
Computational Intelligence, Volume 33, Number 2, 2017

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS

RICKY FOK,1 AIJUN AN,1 AND XIAOGANG WANG2

1Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada
2Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada

We propose a particle filter-based learning method, PF-LR, for learning logistic regression models from
evolving data streams. The method inherently handles concept drifts in a data stream and is able to learn an
ensemble of logistic regression models with particle filtering. A key feature of PF-LR is that in its resampling,
step particles are sampled from the ones that maximize the classification accuracy on the current data batch. Our
experiments show that PF-LR gives good performance, even with relatively small batch sizes. It reacts to concept
drifts quicker than conventional particle filters while being robust to noise. In addition, PF-LR learns more accurate
models and is more computationally efficient than the gradient descent method for learning logistic regression
models. Furthermore, we evaluate PF-LR on both synthetic and real data sets and find that PF-LR outperforms
some other state-of-the-art streaming mining algorithms on most of the data sets tested.

Received 14 August 2014; Revised 12 December 2014; Accepted 25 May 2015

Key words: concept drift, ensemble methods, high dimensional data stream mining.

1. INTRODUCTION

A challenge in learning from data streams is that the underlying model generating the
data evolves over time with unknown dynamics, a phenomenon known as concept drift. If
left untreated, learned models become outdated, leading to classification errors. To keep
models up-to-date, methods of handling drifts must be imposed. In this article, we propose a
method to handle concept drifts by performing sequential Bayesian inference on streaming
data. We model concept drifts as the change in the hidden (or state) variables of a Hid-
den Markov Model (Breiman and Petrie 1966) and employ particle filtering (Doucet and
Johansen 2011), a sequential Monte Carlo (SMC) method, to discover the most up-to-date
concepts. Particle filtering can be considered as an ensemble-learning method that generates
a fixed number of classifiers (called particles) at each time step from the most important
classifiers in the previous step. Particles at time n are generated from a proposal distribu-
tion conditioned on the values of previous hidden variables. This proposal distribution is
usually assumed to be a commonly used Gaussian distribution. The likelihood values of the
generated particles on the most recent data instance (i.e., the observation at time n) are used
to compute the weights of the particles. Subsequent particles are generated near the ones
with the highest weights. At any time point, an ensemble of particles (i.e., classifiers) can
be selected for use in classification that can be carried out using weighted majority voting
from the ensemble. Although a particle filter can naturally handle data streams, its predic-
tive performance, especially on learning from noisy and concept-drifting data streams, has
much room to improve.

We improve the classification performance with particle filtering in the following
aspects. First, we propose a modification to the particle filter where the quality of a particle
is measured by the TA instead of the likelihood function used in the conventional particle
filter. We argue that the TA better approximates the predictive accuracy (as it approaches the
same asymptotic limit as the predictive accuracy) than the likelihood function, and modify

Address correspondence to Ricky Fok, Department of Computer Science and Engineering, York University, Toronto,
Ontario, Canada M3J 1P3; e-mail: ricky.fok3@gmail.com

© 2015 Wiley Periodicals, Inc.

148 COMPUTATIONAL INTELLIGENCE

the resampling step of particle filtering to resample from only the particles that maximize
the TA. Second, instead of processing training instances one by one (i.e., generating a new
set of particles based on each instance) as in conventional particle filter methods, we pro-
cess the input data stream batch by batch where each batch contains a small set of training
instances. Compared with updating particles based on single instances, batch-based learning
is more resistant to noise, reducing the chance of producing models that overfit to random
noise. Batch-based learning can better distinguish between noise and a concept drift because
a concept drift is more persistent in a batch than random noise. Third, as mentioned ear-
lier, a particle filter produces an ensemble of classifiers, each corresponding to a particle.
In conventional methods, an ensemble of fixed size is used in classification (e.g., the top 20
particles are used in classification with a majority voting scheme). We propose to use the
particles with the maximum TA to classify new instances. Because the number of such par-
ticles can vary batch by batch, the size of the ensemble used in our classification procedure
varies from time to time. Our experiments show that such an ensemble adapts to a concept
drift more quickly than a fixed sized ensemble where the size is specified by the user. This
is because of the fact that a smaller number of particles achieve the highest TA immediately
after a drift and that such particles can give higher predictive performance in the data of the
new concept, while an ensemble of fixed size would contain particles that may still model
the old concept. Fourth, to ensure that the current ensemble is at least as good as the one in
the last batch (especially when there is no drift between the two batches), the particle mean
over the ensemble for the last batch, chosen as a representation of the ensemble, is also con-
sidered for membership in the current ensemble. If the particle mean also gives the best TA
in the current batch, it will be included in the current ensemble and takes part in voting for
the prediction. Otherwise, it is simply discarded.

We apply the modified particle filter to learn an ensemble of logistic regression models
from streaming data. The resulting algorithm, logistic regression with particle filtering (PF-
LR), is evaluated thoroughly in our experiments. We find that PF-LR is robust to noise
and quick to react to concept drifts at the same time. It has good learning performance
even with relatively small batches. In the evaluation, we use both synthetic and real data
sets, and compare PF-LR to a number of other algorithms, including the particle filter that
uses likelihood for particle selection, the auxiliary particle filter (APF) (Pitt and Shephard
1999), a regularized version of APF (RegAPF), logistic regression with gradient descent,
and three state-of-the-art data streaming mining algorithms (Naive Bayes with Dynamic
Weighted Majority (DWM-NB) (Kolter and Maloof 2007), Hoeffding Tree with Leveraging
Bagging (LB-HT) (Bifet et al. 2010a)) and the Vowpal Wabbit system (VW) (Langford et
al. 2007), which is a fast implementation of stochastic gradient descent. We also compare
PF-LR with batch-based support vector machine and k-nearest neighbors. We show that
PF-LR outperforms these methods in terms of predictive accuracy and speed to react to
concept drifts on streaming data. Furthermore, even in the case of a very imbalanced class
distribution as in the CIRCLES (Nishida and Yamauchi 2007) data set where the signal-to-
noise ratio of the minority class can be very low, PF-LR still performs very well.

Particle filters are known to suffer from accuracy drop when learning from data with
high dimensionality, such as in the case of the HYPERPLANE data set (Hulten et al.
2001). To handle high-dimensional data, we implemented a naive dimensional reduction
(DR) mechanism with drift detection based on accuracy drop. When the data set has high
dimensionality, the DR procedure is triggered by a TA drop below a specified threshold. We
evaluate PF-LR with this dimension reduction procedure on the HYPERPLANE data set,
and find that PF-LR gives comparable performance with DWM-NB at a moderately high
number of dimensions, D ' 30, with a sufficiently high batch size of 100 instances, while
PF-LR and DWM-NB outperforms LB-HT and VW on all numbers of dimensions tested.

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 149

This shows the potential of PF-LR with a more efficient DR mechanism to tackle concept
drifts in high dimensions.

The contributions of this article are summarized as follows:

� We develop an algorithm based on particle filtering and conduct extensive experiments
with commonly used synthetic and real world benchmark data. We show that PF-LR out-
performs state-of-the-art stream mining algorithms on streaming data, that is, Hoeffding
Tree with Leveraging Bagging (Bifet et al. 2010a), DWB-NM (Kolter and Maloof 2007),
the VW system (Langford et al. 2007), batch-based support vector machine and k-nearest
neighbor, with higher accuracy and quicker reaction time to drifts. We also compare PF-
LR with the well-known APF (Pitt and Shephard 1999) and its regularized version, and
show that PF-LR outperforms these algorithms on the tested data sets.

� We propose to use batch-based learning in particle filtering and use a variable-sized
ensemble for prediction. The ensemble used for prediction contains the particles resam-
pled from the ones with the maximum TA. We show that the modified particle filter is
robust to noise when used to learn regression coefficients with quick reaction time to
concept drifts.

� We test PF-LR on high-dimensional data with a simple DR mechanism to show that
PF-LR has the potential in obtaining good predictive performance when coupled with a
reasonable DR mechanism. It implies that better performance could be obtained with a
more refined DR method (which is not the focus of this article).

� We test various quality measures and selection schemes. We find that PF-LR performs
the best with TA as a quality measure and choosing only the best performing classifiers
on each batch.

� This is the first attempt that uses TA as a criterion for particle selection and resampling.
We show that this results in little overfitting for logistic regression and that it gives higher
predictive accuracy than using the likelihood function as carried out in conventional
particle filters. We also show that our method performs better than gradient descent for
learning logistic regression models.

The organization of this paper is as follows. In the next section, we review related work
in the literature. Section 3 first gives a justification for particle filtering to be a strong can-
didate to handle concept drifts. It then presents the features and details of our proposed
algorithm, PF-LR. In Section 4, we present a procedure for DR, which will be used in our
experiments for testing the performance of PF-LR on high-dimensional data sets. The exper-
imental evaluation in which we compare PF-LR with other algorithms is given in Section 5
where we illustrate the ability of PF-LR to handle concept-drifting and noisy data streams.
The discussion and conclusions are given in Section 6.

