

EXAMPLE 2

PROBLEM DESCRIPTION

Example 2 is also artificially designed. It involves two continuous condition attributes, one
symbolic condition attribute, and two classes. The description file example2.fmf describes the domains
of each attribute:

<C 0 a1 I>

<C 0 a2 R>

<C 0 color S 4 red blue yellow green>

<D 0 class S 2 1 0>

where the attribute a1 is of integer type; the attribute a2 is of real-valued type; the attribute color has
4 symbolic values: red, blue, yellow and green. The relationship between the classes and the condition
attributes in the data set is designed as follows:

16

If (30<a1<=60) and (1.5<a2<=3.5)and (color=blue or green), then class=1; otherwise class=0.

TRAINING AND TESTING DATA

The file example2.tst contains 440 examples that satisfy the above relationship. 60% of these
examples are randomly chosen as training examples, which are contained in the file example2.dat.

RULES GENERATED BY ELEM2

Using the following command:

elem2v3.exe example2

 the following rules (shown in example2.rule) are generated from the data file example2.dat.

 Rules for class=1

Rule 1:

(30<a1<=60)(1.500000<a2<=3.500000)(color=blue or green)

Rule Accuracy = 1.000000

Rule Quality = 4.132932

The positive cases covered by the rule are: (13 cases)

118 120 122 124 126 146 148 150 152 170 172 173 175

The negative cases covered by the rule are: (0 cases)

 Rules for class=0

Rule 1:

(color!=blue or green)

Rule Accuracy = 1.000000

Rule Quality = 1.427917

The positive cases covered by the rule are: (125 cases)

1 3 11 13 16 18 20 23 26 27 28 30 32 33 34 36 39 40 42 44

46 49 50 51 53 55 57 61 62 64 66 68 70 71 73 78 81 83 84 86

88 89 90 92 94 96 97 101 102 104 106 107 109 110 111 114 116 119 121 123

125 128 130 132 134 138 140 142 144 147 149 151 153 155 156 157 159 160 161 163

165 167 169 171 174 177 179 182 186 189 191 193 195 199 204 206 208 210 213 216

219 221 224 225 226 227 229 232 234 236 237 240 242 244 246 249 250 252 253 255

257 258 259 260 262

The negative cases covered by the rule are: (0 cases)

Rule 2:

(a1<=30)

Rule Accuracy = 1.000000

Rule Quality = 1.316963

 17

The positive cases covered by the rule are: (109 cases)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109

The negative cases covered by the rule are: (0 cases)

Rule 3:

(a2<=1.500000)

Rule Accuracy = 1.000000

Rule Quality = 1.231440

The positive cases covered by the rule are: (97 cases)

1 2 3 4 5 6 7 8 30 31 32 33 34 35 36 37 38 57 58 59

60 61 62 63 64 65 66 67 88 89 90 91 92 93 94 95 110 111 112 113

114 115 116 117 136 137 138 139 140 141 142 143 144 145 159 160 161 162 163 164

165 166 167 168 183 184 185 186 187 188 189 190 191 192 193 194 212 213 214 215

216 217 218 219 220 236 237 238 239 240 241 242 243 244 245 246 247

The negative cases covered by the rule are: (0 cases)

Rule 4:

(a1>60)

Rule Accuracy = 1.000000

Rule Quality = 1.118648

The positive cases covered by the rule are: (82 cases)

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

263 264

The negative cases covered by the rule are: (0 cases)

Rule 5:

(a2>3.500000)

Rule Accuracy = 1.000000

Rule Quality = 1.054322

The positive cases covered by the rule are: (74 cases)

22 23 24 25 26 27 28 29 49 50 51 52 53 54 55 56 79 80 81 82

83 84 85 86 87 104 105 106 107 108 109 127 128 129 130 131 132 133 134 135

153 154 155 156 157 158 176 177 178 179 180 181 182 203 204 205 206 207 208 209

210 211 231 232 233 234 235 258 259 260 261 262 263 264

The negative cases covered by the rule are: (0 cases)

18

Rule Numbers are:

 Rule number for class=1 is 1

 Rule number for class=0 is 5

Total number of rules = 6

Average Length of the rules = 1.833333

Evaluation on training data: accuracy = 100.0000%

TESTING ON THE TEST DATA

To evaluate how these rules perform on the testing data in file example2.tst, use the following
command:

test.exe example2

The program will read rules from example2.intr and classify each case in example2.tst. The
classification results are shown in the file example2.result as follows:

