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Abstract—Sequential pattern mining has been used in bioinfor-
matics to discover frequent gene regulation sequential patterns
based on time course microarray datasets. While mining fre-
quent sequences are important in biological studies for disease
treatment, to date, most of the approaches do not consider the
importance of the genes with respect to a disease being studied
when identifying gene regulation sequential patterns. In addition,
they focus on the more general up/down effects of genes in a
microarray dataset and do not take into account the various
degrees of expression during the mining process. As a result, the
current techniques return too many sequences which may not be
informative enough for biologists to explore relationships between
the disease and underlying causes encoded in gene regulation
sequences. In this paper, we propose a utility model by considering
both the importance of genes with respect to a disease and their
degrees of expression levels under a biological investigation. Then,
we design a new method, called TU-SEQ, for identifying top-
k high utility gene regulation sequential patterns from a time-
course microarray dataset. The evaluation results show that our
approach can effectively and efficiently discover key patterns
representing meaningful gene regulation sequential patterns in a
time course microarray dataset.

I. INTRODUCTION

Microarrays have been widely used in the biomedical field
for discovering differentially expressed genes in human dis-
eases. Many methods have been proposed to monitor massive
gene expressions and identify their regulations during a clinical
study. However, more and more evidence shows that a human
disease cannot be attributed to a single gene but emerges as
complex interactions among multiple genetic variants [1]. In
recent years, time course gene regulation sequential pattern
analysis has become critical in illness events such as cancer
formation. Such diseases have to be studied and monitored
for a period of time to identify abnormal alternations in gene
expressions. However, most of the existing approaches focus
on how to discover differentially expressed genes varied with
time and they do not consider the associations among these
genes. Recently, some studies such as [1], [2], [3], [4] propose
to use sequential pattern mining approaches to discover gene
regulation sequential patterns.

Sequential pattern mining is an important task in data
mining and has been extensively studied by many researchers
[5]. Given a dataset of sequences, each containing a list
of items/itemsets, sequential pattern mining is to discover
sequences of items/itemsets that frequently appear in the
dataset. If a potential gene regulation sequential pattern occurs

frequently in a period of time in a gene expression dataset,
it can be discovered by mining sequential patterns from the
dataset.

Although sequential pattern mining has been used to dis-
cover gene regulation sequential patterns, some major lim-
itations exist in the previous algorithms. First, these meth-
ods mostly choose important sequences based on the fre-
quency/support framework. That is, only gene regulation se-
quences whose frequency is no less than a user-defined support
threshold are chosen as interesting/important gene regulation
sequential patterns. However, as clinical studies have shown,
the frequency alone may not be informative enough to discover
sequences regarding a specific disease. For example, some
genes are more important than others in causing a particular
disease and some genes are more effective than others in
fighting diseases. Moreover, most of the existing approaches
consider the more general up/down effects of gene’s behavior
(i.e., gene expression) in a microarray dataset by binning
the expression value as highly expressed or highly repressed
and do not take into account the degree of expressions. For
example, a gene may not occur frequently but its behavior
is highly remarkable in each appearance or vice versa. As
a result, sequences that contain highly important or highly
expressed/repressed genes may not be discovered by the
frequency-based approaches because they neither consider the
importance of genes, nor the various degrees of expression
under a biological investigation. To address these limitations
of frequency-based mining approaches, a utility is introduced
to perform sequential pattern mining. High utility sequential
pattern (HUSP) mining aims at extracting valuable and useful
sequential patterns from data with respect to an objective.
A sequence is a high utility sequential pattern, if its utility,
defined based on the objective, in a dataset is no less than a
minimum utility threshold. Nonetheless, existing HUSP mining
methods are mainly applied to discovering patterns in market
basket analysis (e.g., finding profitable customer shopping
behavior), and have not been used to find patterns from
complex sequential datasets such as time course microarray
datasets. In addition, how to define the utility so that it
reflects the objective (e.g., a specific disease) effectively and
how to convert input sequential dataset (e.g., a time course
microarray dataset) to a utility-based sequential database are
challenging problems. Second, in gene regulation sequential
pattern discovery, it is hard for biologists to determine the
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value for the threshold. If the threshold is set too low, a large
number of patterns can be found, which is not only time
and memory consuming but also makes it hard to analyze
the mining results. On the other hand, if the threshold is set
too high, there may be very few or even no patterns being
found, which means that some interesting patterns are missed.
In practice, it is more interesting for biologists to set a bound
on the size of output (e.g., top-k patterns), instead of giving a
fixed threshold. However, since the threshold is not given in
top-k pattern mining, the algorithm essentially needs to start
searching for patterns with a very low threshold (e.g., zero
or a value close to zero) in order to guarantee that at least k
patterns can be found. This incurs very high computational
costs. A main challenge is how to increase the threshold
without missing any top-k patterns.