2. RELATED WORK

Mining streaming data involves making inferences on time-varying data. More often
than not, the underlying attributes in relation to the observed data also change (Aggarwal
2007), a phenomenon known as concept drift. Particle filtering is an SMC method used
to estimate time series of hidden variables with the most recent data. It has been used in
mathematical finance (Hedibert and Tsay 2011), in tracking and navigation (Gustafsson et
al. 2002). However, there have been very few (if any) attempts to apply particle filtering
to handle drifts. As an application to classification tasks, particle filtering is an ensem-
ble method that tracks the movement of decision boundaries estimated by the regression

150 COMPUTATIONAL INTELLIGENCE

coefficients (i.e., the classifiers). Issues related to concept drifts are extensively studied in
the literature. Recent reviews include Kadlec et al. (2011), Alberg et al. (2012), Moreno–
Torres et al. (2012), and Gama et al. (2014). In this section, we survey previous work on
ensemble methods, existing methods to handle drifts, and particle filtering.

2.1. Ensemble Learning

Ensemble methods (for a review, see Rokach 2010) combine multiple classifiers to make
an overall prediction. Various methods differ in their mechanisms of combining predictions,
and in the ways that different classifiers are learned.

Weighted majority (Littlestone and Warmuth 1994) makes the overall prediction by the
weighted average over the ensemble of classifiers. For an ensemble withM classifiers, each
with weight wi , the overall prediction Np is

Np D

PM
i wipiPM
i wi

;

where pi is the prediction given by the i th classifier. The weight of each classifier is propor-
tional to its performance. For example, Littlestone and Warmuth (1994) starts with wi D 1
for each classifier and is reduced by half whenever the classifier predicts incorrectly.

Stacking (Wolpert 1992) is a classifier combination method where the overall predic-
tion is given by a meta-classifier trained on the outputs of classifiers in the ensemble. The
purpose of the meta-classifier is to learn the performances of the classifiers and making
adjustments if necessary. The performances of the classifiers are evaluated by cross vali-
dation. The outputs of these classifiers (and the class labels of the training examples for
training the meta-classifier) are passed onto the meta-classifier. The overall output is then
given by the meta-classifier.

The bagging method (Breiman 1996) generates M data sets from the training data by
sampling with replacement (bootstrapping). The M generated data sets have the same size
as the training data from which an ensemble of M classifiers are obtained. Then majority
voting is used to obtain an overall prediction.

Boosting (Freund and Schapire 1996) is a method to improve the performance of a
“weak” classifier, whose predictive accuracy can be as low as just better than random guess-
ing. A well-known algorithm that employs boosting is Adaboost (Freund and Schapire
1999). In Adaboost, classifiers are trained focusing on the subset of data being misclassified
by the previous classifier, with its weight given by its performance. This process iterates until
a specified number of classifiers are trained. The final prediction is given by the weighted
majority and is expected to be more accurate because of the diversity of the individual clas-
sifiers. A similar method is Arcing (Breiman 1998), which uses another weighting procedure
and decisions are made with majority voting.

2.2. Learning with Concept Drifts

Concept drift (Schlimmer and Granger 1986a; Maloof 2005) is a phenomenon in a data
stream where the underlying model that generates the data changes over time. Special atten-
tion to cope with changing concepts is necessary as they deteriorate classification accuracy
if left untreated (Schlimmer and Granger 1986b). To handle drifts, algorithms must contain
mechanisms to forget past examples when drifts occur and learn the most recent concepts.
Common techniques employed include (1) using ensemble methods, (2) forgetting past
instances by weighting, and (3) using sliding windows. Early examples include STAGGER
(Schlimmer and Granger 1986b) and the FLORA systems (Widmer and Kubat 1996). More

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 151

recently, Streaming Ensemble Algorithm (SEA) (Street and Kim 2001), Concept-adapting
Very Fast Decision Tree (CVFDT) (Hulten et al. 2001), using ensemble methods (Wang
et al. 2003), and DWM (Kolter and Maloof 2007), a method using �2-test along with rule
induction (Sotoudeh and An 2010). Furthermore, an ideal algorithm to cope with concept
drifts should have the following features (Tsymbal 2004): fast adaptation to drift, robustness
to noise and recognizing recurring concepts.

STAGGER (Schlimmer and Granger 1986b) maintains a set of concept descriptions
with corresponding weights. The weights are adjusted when new examples arrive. Also, the
weights decay over time in order to cope with drifts. The FLORA systems (Widmer and
Kubat 1996) keeps a window of currently reliable examples and hypotheses. The size of the
window is adjustable based on heuristics. When an old concept reappears, FLORA is able
to use previously stored instances for learning. SEA (Street and Kim 2001) is an ensem-
ble learning algorithm. Rather than generating multiple same-sized data sets with bagging
or boosting, SEA builds an ensemble of classifiers by learning from sequential chunks to
satisfy the one-pass constraint on stream mining. DWM (Kolter and Maloof 2007) is an
adaptive weighting scheme. It maintains a set of classifiers and updates their weights accord-
ing to the performance of each classifier. New classifiers are created, and outdated ones
are removed based on the global performance. Predictions are combined using weighted
majority. Wang et al. (2003) proposes an approach for handling drifts with ensemble meth-
ods. There, different classifiers are trained on chunks of data. Each of them is weighted by
their classification performance. The predictions are combined by weighted majority vot-
ing. CVFDT (Hulten et al. 2001) is an extension of an earlier VFDT (Domingos and Hulten
2000) with a drift handling mechanism. VFDT is a decision tree algorithm using the Hoeffd-
ing bound (Hoeffding 1963). CVFDT adapts to changing concepts by replacing out-of-date
subtrees based on their classification accuracy. Sotoudeh and An (2010) proposed a method
to detect drifts using the �2-test along with rule-based classification. Their detection method
is sensitive to partial drifts where drifts occur only in a subspace of the feature space. When
a drift is detected, rule quality measures are used to judge the relevance of old rules and
old instances. Finally, the VW (Langford et al. 2007) is a system focused on the learning
speed. It consists of optimization methods that employ online gradient descent with adaptive
learning rates.

Recent variants based on the methodologies outlined earlier have been proposed. Drift
detection methods include work carried out by Gomes et al. (2011), Ang et al. (2012),
and Bouchachia (2011a). Ikonomovska et al. (2011) proposed a variant of the Hoeffding
tree; Adae and Berthold (2013), Yao et al. (2012), Zhao et al. (2011), and Gama et al.
(2013) employed sliding windows. Bouchachia (2011b) proposed an algorithm that removes
and adds classifiers for drift adaptation. Minku and Yao (2011) proposed another ensemble
algorithm. Gama and Kosina (2011) and Z’liobaite et al. (2012) studied situations where
drifts are expected to happen.

2.3. Particle Filtering

Particle filtering (Doucet and Johansen 2011), or SMC, has been extensively used in
the inference of hidden Markov models (Breiman and Petrie 1966), where time series data
are generated by a hidden Markov chain. Importance sampling (see, e.g., Geweke 1989) is
used with the most up-to-date data. In every time step, the draws from importance sampling,
called particles, are used to estimate the most recent probability distribution of hidden vari-
ables (also called state variables), given the current prior distributions of the hidden variables
conditioned on their previous values. Resampling on the estimated distribution is often per-
formed to move the particles to regions with high probability densities so that improbable

152 COMPUTATIONAL INTELLIGENCE

particles are discarded. An alternative method to resampling is to simply look ahead of time
to propagate particles with the best expected future weight. This is the basis of the auxiliary
particle filter (Pitt and Shephard 1999).

Regularized particle filters summarized in Casarin and Marin (2009) employ the same
regularization procedures as in Liu and West (2001) and Musso et al. (2001), where the prior
distribution of current conditional distributions of hidden variables is generated by a set of
hyperparameters. It is shown there that the regularized auxiliary particle filter outperforms
other regularized particle filters with a large particle number.

Particle filters can be optimized to improve their efficiency. The most natural approach is
performed with particle swarm optimization (PSO) (Kennedy and Eberhart 1995). PSO is a
stochastic optimization method where at each time step, the particles are moved to maximize
an objective function based on a random linear combination of the best positions visited
by each particle, and the best known global position. The resulting particle filter, PSO-PF
(Klamargias et al. 2008) (also see Ji et. al. (2008)) was shown to be more efficient than the
particle filter, especially in the presence of noise. Finally, Grest and Krueger (2007) com-
bined gradient descent optimization with particle filtering. Finally, the concept of particle
filtering has been applied to static problems. For instance, Moral et al. (2006) developed a
framework for such purpose, which they call Monte Carlo samplers. Chopin (2002) applied
batch processing in particle filtering for static models. However, it is unclear how batch
processing would affect the performance of particle filters in the presence of drifts.

Because particle filtering is designed to estimate the hidden attributes of time series
data, it would be a useful tool to mine data streams. Particle filtering can be thought as
an ensemble method, where new classifiers are generated from the ones with high perfor-
mances, while low performing ones are discarded. However, existing particle filters weight
particles in proportion to their likelihoods. In noisy environments, these methods tend to
overfit. Our proposed algorithm employs particle filtering with the TA of each particle as its
weight. Majority voting is used to estimate the best classifier for the most current concept.
This is repeated for each time step, replacing the previously learned classifiers when better
ones are generated. At the same time, replacing out-of-date classifiers as drifts occur. We
found that this procedure leads to very little overfitting.

3. PARTICLE FILTERING FOR CLASSIFICATION

In this section, we first provide details of the conventional particle filtering process
and show that particle filtering can naturally adapt to concept drifts. We then present the
features and algorithmic details of our proposed PF-LR method. Last, we discuss how TA
as a quality measure would better approximate the predictive accuracy compared with using
the likelihood as the quality measure.