0 0.000000 red 0 -> 0

0 0.000000 blue 0 -> 0

0 0.000000 yellow 0 -> 0

0 0.000000 green 0 -> 0

0 0.500000 red 0 -> 0

0 0.500000 blue 0 -> 0

0 0.500000 yellow 0 -> 0

0 0.500000 green 0 -> 0

0 1.000000 red 0 -> 0

 :

 :

 :

40 2.000000 red 0 -> 0

40 2.000000 blue 1 -> 1

40 2.000000 yellow 0 -> 0

40 2.000000 green 1 -> 1

40 2.500000 red 0 -> 0

40 2.500000 blue 1 -> 1

40 2.500000 yellow 0 -> 0

40 2.500000 green 1 -> 1

40 3.000000 red 0 -> 0

40 3.000000 blue 1 -> 1

 :

 :

 :

Number of testing cases = 440 Number of cases classified correctly = 440

 19

Predictive Accuracy = 100.000000%

In this file, each row shows a test case with the column before -> representing the actual class for the
case as shown in the test date file and the column after -> representing the predicted class generated
by the test.exe program. A summary of the prediction results is shown at the end of the file.

EXAMPLE 3

DATASET DESCRIPTION

Example 3 is taken from the UCI repository of machine learning databases [5]. The data set
(housing.dat) concerns housing values in suburbs of Boston. It contains 506 training examples. Each
example is described by 13 condition attributes (12 continuous and 1 binary-valued attributes) and 1
decision attribute (continuous and representing house values). This data set is used here to illustrate
the use of continuous decision attributes.

The condition and decision attributes of the data set are listed as follows:

Attribute Names Meaning

CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 square feet

INDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

B 1000(Bk - 0.63)2 where Bk is the proportion of blacks by town

LSTAT percentage of the population with lower status

MEDV median value of owner-occupied homes in $1000's

where MEDV is the decision attribute and others are condition attributes. A description file
(housing.fmf) for this data set is:

20

<C 0 CRIM R>

<C 0 ZN R>

<C 0 INDUS R>

<C 0 CHAS S 2 0 1>

<C 0 NOX R>

<C 0 RM R>

<C 0 AGE R>

<C 0 DIS R>

<C 0 RAD I 1 24 D 10>

<C 0 TAX R>

<C 0 PTRATIO R>

<C 0 B R>

<C 0 LSTAT R>

<D 0 MEDV R 5.0 50.0 M 10 20 30 40>

where MEDV is a real-valued decision attribute and cut-points (10, 20, 30 and 40) are specified to
discretize the attribute whose values range from 5.0 and 50.0. Thus, there are five classes in this data
set, denoted as (MEDV<=10.0), (10<MEDV<=20), (20<MEDV<=30), (30<MEDV<=40), and
(MEDV>40).

GENERATING RULES

To generate rules from housing.dat, use command:

elem2v3.exe housing

The following are samples of rules in the housing.rule file generated by the above command.

 Rules for (MEDV<=10.000000)

Rule 1:

(CRIM>7.526010)(NOX>0.671000)(RM>5.272000)(DIS<=2.002600)(LSTAT>26.639999)

Rule Accuracy = 1.000000

Rule Quality = 2.616550

The positive cases covered by the rule are: (7 cases)

386 399 400 401 405 416 439

The negative cases covered by the rule are: (0 cases)

Rule 2:

(NOX>0.605000)(RM<=6.152000)(DIS<=2.002600)(B<=68.949997)(LSTAT>19.879999)

Rule Accuracy = 1.000000

Rule Quality = 2.325986

The positive cases covered by the rule are: (4 cases)

419 426 438 439

 21

The negative cases covered by the rule are: (0 cases)

 :

 :

 :

 Rules for (10.000000<MEDV<=20.000000)

Rule 1:

(CRIM<=15.023400)(NOX>0.583000)(RM<=6.525000)(AGE>82.500000)(B>50.919998)(14.100000

<LSTAT<=19.879999)

Rule Accuracy = 1.000000

Rule Quality = 2.279597

The positive cases covered by the rule are: (44 cases)

128 129 130 134 135 136 137 138 140 147 154 155 156 157 171 357 362 364 391 394

395 396 397 421 422 431 434 435 442 443 444 447 448 449 450 453 459 460 462 475

477 479 489 492

The negative cases covered by the rule are: (0 cases)