To address the above issues, we propose a new algorithm
called TU-SEQ (Top-k Utility-based gene regulation SEQuen-
tial pattern discovery) to mine top-k high utility gene regu-
lation sequential patterns (to be defined later) by considering
the gene importance and their degrees of expression under a
biological investigation. The proposed method only requires
specifying a user-desired number k and a disease (as the
objective) to explore the k most important gene regulation
sequential patterns from a time course microarray dataset.
TU-SEQ guarantees that no top-k high utility gene regulation
sequences, which take place across different time points during
the course of biological observations, will be missed. To the
best of our knowledge, our work is the first step towards
exploring the impact of both the gene importance and their
finer degrees of expression levels under a biological investi-
gation to discover gene regulation sequential patterns. We are
hoping this research can shed a light for further research on
discovering meaningful patterns from time course microarray
datasets. Our contributions are summarized as follows.
• We formulate the problem of top-k utility-based gene

regulation sequential pattern discovery. In this regard, we
define a utility model by considering both the importance
of genes with respect to a disease and their finer degrees
of expression under a biological investigation.

• We propose an efficient algorithm, called TU-SEQ, for
mining top-k high utility gene regulation sequences from
a time course microarray dataset.

• We propose several strategies for initializing and dynami-
cally adjusting the threshold before and during the mining
process. The proposed strategies will not miss any top-k
patterns.

• We conduct experiments on a real and publicly available
time course microarray dataset to evaluate the effective-
ness and efficiency of TU-SEQ.

• We develop a web interface1 to our system. To the best
of our knowledge, this is the first demonstration for top-k
utility-based gene regulation sequence discovery.

The rest of the paper is organized as follows. Section II
summarizes the related work. Section III presents preliminaries

1Demo available at http://graph.cse.yorku.ca:8080/GeneAssociation/

and the problem statement. The proposed method is discussed
in Section IV. We report our experimental results in Section
V. Finally, Section VI concludes the paper.

II. RELATED WORK

Sequential pattern mining has been widely used in the
bioinformatics domain for discovering rules for organization
of certain elements in genes, for predicting protein function,
for analyzing gene expression, for motif discovery in DNA
sequences and for discovering sets of genes that are frequently
co-expressed in most biological conditions in a microarray
dataset. Some of these methods are apriori algorithm [6],
half-spaces [4], and FPtree algorithm [7]. Moreover, in [8], a
method, called MAGIIC, is proposed to discover the structure
motifs from protein sequences. In [2], the authors propose
an algorithm called CTGR-Span (Cross-Timepoint Gene Reg-
ulation Sequential pattern) to efficiently discover CTGR-SPs
(Cross-Timepoint Gene Regulation Sequential Patterns). How-
ever, to the best of our knowledge, all of the aforementioned
methods do not consider the objective of the study. That is, the
temporal behavior of genes under a biological investigation is
ignored in the problem setting, so is the importance of genes
with respect to a disease.

Many studies have been also conducted to analyze the
association between genes and a specific disease [1]. However,
such methods only consider the behavior of each gene individ-
ually and they do not take the sequential relationships among
genes into account. In [3], the authors propose a method
to discover novelty in sequential patterns with respect to a
disease (e.g., Alzheimer). However, they do not consider time
course sequential databases and also the proposed method still
discovers pattern based on frequency.

High utility sequential pattern (HUSP) mining has been
studied recently [9], [10], [11], [12], [13], [14]. The concept
of HUSP mining was first proposed by Ahmed et al [9].
They proposed two algorithms, called UL and US, for mining
HUSPs. UL is a level-wise candidate generation-and-testing
algorithm and US is a pattern growth method inspired by Pre-
fixSpan [15]. Yin et al. [12] proposed the USpan algorithm for
mining HUSPs. In this study, a lexicographic tree was used to
extract the complete set of high utility sequential patterns and
designed mechanisms for expanding the tree with two pruning
strategies. In [14], we proposed a single-pass algorithm to
find high utility sequential patterns in a dynamic data stream
environment. We also showed that HUSP-Stream outperforms
USpan in terms of run time and memory usage. However, most
of the mentioned methods do not find patterns from complex
sequential datasets such as time course microarray datasets.

So far, no study has been conducted to learn utility-based
gene regulation sequential patterns in a time course microarray
dataset, which is more challenging than finding frequent time
course gene regulation sequential patterns.
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TABLE I
(A) AN EXAMPLE OF A TIME COURSE MICROARRAY DATASET, (B) FOLD

CHANGES OF GENE/PROBE VALUES

ݏܦܫ ݐ݊݁݅ݐܽܲ ݏ݁݊݁ܩ ܶ ଵܵ ܶܵଶ ܶܵଷ ܶܵସ
ଵܲ ଵܩ 240 546 100 ଶܩ50 321 98 454 ଷܩ974 410 350 251 243
ଶܲ ଵܩ 128 786 135 ଶܩ344 253 820 482 ଷܩ90 290 150 256 864
ଷܲ ଵܩ 600 188 99 ଶܩ40 500 555 510 ଷܩ80 200 400 350 450

ݏܦܫ ݐ݊݁݅ݐܽܲ ݏ݁݊݁ܩ ܶ ଵܵ ܶܵଶ ܶܵଷ ܶܵସ
ଵܲ ଵܩ 1 2.2 −2.4 ଶܩ4.8− 1 −3.2 1.4 ଷܩ3.0 1 −1.1 −1.6 −1.6
ଶܲ ଵܩ 1 6.1 1.0 ଶܩ2.6 1 3.2 1.9 ଷܩ2.8− 1 −1.9 −1.1 2.9
ଷܲ ଵܩ 1 −3.1 −6.6 ଶܩ15− 1 1.1 1.0 ଷܩ6.2− 1 2 1.7 2.2(ܽ) (ܾ)

III. DEFINITIONS AND PROBLEM STATEMENT

A. A Time course Microarray dataset and its transformation
to a time course sequential dataset

A time course microarray dataset cannot be used directly to
mine high utility gene regulation sequential patterns. In this
section, we describe how to convert a time course microarray
dataset to a proper time course sequential dataset.