3.1. The Drift Adaptability of Particle Filters

Particle filtering is a method of sequential Bayesian analysis with SMC on hidden
Markov models (HMM). It has been shown to be effective in modeling dynamical mod-
els (Doucet and Johansen 2011). In particular, for a time series of model parameters (i.e.,
the hidden states of the HMM) ˇ.1WT / WD ¹ˇ.1/; : : : ;ˇ.T /º, particle filtering can be used
to estimate the posterior distribution of the model parameters p.ˇ.1WT /jx.1WT // by inferenc-
ing on observed time series data x.1WT /. Two assumptions of HMM are, first, that the model
parameters evolve in such a way that it is only dependent on the most recent value. In
other words, p.ˇ.n/jˇ.1Wn�1// D p.ˇ.n/jˇ.n�1//. Second, the observed data at time n are

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 153

generated solely by ˇ.n/, the parameters at the corresponding time. That is, p.x.n/jˇ.1Wn// D
p.x.n/jˇ.n//. By the repeated use of Bayes’s theorem, the posterior distribution of the model
parameters can be written as

p
�
ˇ.1WT /jx.1WT /

�
D p1

�
ˇ.1/jx.1/

� TY
nD2

pn

�
ˇ.n/jx.n/;ˇ.n�1/

�
: (1)

The series of product on the right-hand side is highly suggestive that the inference can be
carried out sequentially. In fact, SMC estimates the conditional probability at each time with
importance sampling by generating model parameters from a chosen proposal function and
calculating their weights. We write the proposal function as

�
ˇ.1WT /

�
D q1

�
ˇ.1/

� TY
nD2

qn

�
ˇ.n/jˇ.n�1/

�
: (2)

Dividing equation (1) by equation (2) gives the importance weights

w.1WT / D w.1/
TY
nD2

w.njn�1/;

where the incremental weight is

w.njn�1/ D
pn

�
ˇ.n/jx.n/;ˇ.n�1/

�

qn

�
ˇ.n/jˇ.n�1/

� :

Now, suppose at time n, we have an approximation of the posterior through time 1 and time
n � 1 given by M particles and their weights ¹ˇ.1Wn�1/i ; w

.1Wn�1/
i º, where i D ¹1; : : : ;M º

and observed data x.n/, sequential importance sampling proceeds as follows:

(1) Generate M particles of ˇ.n/i from qn.�jˇ
.n�1//, where i D ¹1; : : : ;M º is the particle

index.
(2) Calculate the M incremental weights w.njn�1/i for each particle.

(3) Calculate the weights w.1Wn/i D w
.1Wn�1/
i � w

.njn�1/
i .

Then, we have updated the posterior estimation from the one at time n � 1 to time
n; p.ˇ.1Wn/jx.1Wn//, represented by the tuple ¹ˇ.1Wn/; w.1Wn/i º. In practice, the calculation of
the incremental weights is usually simplified by writing the conditional posterior as

pn

�
ˇ.n/jx.n/;ˇ.n�1/

�
D gn

�
x.n/jˇ.n/

�
fn

�
ˇ.n/jˇ.n�1/

�

and setting the proposal function to be qn.ˇ
.n/jˇ.n�1// D fn.ˇ

.n/jˇ.n�1//. Then the incre-
mental weight for each particle is just the likelihood, wnjn�1i D gn.x.n/jˇ

.n//. As the
final step, the particles are resampled M times with probabilities given by their normalized
weights. This is to remove particles with low weights while duplicating the ones closer to
the posterior maximum so as to reduce the particle variance at subsequent times. When the

154 COMPUTATIONAL INTELLIGENCE

variance of the weights is large, resampling often removes all particles other than the one
with the largest weight. Pitt and Shephard (1999) proposed the auxiliary particle filter. In
essence, it employs a procedure to replace resampling without the aforementioned deficit
by generating an auxiliary variable for each particle—an index denoting the parents of the
particles in the current time step. The auxiliary variables are generated with a distribution
proportional to the weight of each particle, and therefore, improbable particles are less likely
to contribute.

In essence, the particle filter tracks the movement of model parameters as data arrive.
To understand that this is important for classification tasks, consider the following exam-
ple. Suppose one chooses a regression model for classification. When a drift occurs, the
change in the model parameters corresponds to the movement of the decision boundaries
over time. Therefore, particle filters could be used to handle drifts by tracking the movement
of decision boundaries.

As an illustration, a typical result of the particle filter is shown in Figure 1. Sup-
pose that the evolution of the parameters ˇ.n/ and x.n/ is according to two-dimensional
Gaussian distributions

ˇ.n/ � N
�
ˇ.n�1/; I

�

x.n/ � N
�
ˇ.n/; I

�
:

(3)

We imposed two types of drifts in the data set—ones that are small and gradual throughout
in accordance with equation (3), as well as a sudden jump at t D 50. In either case, the par-
ticle filter is able to track the movement of the model parameters. This provides a motivation
that particle filtering can be used in classification tasks to handle drifts, and it is natural to
construct a drift tolerant algorithm with the particle filter. Of course, concept drifts can be
expected to occur almost all the time outside of experimental conditions, because the under-
lying mechanisms that generate such data are often complex, dynamical, and even unknown.

FIGURE 1. A typical result from particle filtering. The model parameters are denoted by ˇ1 and ˇ2 on the
vertical axis. The true model parameters are denoted by the black solid line, whereas the estimated posterior
mean is in red dashed. [Color figure can be viewed at wileyonlinelibrary.com]

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 155

The tracking property of particle filters suggests that it would be an excellent candidate
in mining such data. In the upcoming subsection, we discuss the essential features of the
particle filter algorithm we propose in this article for classification learning.

3.2. Features of Particle Filter-Based Learning Method

We present the essential features possessed by the proposed particle filter algorithm
(PF-LR) for learning classification models from data streams before turning to the details
of the algorithm. For the purpose of constructing a fast and accurate algorithm for learning
logistic regression models, our algorithm possesses the following properties: (1) choosing
the model parameters that gives the maximum TA, (2) batch processing, (3) discarding all
previously processed data, (4) no drift detection when the batch size is small, and (5) a sta-
tistically monotonic increasing predictive accuracy in static situations. Each of the features
is discussed in the following.

In practice, it is important to realize that maximizing the likelihood does not imply
maximum predictive accuracy. Traditionally, a resampling or an auxiliary variable sam-
pling procedure is applied to suppress the exponential error from SMC using weights
proportional to the likelihood function. However, during our investigation, we found that
using the likelihood as the weights gives rather poor results. Instead of weighting by the
likelihood, we choose the set of parameters that results in the highest classification accu-
racy during training. We found that this leads to less overfitting for logistic regression. In
Section 3.4, we argue that using TA is expected to give a higher performance than using the
likelihood function.

Because PF-LR performs regression, batch processing is a natural choice. To satisfy the
one-pass constraint for data stream mining (Aggarwal 2007), we opt for a batch-by-batch
processing rather than using sliding windows, so each training example is processed only
once to reduce the running time. Further, using batch processing is more noise-resistant
than example-by-example processing. Handling data example-by-example cannot distin-
guish between noise and drifts. In the case of high dimensionality, large batches are usually
required for accuracy. Under such circumstances, the batches usually contain numerous
drifts leading to the deterioration of the classification performance. In such cases, a drift
detection mechanism with DR techniques can improve the performance.

In order to obtain the most up-to-date and accurate estimates of the regression param-
eters, we discard all previously processed data and use only the current batch to estimate
the model parameters for the current time. This is to make the algorithm faster to react to
concept drifts and at the same time, save memory space in the stream-mining environment.

The particle filter is very adaptive to concept drifts as seen in the previous section. In
low dimensions, it is not necessary to implement a drift detection algorithm. On the other
hand, one could argue that having a drift detection algorithm combined with accumulating
data would give a more precise regression at the cost of computation time. However, we
do not find this necessary at present as the algorithm presented in this article already out-
performs other algorithms in classification accuracy in low dimensions. In Section 5.7, we
implemented a simple drift detection algorithm along with a DR procedure and show that it
improves the performance of the algorithm in high-dimensional cases.

Because we do not process previous data, it is important to ensure that the learned
parameters converge. In other words, we require that the predictive accuracy to be an
increasing monotonic function of time in the absence of drifts. This is to say that the learned
parameters must be at least as good as the previous ones when no drift occurs. Recall that
the particle filter algorithm learns by choosing the set of parameters giving the best accuracy
on training data. To ensure a strictly increasing accuracy, we compare the performances of

156 COMPUTATIONAL INTELLIGENCE

each set of model parameters generated by SMC along with the mean of the learned param-
eters from the last batch. Then, the learned parameters in subsequent times are guaranteed
to be at least as good as previous ones in noiseless environments.

We expect our algorithm to be highly competitive with others in mining real data in
terms of classification accuracy, and stability against drifts. The algorithm and the effects
of different input parameters are discussed in the next two subsections. Then we perform
experiments to test the algorithm’s performance in Section 5.

3.3. The Particle Filter-Based Learning Method Algorithm

We use the following notations, asterisked quantities, ˇ�, denote the learned parameters
selected from a set of particles, ˇ. The algorithm proceeds as follows: given a batch of data
and the learned parameters from the previous batch, ˇ�.n�1/, an ensemble of parameters
(i.e., the particles) is randomly drawn from a chosen proposal distribution conditioned on
previous particles with the largest TA. For the m-th particle, ˇ.n/m , the conditional proposal

function is chosen to be the multivariate Gaussian distribution with mean ˇ�.n�1/
k
.n�1/
m

and a

diagonal covariance matrix ˙ as an input, where k.n�1/m is an index denoting the parent of
ˇ.n/m . This process is to be repeated for subsequent batches. Also, we choose to learn logistic
regression models as an example to test the proposed particle filter algorithm, and refer the
particle filter with logistic regression algorithm as PF-LR.