 :

 :

 :

 Rules for (MEDV>40.000000)

Rule 1:

(RM>7.079000)(DIS<=6.640700)(PTRATIO<=14.900000)(LSTAT<=7.440000)

Rule Accuracy = 1.000000

Rule Quality = 3.005333

The positive cases covered by the rule are: (16 cases)

162 163 164 167 196 203 204 205 258 262 263 268 269 281 283 284

The negative cases covered by the rule are: (0 cases)

 :

 :

 :

22

EXAMPLE 4

DATASET DESCRIPTION

Example 4 is also taken from the UCI repository of machine learning databases [5]. The data set
(iris.dat) concerns classification of iris flowers. It contains 150 examples. Each example is described
by 4 condition attributes (all continuous) and one decision attribute. A description file (iris.fmf) for
this data set is:

<C 0 sepal_length R>

<C 0 sepal_width R>

<C 0 petal_length R>

<C 0 petal_width R>

<D 0 class S 3 1 2 3>

CROSS VALIDATION

To evaluate ELEM2 on the iris data set, we can use command:

cvelem2.exe elem2v3.exe iris 10 –p

which evaluates elem2v3.exe (with the pruning option and the default rule quality formula) on the
iris.dat data set using 10-fold cross validation. The evaluation result is recorded in the iris.cv file, the
content of which is shown below:

Run 1:

Total number of rules = 7

Average length of the rules = 2.142857

Prediction accuracy in the testing data = 93.333336%

Run 2:

Total number of rules = 8

Average length of the rules = 2.750000

Prediction accuracy in the testing data = 100.000000%

Run 3:

Total number of rules = 7

Average length of the rules = 2.000000

Prediction accuracy in the testing data = 100.000000%

Run 4:

Total number of rules = 5

Average length of the rules = 1.800000

Prediction accuracy in the testing data = 86.666664%

 23

Run 5:

Total number of rules = 7

Average length of the rules = 2.000000

Prediction accuracy in the testing data = 100.000000%

Run 6:

Total number of rules = 7

Average length of the rules = 2.000000

Prediction accuracy in the testing data = 100.000000%

Run 7:

Total number of rules = 7

Average length of the rules = 1.857143

Prediction accuracy in the testing data = 100.000000%

Run 8:

Total number of rules = 6

Average length of the rules = 1.666667

Prediction accuracy in the testing data = 93.333336%

Run 9:

Total number of rules = 8

Average length of the rules = 2.250000

Prediction accuracy in the testing data = 100.000000%

Run 10:

Total number of rules = 6

Average length of the rules = 2.000000

Prediction accuracy in the testing data = 100.000000%

 ------ Summary -------

Average number of rules = 6.800000

Average length of rules = 2.046667

Average testing accuracy = 97.333328%

Standard deviation of the accuracy = 4.661306

ACKNOWLEDGEMENT

 The authors are members of the Institute for Robotics and Intelligent Systems (IRIS) and wish
to acknowledge the support of the Networks of Centres of Excellence Program of the Government
of Canada, the Natural Sciences and Engineering Research Council, and the participation of
PRECARN Associates Inc.

24

REFERENCES

1. An, A. and Cercone, N. 1998. ELEM2: A Learning System for More Accurate
Classifications, In Proceedings of the 12th Biennial Conference of the Canadian Society for Computational
Studies of Intelligence, AI’98, Vancouver, Canada.

2. An, A., Cercone, N., Chan, C. and Shan, N. 1995. ELEM: A Method for Inducing Rules
from Examples, In Proceedings of the 15th Annual Technical Conference of the British Computer Society
Specialist Group on Expert Systems, Cambridge, U.K.

3. An, A. and Cercone, N. (1999) Discretization of Continuous Attributes for Learning
Classification Rules, Proceedings of the Third Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD-99), Beijing, China.

4. An, A. and Cercone, N. (2000) Rule Quality Measures Improve the Accuracy of Rule
Induction: an Experimental Approach, Proceedings of 12th International Symposium on
Methodologies for Intelligent Systems, Charlotte, North Carolina.

5. Murphy, P.M. and Aha, D.W. 1994. UCI Repository of Machine Learning Databases. URL:
http://www.ics.uci.edu/AI/ML/MLDBRepository.html.