Table I(a) shows an example of time course microarray
dataset obtained from a biological investigation which consists
of three patients whose IDs are P1, P2 and P3. In this table,
the gene expression values of three genes G1, G2 and G3 are
presented over four time point samples TS1, TS2, TS3 and
TS4.

In each time sample, each gene has a temporal behavior
which is expressed by a real value. We consider the first time
sample as a baseline to derive the temporal behavior of each
gene at each time sample. That is, the temporal behavior of a
gene at a time sample TS is the expression value of the gene
at TS divided by the expression value of the gene at the first
time sample. It represents the degree of expression of the gene
at time sample TS. Table I (b) shows the temporal behavior
values as a fold change matrix.

Given the fold change matrix and a threshold γ, each
expression value in the dataset is transformed as up-regulated
(representing by + meaning that the value is greater than γ),
down-regulated (representing by − meaning that the value
is less than -γ), or normal (neither expressed nor repressed)
and only the gene expressions that are up-regulated or down-
regulated are preserved2. Each gene (i.e., Gx) in a sample can
be thought of as being one of two items, one item referring to
the gene being up (i.e., Gx+ ), the other referring to the gene
being down (i.e., Gx− ).

Given γ = 1.5, Table II(a) shows the converted dataset (i.e.,
the time-course sequential dataset). For example, in patient
P1, up-regulated G1+(2.2) and down-regulated G2−(3.2) are
considered to occur at the same time (i.e., TS2), where 2.2
and 3.2 are the temporal behavior of G1+ and G2− (as defined
above) respectively.

2This threshold is used to differentiate noisy behavior from important
temporal behavior.

TABLE II
(A) A TIME COURSE SEQUENTIAL DATASET FROM TIME COURSE

MICROARRAY DATASET IN TABLE I(A), (B) GENE IMPORTANCE TABLE

ݏܦܫ ݐ݊݁݅ݐܽܲ ଵܲ݁ܿ݊݁ݑݍ݁ܵ ଵశܩ} 2.2 ଶషܩ 3.2 }ଶ {ܩଵష 2.4 ଷషܩ 1.6 }ଷ{ܩଵష 4.8 ଶశܩ 3.0 ଷషܩ 1.6 }ସଶܲ ଵశܩ} 6.1 ଶశܩ 3.2 ଷషܩ 1.9 }ଶ {ܩଶశ 1.9 }ଷ{ܩଵశ 2.6 ଶషܩ 2.8 ଷశܩ 2.9 }ସଷܲ ଵషܩ} 3.1 ଷశܩ 2.0 }ଶ {ܩଵష 6.6 ଷశܩ 1.7 }ଷ{ܩଵష 15 ଶషܩ 6.2 ଷశܩ 2.2 }ସ
݁݊݁ܩ ଵܩ ଶܩ ݁ݎ݋ଷܵܿܩ 0.8 0.6 0.1(ܾ)

(ܽ)

B. Definitions

Let G = {G1+ , G1− , G2+ , G2− , ..., Gn+ , Gn−} be a set of
distinct gene regulation items. A geneset GS is a set of gene
regulation items. A time-course sequential dataset is a set of
patients {P1, P2, ...., PK}, where each patient has a patient
identifier Pr and consists of an ordered list of time point
samples (or in brief time samples (TSs)) where each TS is
a geneset. The time sample TSd for patient Pr is denoted as
P dr .

Definition 1: The importance of gene g is a score which
is calculated based on one or more disease-related variables
var1, var2, ..., vark which is defined as follows. GI(g) =
fg(var1, var2, ..., vark), where fg is the function for calcu-
lating the importance of g.

For example, Table II(b) shows the importance of genes
with respect to a disease. In this work, the importance of Gx
represents the importance of both Gx+ and Gx− gene items.

Definition 2: Internal utility or temporal behavior of a gene
g is a real value assigned to g in the time sample TSd of patient
Pr (i.e., P dr ). It is denoted as IGUdis(g, P dr ) and is defined
as the expression value of g at TSd divided by the expression
value of g at the first time sample in Pr.

For example, in Table II(a), given gene G1− and time
sample TS3 in sequence P1, IGU(G1− , P

3
1 ) = 2.4. This value

specifies the relative abundance of the gene in the time sample.
Definition 3: (Utility of gene g in time sample P dr ) Given

gene g and time sample P dr , gene utility is defined as a com-
bination of gene importance and internal utility of g w.r.t. dis-
ease dis as follows. GU(g, P dr ) = fgu(GI(g), IGU(g, P dr )),
where fgu is the function for calculating utility.
For simplicity, we define the fgu function as
fgu(GI(g), IGU(g, P dr )) = GI(g) · IGU(g, P dr ).

Definition 4: The utility of a geneset GS in a time
sample TSd of a patient Pr where GS ⊆ TSd, is defined as
GU(GS,P dr ) =

∑
g∈GS

GU(g, P dr ).