The algorithm uses the following notations. The a-th instance in batch n is denoted by
x.n/a and its class label is ya, where ya 2 ¹0; 1º. The logistic function is

p
�
y.n/a D 1

�
D f .�a/ D

1

1C e
�a

�
ˇ.n/;x.n/a

� : (4)

We use the following sign convention

�a

�
ˇ.n/; x.n/a

�
D ˇ.n/ �

�
�1; x.n/a

�
:

The prior distribution and the proposal function are set to be equal. The proposal func-
tion qn.ˇ

.n/jˇ.n�1// is set to be a multivariate Gaussian distribution with mean ˇ.n�1/ and
covariance matrix †.

The algorithm for each batch n is given in algorithm 1. After generating particles from
the proposal distribution, the performance of each particle is evaluated by matching its pre-
dicted class labels with the true ones. Prediction of class labels is carried out by checking
whether the value of the logistic function in equation (4) is larger than 0.5 for each instance,
that is, f .ˇ.n/; ¹x; yº.n// > 0:5. The “mean particle” from the last batch, which is the mean
of the classifier learned from the last batch, is also considered as a “generated” particle for
this batch. The purpose of this is to stabilize PF-LR in static situations, so that subsequently
learned classifiers are not worse than previous ones because of the random nature of Monte
Carlo methods. After the performance of each particle is obtained,M auxiliary indices k.n/m ,
wherem 2 ¹1; : : : ;M º, are sampled uniformly among the indices corresponding to the best
performing particles1. The purpose of this step is to assign the parents of ˇ.nC1/m to be ˇ.n/

k
.n/
m

.

1 As the batch size is typically smaller than the particle number, there will typically be more than one particle that gives
the highest TA. For each particle, the logistic function with threshold set to be 0.5 is used to obtain the TA on each batch.
Algorithm 2 shows this procedure.

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 157

The algorithm at each time step returns the set of best performing classifiers and the auxil-
iary indices for the next step. The inputs of PF-LR are the batch size B , parameters for the
proposal (Gaussian) distribution †, the particle number M , and the training data. The rest
of the inputs shown in algorithm 1 are obtained from time n � 1. We assume that the com-
ponents of all ˇ are uncorrelated with each other, and a component-wise notation is used
in the algorithm, where we write the m-th particle ˇ.n/m as its i-th component ˇ.n/im . Because
the covariance matrix is diagonal with the i-th element being �i , drawing from the multi-
variate Gaussian proposal distribution is equivalent to generating each particle component

ˇ
.n/
im from a one-dimensional Gaussian distribution N

�
ˇ
.n/
im ; �i

�
one by one.

Algorithm 1. PF-LR for the n-th batch

Inputs:
¹x; yº.n/, the training data in batch n

D, the dimension of all ˇ

B , the number of instances in a batch

M , the number of particles

�i , the parameters of the proposal function

ˇ
.n�1/
0 , the combined parameters from the previous batch

k
.n�1/
m , the indices where the m-th particle will be generated from

Outputs:
ˇ
.n/
0 , the combined regression parameters for batch n

¹ˇ�.n/º, the ensemble of parameters learned from batch n

k
.n/
m , the indices where the m-th particle will be generated from in the next batch

Step 1: For m 1 WM

Step 1.1 : For i 1 : D, Generate ˇ.n/im � N
�
ˇ
.n�1/

i;k
.n�1/
m

; �i

�
.

Step 1.2 : Calculate TA Am AmŒf .ˇ
.n/
m ; ¹x; yº.n//; B� from Algorithm 2.

Step 2: Calculate training accuracy using the classifier from last batch
A0 A0Œf .ˇ

.n�1/
0 ; ¹x; yº.n//; B�

Step 3: Uniformly generate a list of M indices k.n/m 2 K.n/ for each particle, where
K.n/ D ¹k.n/jAk.n/ D max¹Aj º; j 2 ¹0; : : : ;M ºº

Step 4: Get the averaged best performing particle for the next batch
ˇ
.n/
0

Ň , where Ň is the mean of ˇ.n/
k.n/

over all k.n/

Step 5: ¹ˇ�.n/º the ensemble of ˇ.n/ that gives the highest accuracy

Step 6: return ˇ.n/0 ; ¹ˇ�.n/º and k.n/m

158 COMPUTATIONAL INTELLIGENCE

Algorithm 2. Calculating accuracy from the training set
Inputs: f .�/; ¹x; yº.n/;ˇm, B

Outputs: Am, the accuracy 2 Œ0; 1�

Step 1: A0m 0

Step 2: For a 1 W B

If .f .ˇm; x
.n/
i / > 0:5 AND y

.n/
a D 1/jj.f .ˇm; x

.n/
a / < 0:5 AND y

.n/
a D 0/

then A0m A0m C 1

Step 3: return A0m=B

Here we discuss the impacts of the inputs to the performance of PF-LR. In fact, a
good choice of these parameters depends on whether the decision boundaries are static or
dynamic. In static situations, large batch sizes would result in more accurate estimates of
the regression parameters. However, in the presence of concept drifts, models learned from
large batches do not necessarily give a better accuracy because the model parameters could
vary significantly within a batch, and the model learned from the batch would not be repre-
sentative of the truth. This results in a poor predictive accuracy as the model parameters are
not learned well. On the other hand, too small of a batch could lead to a poor estimation of
model parameters simply because of data sparsity.

The parameters of the proposal function �i control the spread of ensembles from the
previously learned classifier, ˇ�.n�1/. Therefore, �i controls the recovery time post-drift
and the precision of learned parameters. In the absence of drifts, a small spread is preferred
because it gives a higher precision. In contrast, a larger spread is favorable when the data
contain large or rapid drifts because a larger spread allows the particle filter to search for the
best estimate for the model parameters in a wider range. For fast drift recovery, the value
of �i should be chosen so that PF-LR would generate at least one particle close to the new
concept for a given particle number M with high probability.

The particle numberM is the number of parameters generated from the proposal distri-
bution of each batch. Generally, a larger M increases the precision of parameter estimation
and improves drift recovery, but at the expense of computational efficiency. Finally, because
the algorithm does not contain any adaptive elements, its complexity is linear. For a total of
T batches with B instances of each batch and M particles, the complexity is of O.MTB/.
Experimental results of the complexity is given in Section 5.

3.4. Likelihood versus Training Accuracy

Because of the small patch size required to give an accurate description of changing
concepts, some conventional methods relying on optimizing the predictive accuracy may
become ineffective for mining streaming data. For instance, predictive accuracy obtained
from holding out a subset of the small batch at hand becomes unreliable, while cross val-
idation may become too costly. This section shows that using the TA for particle selection
in classification tasks is more suitable than using the likelihood function as performed in
conventional particle filtering.

For batch n, finding an estimator that maximizes the TA is equivalent to minimizing the
expected loss function

E
a2S

²�
ya � I

h
f
�
ˇ.n/; x.n/a

�
> 0:5

i�2³
;

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 159

where S is the set of indices denoting the training data, I Œ˛� denotes the indicator function,
with I Œ˛� D 1 if ˛ is true and 0 otherwise. The predictive accuracy at batch n is calculated
by using the estimator that maximizes the classification accuracy on a testing data set, which
is independent and identically distributed (i.i.d.) as the training data. Given testing data®
x0a0 ; y

0
a0

¯
, for a0 2 S 0, where S 0 is the set of indices of the testing data, the loss function

corresponding to the predictive accuracy is

E
a02S 0

²�
y0a0 � I

h
f
�
ˇ.n/; x0.n/a0

�
> 0:5

i�2³

Both loss functions have the same form. Because x and x0 are i.i.d., the loss functions must
also be i.i.d.. Therefore, as sizes of S and S 0 tend to1, both loss functions approach the
same limit. As a result, maximizing the TA tends to maximize the predictive accuracy in the
limit of large batch sizes.

The likelihood function is

L.ˇjx/ D
SY
aD1

Œf .ˇ; xa/�
ya Œ1 � f .ˇ; xa/�

1�ya ; (5)

which is not i.i.d. with the predictive accuracy because they do not have the same functional
form. Maximizing the likelihood is not guaranteed to maximize the predictive accuracy even
in the asymptotic limit with large batch sizes. Therefore, classification tasks using the TA
as a quality measure is expected to outperform the ones using the likelihood.

The presence of concept drifts poses another difficulty for the likelihood approach. Sup-
pose a concept drift occurs between instances c and c C 1, with � and � 0 denoting the old
and new concepts, respectively. Then the likelihood function for this batch would be

L.�; � 0jx/ D
cY
aD1

Œf .�; xa/�
ya Œ1� f .�; xa//�

1�ya

SY
aDcC1

Œf .� 0; xa//�
ya Œ1� f .� 0; xa//�

1�ya :

However, the maximum likelihood approach aims to find the maximum likelihood estimator
that maximizes equation (5), which assumes that all instances in the batch belong to the
same concept. This is to say that the maximum likelihood estimator would maximize an
unsuitable objective function. This is not the case with maximum TA, because it finds an
estimator that still maximizes the predictive accuracy in the asymptotic limit. Therefore, it
is expected that TA is more efficient for particle selection than the likelihood function. In
Section 5, we will show that this is indeed the case.

4. DIMENSIONAL REDUCTION WITH DRIFT DETECTION

It is well known that particle filters perform poorly in high dimensions. To alleviate the
detrimental effects from the high number of dimensions, we implement a drift detection
algorithm with a DR procedure that is only used in high-dimensional cases. We say a drift is
said to have occurred if the TA is less than a predefined threshold, Ac . Suppose this happens
at batch n, the maximum likelihood estimator ˇMLE for the current batch is found with
gradient descent. Then, the likelihood ratio of the fitted model to the model ˇ0k , where the
k-th component of regression coefficient is set to zero (i.e., ˇk D 0, where k 2 ¹1; : : : ;Dº),
is calculated. The likelihood ratio with the k-th component set to zero is

160 COMPUTATIONAL INTELLIGENCE

Dk D �2 log
L
�
ˇ0kjx

�
L .ˇMLE jx/

;

which is �2 distributed. A �2 test for each Di is performed to test the significance of each
component, giving a p-value, pk for each component k. DR is achieved by choosing only
the significant components and setting all others to zero. To do this, a projection vector P
with the k-th component Pk D I Œpk < 0:05� is obtained, where I Œ�� denotes the indicator
function. Then the particles are projected by P to give the dimensionally reduced particles.

Algorithm 3 shows this procedure, which is carried out immediately after obtaining the
training accuracies of the particles when dealing with high-dimensional data. This algorithm
returns the maximum likelihood estimator of the current batch, ˇ.n/MLE , and a projection
vector P .n/ onto the subspace where the p-values of the components are less than 0.05.
These quantities are used in the next batch. If a drift is detected at batch n, the particles
at batch n C 1 are generated from ˇ

.n/
MLE , and the training accuracies Ai ; i 2 ¹1; : : : ;M º

are calculated from the projected particles, ˇ.nC1/m D P.n/ � ˇ.n/m . The projection vector is
kept constant until another drift is detected. The TA, A0, calculated from the mean of the
best performing particles in the last batch, is not projected by P.n/ so that the mean is still
in the subspace of the previous concept. This makes the algorithm more robust to noise
because particles in the new concept is compared along with the previous particle mean that
resides in the subspace of the previous concept. The analysis in Section 5.7 shows that a DR
procedure dramatically improves the performance of PF-LR in high dimensions.

Algorithm 3. Dimensional reduction with drift detection

Inputs:
¹x; yº.n/, data in batch n
max¹Aiº, the maximum training accuracies of all particles,
Ac , the threshold on the global training accuracy

Outputs:

P .n/, a projection vector for the relevant dimensions

ˇ
.n/
MLE , the maximum likelihood estimator for batch n.

Step 1: If max ¹Aiº < Ac

then ˇ.n/MLE the maximum likelihood estimator using gradient descent

Step 2: For k D 1 W D

Step 2.2: ˇ0.n/
k
 the fitted model with ˇk D 0 using gradient descent

Step 2.3: Dk �2 log
L
�
ˇ
0.n/

k
jx.n/

�

L
�
ˇ
.n/
MLE

jx.n/
�

Step 2.4: P .n/
k
 I Œpk < 0:05�

Step 3: return P .n/, ˇ.n/MLE

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 161

5. EXPERIMENTAL EVALUATION

In this section, we compare the performance of the PF-LR with other algorithms. First,
we compare the performances of using TA and using the likelihood as quality measures. We
then compare different particle selection methods, namely, using either a fixed number of
best performing particles or just the best performing ones. Then, we compare PF-LR with
the APF and its regularized variant (RegAPF) as well as the regularized version of PF-LR
(RegPF-LR).

We also compare PF-LR to other data streaming classification algorithms:
Hoeffding Tree (Domingos and Hulten 2000) LB-HT2 (Bifet et al. 2010a), DWM-NB3

(Kolter and Maloof 2007), the VW system4 (Langford et al. 2007), batch Support Vec-
tor Machine (batch-SVM5), and batch k-nearest neighbor (batch-kNN6). SVM constructs
a linear decision boundary, such that the distance between the boundary and the nearest
data points of the two classes is maximized. kNN predicts the class membership as the
majority class within the k nearest instances of a test point. DWM-NB is an online learn-
ing algorithm that processes one example at a time without drift detection, whereas LB-HT
employs adaptive sliding windows as a drift-detection mechanism. Vowpal Wabbit is a scal-
able implementation of stochastic gradient descent. Unless otherwise stated, throughout this
section we choose the batch size to be B D 50, the particle number M D 100, and the
parameters of the proposal function �i D 0:1 for all i . This fixed choice of �i is justi-
fied by the results comparing our algorithm with the regularized particle filters shown in
this section.

5.1. Data Sets

We use three commonly used synthetic data sets (SEA (Street and Kim 2001), CIR-
CLES (Nishida and Yamauchi 2007), and HYPERPLANE (Hulten et. al. 2001)), another
synthetic data set we created that contains many drifts (which we call MANY), a real elec-
tricity pricing data set (Harries 2007) to demonstrate PF-LR’s drift adaptability and noise
resistance on streaming data, and two real static data set obtained from the UCI Machine
Learning Repository (Bache and Lichman 2013), breast cancer and skin segmentation data,
to show that PF-LR can be used in real static data set for incremental learning.

All synthetic data sets used in this section are generated by the data generator from
Minku et al. (2010) and contain 10% class noise unless stated otherwise. The specifics of
each data set are given as follows. The sizes of the SEA, HYPERPLANE, and CIRCLES
data set are the same used in Kolter and Maloof (2007). The size of the MANY data set is
determined by requiring that a drift occurs every 100 examples for a total of 20 concepts.

� The SEA data set contains feature variables x 2 Œ0; 10�3, with class labels y D 1 if
x1 C x2 < � and y D 0 otherwise, where the value of � changes over time to simulate
concept drifts. The SEA data set in our experiments has four concepts (i.e., � takes a
value from ¹8; 9; 7; 9:5º in turn). The training data set contains 40,000 examples with

2 The input parameters we used for LB-HT are ensembleSi´e D 10;weightShrink D 6; deltaAdwin D
0:002; gracePeriod D 200; splitConf idence D 0; tieT hreshold D 0:05 and the splitting criterion is
according to the information gain.

3 The input parameters we used for DWM-NB are ˇ D 0:5; � D 0:01;maxExperts D1, and period D 50.
4 The default parameters of VW are used, and we only allow 1 pass through each batch.
5 We follow the method of Shalev-Shwartz et al. (2007) and set � D 0:001:
6 We set k = 10., which is the default in MOA.

162 COMPUTATIONAL INTELLIGENCE

TABLE 1. The concepts, their signal-to-noise ratio,
and their class IR in CIRCLES.

Concepts ˇ00 ˇ01 ˇ02 � IR

1 0.15 0.2 0.5 0.17 0.018
2 0.2 0.4 0.5 0.30 0.032
3 0.25 0.6 0.5 0.51 0.052
4 0.3 0.8 0.5 0.67 0.076

The IR is calculated from the areas in the feature
space corresponding to the two classes, that is, IR D
	ˇ02
0
=
�
4 � 	ˇ02

0

�
.

10,000 examples for each concept. As a preprocessing step, the feature variables are
normalized to the range [0,1].

� The feature space of CIRCLES is specified by x 2 Œ0; 2�2, with class labels y D 1 if
�0 < 0 (i.e., inside a circle) and y D 0 otherwise , where

�0 D �ˇ020 C
�
x1 � ˇ

0
1

�2
C
�
x2 � ˇ

0
2

�2
:

Concept drifts are simulated by changing the values for ˇ00; ˇ
0
1, and ˇ02 (which represent

the radius and center of the circle). The CIRCLE data set contains four concepts whose
corresponding ˇ0i (for i D 0; 1; 2) values are shown in Table 1. The training set for CIR-
CLE contains 40,000 examples with 10,000 examples for each concept. In addition, the
training set is imbalanced, with the examples inside the circle belonging to the minor-
ity class. The class imbalance ratio for each concept is also shown in Table 1. The four
concepts also have an increasing signal-to-noise ratio, defined by

� D
number of true class labels in the minority class

number of false class labels in the minority class
:

and listed in Table 1. Because the training sets are highly imbalanced, we test the algo-
rithm on testing data that contain an equal number of the two classes for each concept,
giving a baseline accuracy of 50%.

� The feature space of MANY is such that x 2 Œ0; 10�3. It contains 20 concepts with drifts
occurring every other batch. An instance belongs to class 1 if

�ˇ00 C ˇ
0
1x1 C ˇ

0
2x2 C ˇ

0
3x3 < 0;

and it belongs to class 0 otherwise. The ˇ0i (for i D 0; 1; 2; 3) values for the 20 con-
cepts are listed in Table 2. The instances are normalized to [0,1] before processing. The
training data set for MANY contains 2000 examples, with 100 examples belonging to
each concept.

� HYPERPLANE contains features variables x 2 Œ0; 1�10, with class labels y D 1 if .xi C
xiC1C xiC2/=3 > 0:5, and y D 0 otherwise. The data set has four concepts each with a
different i value taken from ¹1; 2; 4; 7º. The training data set for HYPERPLANE contain
40,000 examples, with 10,000 examples for each concept. To test the algorithms on high-
dimensional data, we further increase the number of dimensions D by appending the
data set with feature variables uniformly generated on Œ0; 1�d , where d 2 ¹5; 10; 15; 20º.
When dimensionality is not mentioned for this data set, D D 10. The DR technique
discussed in Section 4 is used only on this data set.

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 163

TABLE 2. The 20 concepts in MANY containing gradual small and sudden large drifts.