Definition 5: (Occurrence of a sequence α in a patient
Pr) Given a patient Pr = 〈P 1

r , P
2
r , ..., P

n
r 〉 and a gene

regulation sequence α = 〈GS1, GS2, ..., GSZ〉 where P ir is
a time sample and GSi is a geneset, α occurs in Pr iff there
exist integers 1 ≤ e1 < e2 < ... < eZ ≤ n such that
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GS1 ⊆ P e1r , GS2 ⊆ P e2r , ..., GSZ ⊆ P eZr . The ordered list
of genesets 〈P e1r , P e2r , ..., P eZr 〉 is called an occurrence of α
in Pr. The set of all occurrences of α in Pr is denoted as
OccSet(α, Pr).

Definition 6: The (utility of a gene regulation se-
quential pattern α in a patient sequence Pr) Let
õ = 〈P e1r , P e2r , ..., P eZr 〉 be an occurrence of α =
〈GS1, GS2, ..., GSZ〉 in the sequence Pr. The utility of α w.r.t.

õ is defined as GU(α, õ) =
Z∑
i=1

GU(GSi, P
ei
r ). The utility of

α in Pr is defined as GU(α, Pr) = max{GU(α, õ) | õ ∈
OccSet(α, Pr)}.

Definition 7: The (utility of a gene regulation sequence α
in a time course sequential dataset D) The utility of a gene
regulation sequence α in a time course sequential dataset D
is defined as GU(α,D) =

∑
Pr∈D

GU(α, Pr).

Definition 8: (High Utility Gene regulation Sequence
(HUGS)) Given a threshold δ, a sequence α is a High Utility
Gene Regulation Sequence (HUGS) in a time course sequential
dataset D, iff GU(α,D) is no less than δ.

Definition 9: (Top-k High Utility Gene regulation Se-
quence in a time course sequential dataset D) A gene
regulation sequence α is called a top-k High Utility Gene
Regulation Sequence (HUGS) in D, if there are less than k
sequences whose utility value in D is no less than GU(α,D).

Problem Statement. Given a time course sequential dataset
D and a user-defined number k, the problem of finding the
complete set of top-k high utility gene regulation sequential
patterns in D is to discover all the gene regulation sequential
patterns whose utility is no less than minUtilopt, where
minUtilopt = min{GU(β,D)|β ∈ THUGSD}, where
THUGSD is the set of top-k HUGSs over D.

IV. TOP-K UTILITY-BASED GENE REGULATION
SEQUENTIAL PATTERN DISCOVERY

In this section, we propose an efficient algorithm called TU-
SEQ (Top-k Utility-based gene regulation SEQuential pattern
discovery) to find top-k HUGSs without specifying the min-
imum threshold. First, a basic approach called TU-SEQBase
is presented. Later, we present a novel strategy for initializing
the threshold with respect to the given k in TU-SEQBase.

A. TU-SEQBase approach

The proposed baseline approach TU-SEQBase takes k as an
input parameter and returns top-k sequences with the highest
utilities in a time course sequential dataset D. It is an extension
of HUSP-Stream, our recent proposed method for mining
high utility sequential patterns [14], and it applies the idea
of ItemUtilLists and HUSP-Tree to maintain the information
of potential top-k HUGSs. HUSP-Stream is a threshold-based
approach and is not able to discover top-k HUGSs.

We first briefly describe ItmeUtilLists and HUSP-Tree. For
more details about the data structures, readers can refer to
[14].

ItemUtilLists is a vertical representation of the time sam-
ples in the dataset. The ItemUtilLists of a gene G consists of
several tuples. Each tuple stores the utility of gene G in the
time sample Puv (i.e., time sample TSu in patient Pv) that
contains G. Each tuple has three fields: PID, TID and util.
Fields PID and TID store the identifiers of Pv and TSu,
respectively. Field util stores the utility of G in Puv (Definition
3). Figure 1(a) shows the ItemUtilLists of G1+ , G2− and G3−

in Table II(a).
A HUSP-Tree is a lexicographic sequence tree where each

non-root node represents a sequence of genesets. Figure 1 (b)
shows part of the HUSP-Tree for the the dataset in Table II (a),
where the root is empty. Each node at the first level under the
root represents a sequence of length 1, a node on the second
level represents a 2-sequence, and so on. Each non-root node
of a HUSP-Tree is designed to have a field, called SeqUtilList,
for maintaining information about the sequence represented by
a node. The sequence utility list (SeqUtilList) of a sequence
α is a list of three-value tuples. Each tuple 〈PID, TID, util〉
represents an occurrence of α in a sequence of the dataset and
the utility of α with respect to the occurrence. The PID in a
tuple is the ID of the patient in which α occurs, TID is the
ID of the last time sample in the occurrence of α, and util
is the utility value of α with respect to the occurrence. We
denote the SeqUtilList of α as SeqUtilList(α).

A non-root node in a HUSP-Tree is either I-node or S-node.
Definition 10: (I-concatenate Sequence) Given a sequence

pattern α, an I-concatenate pattern β represents a sequence
generated by adding a gene G into the last geneset of α
(denoted as α⊕G). A node whose pattern is an I-concatenate
sequence is called I-node.

Definition 11: (S-concatenate Sequence) Given a sequence
α, an S-concatenate pattern β represents a sequence generated
by adding a geneset {G} after the last geneset of α (denoted
as α⊗G). A node whose pattern is a S-concatenate sequence
is called S-node.

In Figure 1(b), the node for sequence {G1+G3+} is an I-
node, while the node for {G1+}{G3+} is a S-node.