Concepts ˇ00 ˇ01 ˇ02 ˇ03 Concepts ˇ00 ˇ01 ˇ02 ˇ03

1 8.3 0.5 0.7 0.6 11 8.5 0.49 0.38 0.49
2 8 0.72 0.41 0.52 12 8 0.59 0.6 0.49
3 8.5 0.66 0.55 0.56 13 8.2 0.64 0.4 0.64
4 8.10 0.52 0.6 0.62 14 8 0.65 0.5 0.65
5 8.5 0.44 0.35 0.44 15 8.5 0.68 0.4 0.68
6 8.6 0.78 0.5 0.68 16 8.1 0.71 0.55 0.71
7 8.5 0.54 0.55 0.54 17 7.6 0.75 0.31 0.65
8 7.8 0.78 0.58 0.68 18 7.3 0.46 0.31 0.66
9 8.1 0.43 0.51 0.43 19 7 0.4 0.7 0.5
10 8.0 0.44 0.54 0.54 20 8 0.5 0.5 0.5

� The ELEC data set contains a time series of 45,312 instances recorded at 30-min inter-
vals. The class labels are UP and DOWN, which indicate whether the price is higher than
the moving average price over the last 24 h. The original data set contains eight variables
including the ones denoting the time, date, day, and period. We ignore these three vari-
ables and rely solely on the particle filter to track the drifts as each batch is processed.
The remaining five feature variables are nswprice, nswdemand, transfer, vicprice, and
vicdemand. The values of each of these variables are normalized by a factor of 1,000 to
bring them to the range of order 1.

� The Wisconsin Diagnostic Breast Cancer (WDBC) data set has 569 instances, each of
which contains 30 features of cell nuclei, extracted from images of breast mass, and a
label denoting the diagnosis (either “benign” or “malignant”). There are 357 benign and
212 malignant samples in the data set.

� The Skin Segmentation (SS) data set has 245,057 instances. Three attributes denoting
the color (B, G, and R) values from face images of various age groups, race groups, and
genders. The class labels denote whether the images are taken from skin samples. The
classes are best separated by nonlinear decision boundaries in the feature space.

To obtain the predictive accuracy on each of the four synthetic data sets (SEA, CIR-
CLES, MANY, and HYPERPLANE), the learned model from each batch of the training data
is tested on 1,000 testing examples generated from the same concept of the training batch.
Because no testing data can be generated for the real ELEC data set, prequential evalua-
tion is performed to obtain the predictive accuracy on this data set, where the model learned
from the current batch is used to predict the class labels for the examples in the next batch.
The reported predictive accuracies are averaged over 50 runs.

Care is taken when comparing algorithms with different learning techniques. The
DWM-NB, LB-HT, and VW are incremental algorithms that process one example at a time,
whereas PF-LR can process a batch of 50 instances for the synthetic data sets. To estimate
the predictive accuracy of incremental algorithms, we train a model on each batch and then
test it on the same 1,000 instances as PF-LR. The performances of these algorithms7 are
evaluated on 1,000 testing examples for each batch. We compare the average predictive
accuracy of DWM-NB over a batch to those of PF-LR and LB-HT.

7 We used Weka (Hall et al. 2007) to evaluate DWM-NB and MOA (Bifet et al. 2010b) to evaluate LB-HT.

164 COMPUTATIONAL INTELLIGENCE

FIGURE 2. Predictive accuracy using the likelihood (dot-dashed) and training accuracy (solid). The noise
level of the training data set is set to zero. Also, dimensional reduction is not used on the HYPERPLANE data
set (where the number of dimensions is 10). Drifts occur right after batches 200, 400, and 600 on HYPER-
PLANE, SEA, and CIRCLES. On MANY, drifts occur at every other batch. [Color figure can be viewed at
wileyonlinelibrary.com]

During our investigation, we found that an algorithm that learns a model with a linear
decision boundary is not able to function well on the CIRCLES data set (which has a circle
decision boundary), giving a predictive accuracy of 50%. Because particle filters are inde-
pendent of the type of model it learns, a circular decision boundary is chosen for the logistic
regression model8 when learning from CIRCLES with all the particle filter methods eval-
uated in this section. However, because this choice may be too specific to this data set, we
only use CIRCLES to compare different particle filter methods and omit the comparisons
with DWM-NB, LB-HT, and VW on this data set because we are not able to adapt these
three algorithms according to the data set.

5.2. Comparisons with the Maximum Likelihood Approach

In this section, we compare the results of using the likelihood function in the particle
filter versus those of using the TA on the synthetic data sets. The noise level of the training
data is set to zero in this experiment to emphasize that TA outperforms the likelihood as a
quality measure regardless of noise. The particles that give the top-k values of the likelihood
function are chosen to perform majority voting. Figure 2 shows that PF-LR with training
accuracy outperforms PF-LR with the likelihood function on HYPERPLANE, SEA, and
CIRCLES with k D 20. On MANY, the two algorithms have similar performances. We
notice that the TA approach performs much better when the classes are highly imbalanced as
in the CIRCLES data set, on which the approach with the likelihood function breaks down,
with its predictive performance the same as random guessing at 50%.

Table 3 shows the overall performances (i.e., the average predictive accuracy over all
the batches) of the training accuracy and the likelihood methods. Also shown in the table is
the predictive accuracy obtained from the logistic regression model learned using the gradi-
ent descent method on every batch. We see that the TA method outperforms the likelihood
method and gradient descent on SEA, CIRCLES, and HYPERPLANE, whereas the results

8 That is, in Equation (4), �a is set to ˇ20 C .x1a � ˇ1/
2 C .x2a � ˇ2/

2.

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 165

TABLE 3. Average predictive accuracies of particle filter-based learning method using particles with the
highest training accuracy (MAX TA), using the top-k likelihoods (L), and from gradient descent (GD) on
every batch.

Data set MAX TA Top 5 (L) Top 20 (L) Top 50 (L) GD

SEA 0:990˙ 0:001 0:976˙ 0:002 0:978˙ 0:002 0:979˙ 0:003 0:894˙ 0:045

CIRCLES 0:808˙ 0:014 0:500˙ 0:000 0:500˙ 0:000 0:500˙ 0:000 0:580˙ 0:149

MANY 0:882˙ 0:030 0:889˙ 0:032 0:878˙ 0:036 0:866˙ 0:035 0:885˙ 0:034

HYPERPLANE 0:975˙ 0:013 0:615˙ 0:157 0:619˙ 0:195 0:602˙ 0:158 0:808˙ 0:034

Noiseless training sets are used.

TABLE 4. Comparison between the method of using the best performing particles (MAX TA) and
the method of using particles with the top-k training accuracies.

Data set MAX TA Top 5 (TA) Top 20 (TA) Top 50 (TA)

SEA 0:981˙ 0:003 0:979˙ 0:004 0:972˙ 0:004 0:985˙ 0:002

CIRCLES 0:769˙ 0:003 0:754˙ 0:052 0:723˙ 0:030 0:575˙ 0:013

MANY 0:881˙ 0:041 0:878˙ 0:044 0:919˙ 0:016 0:872˙ 0:046

HYPERPLANE 0:968˙ 0:006 0:975˙ 0:005 0:976˙ 0:005 0:970˙ 0:007

ELEC (B=10) 0:876˙ 0:082 0:800˙ 0:194 0:836˙ 0:104 0:815˙ 0:121

Dimensional reduction is not used on the HYPERPLANE data set (where the number of dimensions is
10). The results here justify only taking the best performing particles in the selection procedure.

on the MANY data set are not statistically significant. These results illustrate that the like-
lihood is much more affected by small sample sizes (which are necessary for learning from
data streams) than the TA method. Note that we have left out the result for the ELEC data
because this experiment is conducted in a noiseless environment, and it is impossible to
confirm that the ELEC data set is noiseless.

5.3. Using a Fixed Size Ensemble

Table 4 compares the predictive accuracies obtained by fixing the ensemble size to be
the top-k performing particles regardless of their training accuracies with the PF-LR where
only the particles giving the best TA are included in the ensemble. In this experiment, 10%
noise is added to the SEA, MANY, and HYPERPLANE data sets by randomly flipping the
class labels in the training data, and the noise level of CIRCLE is given in Table 1.

The results show that including only the top performing particles in the ensemble out-
performs the method of a fixed ensemble size on two of the five data sets (i.e., CIRCLES
and ELEC). On the three other data sets used, the two methods give comparable results.
Note that the standard deviations of using a fixed size ensemble on CIRCLES (for all k val-
ues) and on ELEC (for k D 20) are much larger than the method of choosing only the best
performing particles. This is to be expected, because particles are generated in the neigh-
borhood of the best performing particles in the last concept. Immediately after a drift, only
a small number of particles can give the maximum TA. Fixing the number of particles in an
ensemble is likely to include those that are far from accurate.

166 COMPUTATIONAL INTELLIGENCE

5.4. Comparisons with the Auxiliary Particle Filters

This section compares PF-LR with the APF and its regularized counterpart (RegAPF).
Figure 3 shows the results. For completeness, we also evaluated both APF and RegAPF
using the TA as a quality measure for selecting particles. The results for these methods are
summarized in Table 5. Note that the algorithms of APFs assume that we have complete

FIGURE 3. Predictive accuracy of auxiliary particle filter (APF), regularized APF, and particle filtering-
based learning method (PF-LR). PF-LR outperforms both APF and RegAPF, which use the maximum likelihood
estimator for the model parameters. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5. Average predictive accuracies of APF and RegAPF with the TA
quality measure. The results here justify the use of a fixed �i .

Data set PF-LR APF (TA) RegAPF (TA)

SEA 0:981˙ 0:030 0:933˙ 0:012 0:924˙ 0:010

CIRCLES 0:769˙ 0:030 0:503˙ 0:030 0:500˙ 0:000

MANY 0:881˙ 0:041 0:855˙ 0:067 0:854˙ 0:039

HYPERPLANE 0:868˙ 0:037 0:692˙ 0:056 0:697˙ 0:055

The results here justify the use of a fixed �i .
PF-LR, particle filter-based learning method; APF, auxiliary particle filter;
RegAPF, regularized auxiliary particle filter; TA, training accuracy.

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 167

knowledge (e.g., the class labels) of the examples in the next batch. For prequential eval-
uation such as the one used on ELEC, the class labels of the next batch cannot be used in
learning. Therefore, APFs are not suitable for prequential evaluations, and the results on
the ELEC data set are omitted. Also, in order to have a fair comparison with the APF algo-
rithms, we did not include DR on the HYPERPLANE data set in this experiment. We found
that PF-LR outperforms APF and RegAPF on every data set tested.

5.5. The Regularized Particle Filter-Based Learning Method

In this section, we compare the performance of PF-LR with the performance of a regu-
larized version of PF-LR (which we call RegPF-LR). The regularization part of RegPF-LR is
based on the regularized particle filter (Casarin and Marin 2009). The formalism of RegPF-
LR is discussed in appendix 6. Overall, we found that RegPF-LR does not outperform
PF-LR.

To initiate RegPF-LR, a preliminary run of 500 iterations was performed on the first
batch. This is to choose suitable initial values of the logistic regression coefficients and
the proposal parameters. We compare the performances of RegPF-LR with those of PF-
LR in Figure 4, which shows that PF-LR outperforms RegPF-LR on all synthetic data sets

FIGURE 4. Comparisons between regularized particle filter-based learning method (RegPF-LR) and PF-
LR. The results show that PF-LR outperforms RegPF-LR on HYPERPLANE, SEA, and CIRCLES and performs
just as well in MANY. [Color figure can be viewed at wileyonlinelibrary.com]

168 COMPUTATIONAL INTELLIGENCE

TABLE 6. Average predictive accuracies of PF-LR and RegPF-LR on the ELEC data set with batch size
B D 10.

of features 1 2 3 4 5

PF-LR 0:898˙ 0:009 0:891˙ 0:005 0:886˙ 0:012 0:883˙ 0:012 0:867˙ 0:082

RegPF-LR 0:910˙ 0:005 0:903˙ 0:007 0:882˙ 0:064 0:866˙ 0:052 0:860˙ 0:080

The number of features,D (forD D 1 to 5), means that the firstD variables in the list of nswprice, nswdemand,
transfer, vicprice, and vicdemand are used.
PF-LR, particle filter-based learning method; RegPF-LR, regularized particle filter.

considered. Table 6 shows the comparison between the two algorithms on the ELEC data
set with respect to different numbers of features used in the evaluation. We found that when
a very low number of features are used, RegPF-LR slightly outperforms PF-LR. However,
PF-LR is able to outperform RegPF-LR as the number of features increases.

5.6. Comparisons with Naive Bayes with Dynamic Weighted Majority, Hoeffding Tree
with Leveraging Bagging, and Vowpal Wabbit System

The average predictive accuracies over 50 runs with PF-LR, LB-HT, DWM-NB, and
VW on SEA and MANY are shown in Figure 5. We defer the discussion of the compar-
ison on HYPERPLANE to Section 5.7. As noted in Section 5.1, we omit the comparison
with LB-HT, DWM-NB, and VW on the CIRCLE data because they are not good at and
not adjusted to learning concepts with circular decision boundaries. The figure shows that
PF-LR outperforms both DWM-NB, LB-HT, and VW. The average predictive accuracies
and the corresponding 95% confidence intervals are listed in Table 7, in which we also
include the results for the HYPERPLANE data set (although we defer the discussion on it to
Section 5.7). The facts that DWM-NB, LB-HT, and VW retain historical data and that they
are more prone to noise imply that the classifiers generated by these algorithms may not be
up-to-date after drifts. In contrast, PF-LR relies more on the examples in the current batch,
and its performance is expected to be higher in the case of constant drifts.

It can be seen that for the SEA data set, PF-LR recovers from drifts extremely fast.
Whereas DWM-NB accumulates instances from earlier times, which leads to a significant
drop in its predictive accuracy immediately after drifts. LB-HT is somewhat insensitive
to drifts because its performance stays roughly constant. However, it is not able to give
predictions as accurate as those of PF-LR and DWM-NB, and its drift recovery time is
slow. The performance of VW is far worse than these algorithms with a predictive accuracy
of 85.2%.

For the MANY data set, PF-LR almost always performs better than DWM-NB, espe-
cially between batch numbers 25 and 35, where PF-LR is seen to be unaffected by drifts and
the performance of DWN-NB is seen to drop rapidly immediately after certain drifts. The
behavior of LB-HT is interesting. It is least affected by the drift at batch number 8, presum-
ably because of its drift detection mechanism. However, it is unable to attain high accuracies
possibly because of contamination from out-of-date examples when the drifts are too small
to be picked up by the drift detection. VW is not seen to be affected by the drift at batch
number 8; however, it cannot obtain predictive accuracy higher than 85% for the majority
of the batches.

Because PF-LR is a batch method, we also compare with support vector machine and
k-nearest neighbor in batch mode, and the results are summarized in Table 7. Typically,
these algorithms have worse performance than incremental methods on the data set and
batch sizes analyzed.

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 169

FIGURE 5. Predictive accuracies of particle filter-based learning method, Naive Bayes with Dynamic
Weighted Majority, Hoeffding Tree with Leveraging Bagging, and Vowpal Wabbit (VW) system. The accuracy
of VW on SEA (�85%) is not shown as it is far below the accuracies of the other algorithms. [Color figure can
be viewed at wileyonlinelibrary.com]

TABLE 7. The average predictive accuracies of PF-LR and incremental algorithms for various data sets.

Data set PF-LR (%) DWM-NB (%) LB-HT (%) VW (%)

SEA .98:1˙ 0:3/ .96:5˙ 0:7/ .96:3˙ 0:5/ .85:2˙ 3:3/

MANY .88:1˙ 4:1/ .86:4˙ 1:6/ .86:4˙ 2:9/ .82:5˙ 10:0/

HYPERPLANE (B=100) .97:3˙ 0:6/ .96:0˙ 0:8/ .83:3˙ 0:5/ .81:8˙ 2:6/

ELEC (B=10) .87:6˙ 8:2/ 80.8 86.3 67:9

WDBC (B=100) .95:13˙ 2:18/ 96:0 93:5 61:9

SS (B = 50) .94:5˙ 0:002/ 92.4 99:5 81.6

The highest value obtained for each data set is in bold.
PF-LR, particle filter-based learning method; DWM-NB, Naive Bayes with Dynamic Weighted Majority; LB-
HT, Hoeffding Tree with Leveraging Bagging; VW, Vowpal Wabbit system.

The results in Table 7 show that PF-LR has better drift adaptability and predictive per-
formance than DWM-MN, LB-HT, and VW on all the data sets tested except WDBC, where
the difference to the best performing algorithm, DWM-NB, is statistically insignificant, and
SS, where the decision boundary is nonlinear. On SS, PF-LR outperforms DWM-NB and
VW, but is less impressive when compared with LB-HT. This is because the SS data set
requires a nonlinear boundary decision boundary, and decision tree methods are expected
to perform better than a simple logistic regression, which PF-LR employs.

Table 8 Shows the comparison of PF-LR with batch-based methods. There it is shown
that PF-LR significantly outperforms batch-SVM on all the data sets tested. Similarly, batch-
kNN has a much lower performance than PF-LR except for the SS data set.

5.7. Performance of Particle Filter-Based Learning in High Dimensions

This section investigates the effect of using DR with PF-LR on the HYPERPLANE
(Hulten et al. 2001) data set. Figure 6 shows that using a DR procedure described in
Section 4 dramatically improves the performance of PF-LR.

170 COMPUTATIONAL INTELLIGENCE

TABLE 8. The average predictive accuracies of PF-LR and batch-based algorithms for
various data sets.

Data set PF-LR (%) Batch-SVM (%) Batch-kNN (%)

SEA .98:1˙ 0:3/ .86:0˙ 3:1/ .95:6˙ 0:4/

MANY .88:1˙ 4:1/ .64:7˙ 9:22/ .85:7˙ 1:8/

HYPERPLANE (B=100) .97:3˙ 0:6/ .87:0˙ 1:2/ .84:9˙ 0:6/

ELEC (B=10) .87:6˙ 8:2/ 67.7 77.9

WDBC (B=100) .95:1˙ 2:18/ 56.7 74.1

SS (B = 50) .94:5˙ 0:002/ 81.9 97.9

The highest value obtained for each data set is in bold.
PF-LR, particle filter-based learning method; Batch-SVM, batch mode supported vector
machine; Batch-kNN, batch mode k-nearest neighbor.