HUSP-Tree Construction: HUSP-Tree is constructed re-
cursively in a top-down fashion using ItemUtilLists. The first
level of the tree under the root is constructed by using the
genes in ItemUtilLists as nodes. The SeqUtilList of these nodes
is the ItemUtilList of the items. Given a non-root node, its child
nodes are generated using I-Step and S-Step, which generate
I-nodes and S-nodes respectively. We demonstrate I-Step and
S-Step procedures of pattern α = {G1+} with sequence P2

in Table II (a). We start from the I-Step. Given the pattern α
and gene G = G2+ , in order to form β = {G1+G2+} and
calculate its utility, I-Step is applied as follows. According
to Table II (a), only time sample P 2

2 has G2+ can be used
to form sequence β. The utility of β is GU(α, P 2

2 ) plus the
newly added gene’s utility which is GU(G2+ , P

2
2 ). Therefore,

GU(β, P2) = 6.1 × 0.8 + 3.2 × 0.6 = 4.88 + 1.92 = 6.8.
Given pattern α = {G1+G2+} and G = G3+ , to construct
pattern β = {G1+G2+}{G3+} and calculate its utility, S-Step
works as follows. Since geneset {G3+} must occur in any
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ࡰࡵࡼ ࡰࡵࢀ ଵܲܲଶܲଶ࢒࢏࢚࢛
ܶ ଶܲܶ ଶܲܶ ସܲ

{ଵశܩ}1.74.82
ࡰࡵࡼ ࡰࡵࢀ ଵܲܲଶܲଷ࢒࢏࢚࢛

ܶ ଶܲܶ ସܲܶ ସܲ
1.9
1.6
3.7

{ଶషܩ}
ࡰࡵࡼ ࡰࡵࢀ ࢒࢏࢚࢛
ଵܲܲଵܲଶ

ܶ ଷܲܶ ସܲܶ ଶܲ
0.1
0.1
0.1

{ଷషܩ}

ݐ݋݋ݎ
(ଵశܩ)ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଵశܩ} (ଵషܩ)ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଵషܩ} (ଶషܩ)ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଶషܩ} (ଶశܩ)ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଶశܩ}

{ଵశܩ} ({ଷశܩ} {ଵశܩ})ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଷశܩ} ({ଷశܩଵశܩ})ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଷశܩଵశܩ} {ଵశܩ}({ଷషܩଵశܩ})ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଷషܩଵశܩ} ({ଶశܩ} {ଵశܩ})ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଶశܩ}
{ଵశܩ}({ଷషܩଶశܩ} {ଵశܩ}ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଷషܩଶశܩ} {ଵశܩ} {ଶశܩ} ({ଶషܩ} {ଶశܩ} {ଵశܩ})ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଶషܩ} {ଵశܩ} {ଶశܩ} ({ଷశܩ} {ଶశܩ} {ଵశܩ})ݐݏ݅ܮ݈݅ݐܷݍ݁ܵ{ଷశܩ}

…

…

…

ࡵ − ࢋࢊ࢕࢔ ࡿ − (ܽ)ࢋࢊ࢕࢔ (ܾ)
Fig. 1. (a) ItemUtilLists of G1+ , G2− and G3− , (b) An example of HUSP-Tree for the dataset in Table II(a)

time samples after α occurs, the only case for {G3+} is in
P 4
2 . Hence, GU(β, P2) = {6.8 + 0.2} = 7.
In addition to ItemUtilLists and HUSP-Tree, T-HUSPBase

engages a structure called TKList to maintain the information
of top-k high utility gene regulation sequential patterns.

Definition 12: Top-k HUGS List (TKList) is a fixed-
size sorted list which maintains the top-k high utility gene
regulation sequential patterns and their utility values. Each
tuple in TKList has two elements: 〈α, util〉, where α is the
pattern and util is the utility of pattern α in the dataset.

Since the threshold is not given as an input parameter, TU-
SEQBase employs a variable called minUtil which is the
current threshold and is set to zero at the beginning. This
variable is used to prune unpromising candidates during the
mining process.

Given a time course sequential dataset D and k, TU-
SEQBase finds top-k HUGSs as follows. TU-SEQBase first
sets minUtil to 0. Then, it constructs ItemUtilList and HUSP-
Tree by applying the S-Step and I-Step procedures. As soon as
a new node is added to HUSP-Tree, the pattern represented by
the node and its utility are added as a new tuple to TKList.
Once k valid patterns are found, the minUtil is raised to the
util value of the pattern with the lowest util value in TKList.
Raising the minUtil value is used to prune the search space
when searching for more patterns. Thereafter, whenever a new
node is inserted to the tree, its pattern is added to TKList.
Then, the patterns in TKList whose util is less than minUtil
are removed from TKList, and minUtil is updated by the util
value of the kth pattern in TKList. TU-SEQBase continues
constructing HUSP-Tree and finding more patterns until no
node can be generated, which means that it has found the
top-k HUGSs in the dataset.

Since HUSP-Stream is correct and complete [14], it is
clear that TU-SEQBase is correct and will not miss any top-k
HUGSs.

B. PES (Pre-Evaluation using genes and sequences) Strategy
Although TU-SEQBase correctly discovers the top-k high

utility gene regulation sequential patterns in the dataset, it

generates too many invalid sequence candidates since minUtil
starts from 0. This directly degrades the performance of the
mining task. To address this problem, we propose an effective
strategy for initializing the threshold before HUSP-Tree con-
struction to improve the performance. The development of the
proposed strategy is based on the following lemmas.

Lemma 1: Given a time course sequential dataset D, let
L = {α1, α2, ..., αm} be a set of gene regulation sequences
(m ≥ k), where αi is the sequence with the i-th highest utility
value in L. For any sequence β, if GU(β,D) < GU(αk, D),
β is not a top-k high utility gene regulation sequence.
Rationale. According to Definition 9, if there exist k se-
quences with utility values higher than the utility of β, β is
not a top-k high utility gene regulation sequential pattern.

Lemma 2: Let L = 〈α1, α2, ..., αm〉 be a set of sequences
(m ≥ k), where αi is the i-th sequence in L, ∀i <
j,GU(αi, D) ≥ GU(αj , D) and Hδ be the set of high utility
gene regulation sequential patterns when the threshold is δ. If
minUtil = GU(αk), then HminUtilopt ⊆ HminUtil.
Rationale. Let H be the complete set of top-k high
utility gene regulation sequential patterns. If |H| ≥ k,
minUtilopt = min{GU(α,D)|α ∈ H}. Since minUtilopt =
min{GU(α,D)|α ∈ H} ≥ min{GU(αi)|αi ∈ L, 1 ≤ i ≤
k} = GU(αk, D) = minUtil, then minUtilopt ≥ minUtil
and HminUtilopt ⊆ HminUtil.

According to the above lemmas, PES initializes TKList by
inserting the utility of genes and sequences in the dataset to
the TKList before the tree construction. After all time samples
in the dataset D are successfully inserted to ItemUtilList,
PES calculates the utility of each gene and each sequence.
Given the updated TKList, minUtil is initialized by the util
value of kth pattern in TKList.

Example 1: Given k = 4, the time course sequential
dataset D in Table II(a), the utility of gene G1+ in D
is calculated as follows: GU(G1+ , D) = GU(G1+ , P1) +
GU(G1+ , P2)+GU(G1+ , P3) = 1.76+4.88+0 = 6.64. The
utility values of other genes in D can be calculated similarly,
GU(G1− , D) = 15.84, GU(G2+ , D) = 3.72, GU(G2− , D) =
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Algorithm 1 TU-SEQ
Input: a time-course sequential dataset D, k
Output: THUGSD

1: ItemUtilLists, TKList← ∅
2: for each time sample P i

r ∈ D do
3: for each gene G ∈ P i

r do
4: insert 〈r, i, GU(G,P i

r)〉 to ItemUtilLists(G)
5: end for
6: end for
7: Initialize TKList and minUtil using PES strategy.
8: Construct HUSP-Tree using ItemUtilLists and minUtil
9: Update minUtil whenever a new node is added to the tree

10: if the user requests to get top-k HUGSs then
11: THUGSD ← all the patterns and their util values stored in

TKList
12: end if
13: Return THUGSD if requested

7.32, GU(G3+ , D) = 0.51 and GU(G3− , D) = 0.35. The
utility of each sequence can be easily calculated using ItemU-
tilLists. After D is processed, P1 and its utility (e.g., 11.5) is
inserted into the TKList. Similarly, the other sequences in
D (e.g., P2 (12.18) and P3(25.07)) are scanned and then they
are inserted into the TKList. With the three sequences, six
genes and their utility values in D, the util values in the TKList
are {25.7, 15.84, 12.18, 11.5}. Hence, minUtil = 11.5 after
applying PES strategy.

As seen from the example, the PES strategy effectively
raises the minimum threshold to a reasonable level before the
tree construction, and prevents from generating unpromising
candidates.

C. Overview of TU-SEQ

The overview of TU-SEQ is presented in Algorithm 1. Given
a time course sequential dataset D, TU-SEQ first constructs
the ItemUtilLists for storing the information for every gene
in each time sample in D. Then, it initializes TKList and
minUtil by applying PES strategy based on genes in the
ItemUtilLists and the sequences in the dataset. Then, TU-
SEQ constructs HUSP-Tree using I-Step and S-Step. During
the tree construction, whenever a new node is added to the
tree, TKList and minUtil are updated as explained in section
IV-A. Finally, if the user requests to find top-k HUGSs from
the dataset, TU-SEQ returns all the patterns and their util
values in the TKList as top-k HUGSs (i.e., THUGSD).

V. EXPERIMENTAL RESULTS

In this section, the proposed method for finding top-k high
utility gene regulation sequential patterns is evaluated. All the
algorithms are implemented in Java. The experiments are con-
ducted on an Intel(R) Core(TM) i7 2.80 GHz computer with
12 GB of RAM. The GSE6377 dataset [16], downloaded from
the GEMMA database3, is used in our experiments. McDunn
et al. [16] attempted to detect 8,793 transcriptional changes in
11 ventilator-associated pneumonia patients leukocytes across
10 time samples.

3http://www.chibi.ubc.ca/Gemma/home.html

A. The importance of genes with respect to pneumonia

Several databases have been developed providing associa-
tions between genes and diseases such as CTD [17]. Each of
these resources considers different aspects of the phenotype-
genotype relationship and they are not complete. Based on
our investigation, DisGeNET4 is a discovery platform which
integrates different databases with information extracted from
the literature to create a comprehensive view of the state of
the art knowledge within this research field. In this paper, we
consider the score proposed by DisGeNET5 as the importance
of each gene with respect to the disease. This score considers
several variables such as number and type of sources (level of
curation, model organisms) and the number of publications
supporting the association to rank genes with respect to a
specific disease. Table III shows top-20 genes w.r.t. Pneumonia
and their scores.

We calculate the utility6 of gene G in time sample P dr
as follows: GU(G,P dr ) = GI(G) × IGU(G,P dr ), where
GI(G) is the importance of G w.r.t. Pneumonia retrieved from
DisGeNET and IGU(G,P dr ) is the expression value of G
in time sample TSd in sequence Pr.

B. HUGSs comparison with FGSs

In this section, we address whether patterns discovered by
TU-SEQ contain potential genes/regulations which have not
been reported in previous literature yet. We first run TU-
SEQ to extract top-k HUGSs with respect to Pneumonia. We
also run a recent method called CTGR-Span [2], to discover
frequent gene regulation sequential patterns (i.e., FGSs) from
the dataset. Given a gene regulation sequential pattern α
and a disease dis, we evaluate the quality of the results
using popularity of a sequence [18] which is defined as

follows Pop(α, dis) =

∑
i∈α

w(i,dis)

|α| , where w(i, dis) is the
importance of the popular gene i for disease dis. Without loss
of generality, we consider the genes presented in Table III as
popular genes and w(i, dis) = 20− rank(i, dis) + 1. For the
genes which are not presented in the list, w(i, dis) = 1.

Table IV shows top-4 HUGSs extracted by TU-SEQ and
top-4 FGSs extracted by CTGR-Span, sorted by the utility
and support respectively. Table IV suggests that the frequent
sequences are not necessarily popular w.r.t. the disease even
though their support value is high. This is due to the fact that
these patterns are discovered based on their frequency in the
dataset which is not informative enough. On the other hand,
TU-SEQ returns the patterns whose popularity is relatively
high. These patterns help biologists select relevant sequences
regarding a specific disease and also identify the relationships
between important genes and the other genes.

Table V shows the average value of utility (i.e., GU), Pop
and Sup for top-1000 patterns returned by the methods. Given
sequence α, the last two columns present harmonic mean of

4http://www.disgenet.org/web/DisGeNET/menu
5http://www.disgenet.org/web/DisGeNET/menu
6The model can be plugged in as desired. The use of more sophisticated

the model may further improve the quality of the results.
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TABLE III
TOP-20 GENES RELATED TO PNEUMONIA

ܴܽ݊݇ ݁݊݁ܩ (݁݊݁ܩ)ܫܩ ܴܽ݊݇ ݁݊݁ܩ (݁݊݁ܩ)ܫܩ ܴܽ݊݇ ݁݊݁ܩ (݁݊݁ܩ)ܫܩ ܴܽ݊݇ ݁݊݁ܩ 1(݁݊݁ܩ)ܫܩ ܶܣܥ 100.00 6 ܥܲܶܨܵ 100.00 11 1ܣܲܶܨܵ 100.00 16 1ܤܩܯܪ 90.372 ܰܲܦܲ 100.00 7 ܤܲܶܨܵ 100.00 12 2ܬ2ܻܲܥ 100.00 17 1ܴܥ 90.343 6ܴܮܶ 100.00 8 1ܯܣܥܧܲ 100.00 13 2ܨ 100.00 18 2ܲܵܣܯ 90.304 2ܴܮܶ 100.00 9 3ܤܩܶܫ 100.00 14 1ܮܥܺܥ 100.00 19 ܣ2ܴܩܥܨ 90.305 ܦܲܶܨܵ 100.00 10 2ܮܥܺܥ 100.00 15 2ܮܤܯ 90.89 20 ܣ17ܮܫ 90.07
TABLE IV

TOP-4 HUGSS VERSUS TOP-4 FGSS WITH RESPECT TO SUPPORT AND GDA

݄݉ݐ݅ݎ݋݈݃ܣ .ܦܫ .݁)ݏ݁݊݁݃ ݂݋ ݁ܿ݊݁ݑݍ݁ܵ ݃. , (ߙ ݐݎ݋݌݌ݑܵ ݕݐ݈݅݅ݐܷ
ܷܶ − ܳܧܵ ܩܷܪ ଵܵ ( ܶܣܥ ) ( 2ܮܤܯ ܶܣܥ ) ( ܶܣܥ ) 9 ଶܵܩܷܪ250600 ( ܰܲܦܲ ) ( ܶܣܥ ) ( ܰܲܦܲ ) ( ܶܣܥ ) ( ܰܲܦܲ 3ܪܲܮܱܩ ) 9 ଷܵܩܷܪ250325 ( ܶܣܥ ) ( ܶܣܥ ) ( 2ܮܤܯ ܶܣܥ ) 9 ସܵܩܷܪ249741 ( PDPN ) ( CAT ) ( PDPN ) ( CAT ) ( PDPN ) 9  ૛૝૜૙૜ૠ

ܴܩܶܥ − ݊ܽ݌ܵ ܩܨ ଵܵ ( 2ܰܥܮ ) ( 12ܣ100ܵ 2ܰܥܮ ) ૚૚ ଶܵܩܨ59981 ( 2ܰܥܮ 3ܨܵܥ ) ( 12ܣ100ܵ ) ( 2ܰܥܮ ) ૚૚ ଷܵܩܨ59962 ( 12ܣ100ܵ 3ܨܵܥ ) ૚૚ ସܵܩܨ59931 ૚૚ ( 12ܣ100ܵ 2ܰܥܮ ) ( 12ܣ100ܵ 2ܰܥܮ ) 58514
TABLE V

THE AVERAGE VALUE OF Sup, GU, Pop, GU-Pop AND Sup-Pop FOR
TOP-1000 SEQUENCES RETURNED BY THE METHODS

Method Sup GU Pop GU-Pop Sup-PopTU-SEQ 5 198939 12.5 24.96 7.32CTGR-Span 10 44691 1.02 2.05 1.86
(GU, Pop) and (Sup, Pop) which are calculated as follows:
GU − Pop = 2 × GU×Pop

GU+Pop , Sup − Pop = 2 × Sup×Pop
Sup+Pop .

According to Table V, the higher values of these measures for
TU-SEQ show that even though the patterns returned by TU-
SEQ are not as frequent as those of returned by CTGR-Span,
they are not only much more relevant to the disease, but also
they are frequent enough.

C. Efficiency of TU-SEQ

In this section, we evaluate the performance of the algo-
rithms using the following measures: (1) Run Time (sec.): the
total execution time of the algorithms. and (2) Memory Usage
(MB): the average memory consumption per window.

Since there is no known algorithm can solve the problem
of mining top-k utility-based gene regulation sequential pat-
terns, we thus compare TU-SEQ with our proposed baseline
approach (i.e., TU-SEQBase) as described in subsection IV-A.
We also use the threshold-based approach (i.e., HUSP-Stream)
proposed in [14] as another baseline approach. After getting
the utility of the k-th pattern, that is the optimal minimum
threshold in Definition 9, we use this value as the threshold
for running the threshold-based method.

We compare TU-SEQ with TU-SEQBase and HUSP-Stream
on the GSE6377 dataset. The run time of mining top-k high
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0100020003000
100 500 1000 1500 2000
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c.) TU-SEQ TU-SEQ_Base HUSP-Stream

KK
Fig. 2. (a) Run time, (b) Memory usage on the GSE3677 Dataset

utility gene regulation sequential patterns by the methods
is presented in Figure 2(a). The results show that TU-SEQ
is more than 5 times faster than TU-SEQBase. For larger
values of k, TU-SEQBase cannot finish the mining in 12+
hours. Besides, the gap between TU-SEQ and TU-SEQBase
increases with the increase of k. The results indicate that the
proposed strategy (i.e., PES strategy) is effective for top-k
pattern mining.

The memory consumption of the algorithms on the dataset
is shown in Figure 2(b). It can be seen that TU-SEQ uses less
memory than TU-SEQBase. The reason is that TU-SEQ creates
a smaller search space because it applies the proposed strategy,
thus increases the threshold quicker than TU-SEQBase. Since
all the methods use similar approach to construct the tree, the
main factor in memory consumption is the threshold used by
each of them. HUSP-Stream uses the optimal threshold (i.e.,
minUtilopt), hence it prunes the search space efficiently and
its memory usage is less than the other methods.



273

Fig. 3. First page of the system with parameters

D. Demonstration

We also develop a web interface7 to our system using Java.
To the best of our knowledge, this is the first demonstration for
top-k high utility gene regulation sequential pattern discovery.
In order to evaluate TU-SEQ to find top-k HUGSs from a time
course gene sequential dataset, we mine the GSE6377 dataset.
According to DisGNET, Athma and Rheumatoid Arthritis are
among top 10 diseases that share genes with Pneumonia.
Hence, in our demonstration, we also present top-k high utility
gene regulation sequential patterns with respect to Athma and
Rheumatoid Arthritis. Moreover, the patterns discovered by
CTGR-Span [2] are presented. In the first page of the inter-
face, the user can specify disease, ranking measure, number
of output gene regulation sequences (i.e., k) and discovery
method(s).

In the demonstration, users are able to compare the algo-
rithms in the following aspects:

1) Meaningful results: Our method based on the utility
model produces more meaningful sequences than the
other method.

2) Top-k gene regulation sequential patterns presentation:
The sequences retrieved by the methods are provided in
a meaningful graphical presentation.

3) Additional information: Additional information such as
values for the other measures than the selected one for
ranking and top-20 genes related to the selected disease.

VI. CONCLUSION

In this paper, we defined the problem of top-k utility-
based gene regulation sequential pattern discovery to find
patterns with stronger meanings in biology. By solving this
problem, we addressed the limitations of previous frequency-
based gene regulation sequential pattern mining methods. We
first proposed a utility model by considering the importance
of genes with respect to a disease and their temporal behavior.
Then, using the utility model, we proposed an efficient algo-
rithm called TU-SEQ to find top-k high utility gene regulation
sequential patterns. Our experiments suggested that TU-SEQ is
much more efficient and scalable than baseline algorithms for
top-k high utility gene sequential pattern discovery. We also
showed that TU-SEQ is an effective tools to provide biologists
with further insights into the relationships of gene regulatory
events and interactions in biological studies with respect to a
specific disease.

7http://graph.cse.yorku.ca:8080/GeneAssociation/
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