FIGURE 6. The improvement that resulted from dimensional reduction. The number of dimensions in the
input HYPERPLANE data is 10 (i.e., D=10). [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7. The performance of the particle filter-based learning method with various accuracy thresholds
Ac . From top to bottom, the values of Ac ranges from 0.65 to 0.95 in increments of 0.05. The performance
is robust with a choice of Ac > 0:7. The number of dimensions in the input HYPERPLANE data is 10 (i.e.,
D=10). [Color figure can be viewed at wileyonlinelibrary.com]

The DR algorithm contains an adjustable parameter,Ac . We found that the performance
of PF-LR is robust against the choice of Ac over a large range. Figure 7 shows the predictive
accuracy of PF-LR for different choices of Ac , in which the average predictive accuracy for

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 171

FIGURE 8. The predictive accuracy of the particle filter-based learning method at different batch sizes
and numbers of dimensions. Top: batch size B D 50. Bottom: B D 100. [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 9. The predictive accuracies of the particle filter-based learning method, Naive Bayes with
Dynamic Weighted Majority, Hoeffding Tree with Leveraging Bagging, and the Vowpal Wabbit system with
batch size B D 100 and number of dimensionsD D 10. [Color figure can be viewed at wileyonlinelibrary.com]

each Ac is also shown. It is clear that the results are insensitive to the choice of Ac for the
range 0:7 < Ac < 0:95. We must note that for extreme values of Ac , for instance, Ac D
0:95, the performance is somewhat less than that of a reasonable choice ofAc . The reason is
that, at such high values, DR can be triggered in consecutive batches because particles that
give training accuracies higher than Ac are less likely to be generated. As a consequence,
particles are generated from ˇ

.n/
MLE in every batch until DR stops being triggered. Because

ˇ
.n/
MLE does not give the best predictive accuracy, the overall performance of PF-LR with

very high values of Ac drops.
Figure 8 shows the effect on the performance of PF-LR with DR as the number of

dimensions, D, increases.9 The performance deteriorates quite quickly as D increases to
30. The reason is that a batch size of 50 is insufficient for high dimensions. Once the batch
size is increased to 100, the performance improves dramatically.

Finally, we compare PF-LR with DR and batch size B D 100 with DWM-NB, LB-
HT, and VW. Figure 9 shows the case with D D 10, and Table 9 summarizes the average

9 See Section 5.1 for how we increase the number of dimensions in HYPERPLANE.

172 COMPUTATIONAL INTELLIGENCE

TABLE 9. The average predictive accuracies of PF-LR with DR, DWM-NB, LB-HT, and
VW in various numbers of dimensions D.

Accuracy PF-LR DWM-NB LB-HT VW

D D 10 0:973˙ 0:006 0:960˙ 0:008 0:833˙ 0:005 0:818˙ 0:026

D D 15 0:970˙ 0:009 0:954˙ 0:007 0:829˙ 0:006 0:770˙ 0:030

D D 20 0:964˙ 0:011 0:950˙ 0:007 0:825˙ 0:006 0:745˙ 0:031

D D 25 0:952˙ 0:020 0:946˙ 0:007 0:822˙ 0:006 0:725˙ 0:030

D D 30 0:937˙ 0:028 0:951˙ 0:007 0:818˙ 0:007 0:706˙ 0:032

PF-LR, particle filter-based learning method; DWM-NB, Naive Bayes with Dynamic Weighted
Majority; LB-HT, Hoeffding Tree with Leveraging Bagging; VW, Vowpal Wabbit system.

FIGURE 10. Values of the feature variable nswprice of the first 2500 instances. The markers denote the
classes DOWN (red triangle) and UP (black circle). It is evident that drifts occurs throughout the data set. The
solid line shows the decision boundary learned by particle filter-based learning method. [Color figure can be
viewed at wileyonlinelibrary.com]

predictive accuracies from D D 10 to D D 30. We found that PF-LR is comparable with
DWM-NB, and both are much better than LB-HT and VW.

5.8. Real Data Analysis: Electricity Pricing

In this section, we apply PF-LR to the electricity pricing data set (ELEC) (Harries 2007),
which has been extensively studied by other authors (Z’liobaite 2013). Here we illustrate
how the predictive performance of PF-LR changes with respect to the batch size and the
feature set used.

We found that PF-LR gives the best performance when using only one feature, nswprice,
when a reasonable batch size is chosen. Including other features would slightly deteriorate
the performance by up to a few percent. Figure 10 shows the values of nswprice of the first
2500 instances. An instance is shown using a circle if its class label is UP, and a triangle
if its class label is DOWN. The predicted concept is shown as the boundary separating the
two classes. Because this data set contains frequent drifts, it is crucial to use a batch size
as small as possible so that the concept in the next batch is approximately the same as
the current batch. On the other hand, the batch size must be large enough so that logistic
regression is accurate.

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 173

As mentioned in Section 5.1, prequential accuracies are used as the predictive perfor-
mance measure for this real data set. The results for different batch sizes and numbers of
variables used are shown in Table 10 and Figure 11. As expected, the performance of PF-LR
improves as the batch size decreases, because of the fact that smaller batches give a better
description of the current concept. However, its precision also drops (i.e., its 95% confidence
interval also increases) as logistic regression becomes unreliable because of data sparseness.
As a sanity check, we plot the decision boundary obtained by PR-LR in Figure 10. In anal-
ogy to Figure 1, we see that PF-LR is able to track the movement of the decision boundary
very well.

Figure 11 shows that using only the nswprice variable gives the best results. However,
when we compare PF-LR with other algorithms, all five features are used to be consistent
with the results on this data set in the literature.

TABLE 10. Average predictive accuracies of particle filter-based learning method on the electricity pricing
data with varying batch size, B.

of features 1 2 3 4 5

B D 2 0:914˙ 0:020 0:918˙ 0:010 0:912˙ 0:016 0:904˙ 0:022 0:861˙ 0:193

B D 4 0:910˙ 0:021 0:911˙ 0:008 0:906˙ 0:009 0:900˙ 0:031 0:877˙ 0:121

B D 6 0:908˙ 0:010 0:905˙ 0:009 0:901˙ 0:009 0:898˙ 0:016 0:874˙ 0:117

B D 8 0:901˙ 0:010 0:899˙ 0:008 0:892˙ 0:011 0:887˙ 0:014 0:872˙ 0:086

B D 10 0:898˙ 0:009 0:891˙ 0:005 0:886˙ 0:012 0:883˙ 0:012 0:867˙ 0:082

B D 15 0:881˙ 0:009 0:877˙ 0:006 0:872˙ 0:011 0:869˙ 0:013 0:854˙ 0:079

B D 20 0:864˙ 0:013 0:863˙ 0:006 0:859˙ 0:008 0:854˙ 0:013 0:840˙ 0:074

The number of features,D (forD D 1 to 5), means that the firstD variables in the list of nswprice, nswdemand,
transfer, vicprice, and vicdemand are used.

FIGURE 11. Predictive accuracy of the ELEC data set as a function of batch size B . The mark-
ers denote the number of features, D (for D D 1 to 5), which means that the first D variables in the
list of nswprice, nswdemand, transfer, vicprice, and vicdemand are used. [Color figure can be viewed at
wileyonlinelibrary.com]

174 COMPUTATIONAL INTELLIGENCE

TABLE 11. Recorded training times in milliseconds for PF-LR in Matlab
with an AMD Phenom II X4 995 Processor at 3.21GHz. T is the total number
of batches in the training set.

Training time (ms) PF-LR Number of Instances T

SEA 404:7˙ 7:3 40,000 800
CIRCLES 655:3˙ 7:3 40,000 800
MANY 25:4˙ 2:8 2,000 40
HYPERPLANE 875:3˙ 106:6 40,000 800
ELEC (B=10) 1;907 ˙ 54:3 45,312 4,531
WDBC (B=100) 17:1˙ 9:3 569 5
SS (B = 50) 2;510 ˙ 28 245,057 4,901

5.9. Real Data Analysis: Breast Cancer and Skin Segmentation

The WDBC data set is a high-dimensional static data set containing 30 features. Based
on the analysis on HYPERPLANE, a batch size of B D 100 is chosen. Because the data
set is static, drift detection is not used. The best performing algorithms are PF-LR and
DWM-NB, with DWM-NB slightly outperforming PF-LR.

In feature space, the classes in the SS data set are distributed in a way that cannot
be well separated by a linear decision boundary. Therefore, it is expected that LR would
be outperformed by decision trees and clustering algorithms such as kNN. Indeed, LB-
HT achieved the best predictive accuracy at 99.5%, followed by batch-kNN at 97.9%, then
PF-LR at 94.5%.

The results for both data sets with prequential evaluation are shown in Table 7.

5.10. Run Time and Memory Requirement

Finally, we report the recorded the training time for PF-LR in Table 11.10 Note that
ELEC, SEA, and CIRCLES have similar numbers of both instances and dimensions. How-
ever, the number of batches in ELEC is five times larger than those for SEA and CIRCLES.
In Table 11, we see that the training time for ELEC is roughly five times than those for SEA
and CIRCLES. This linear dependence on the total batch number is manifest between other
combinations of data sets. In our MATLAB (MathWorks, Natick, MA) implementation of
PF-LR, we vectorized all calculations within a batch, keeping only the loop over different
batches. The loop over the batches gives the running time a linear dependence on T , which
is the total number of batches in the training set. Because MATLAB is optimized for opera-
tions involving vectors and matrices, the dependence of the running time on the batch size
B is suppressed.

By comparing between ELEC with SEA and CIRCLES where the number of instances
are roughly the same, we see the training time for ELEC is roughly five times those of SEA
and CIRCLES. At the same time, the number of batches in ELEC is five times larger than
those for SEA and CIRCLES. Finally, we note that the memory requirement is trivial for
PF-LR because only the data in the batch being analyzed are stored.

10 We implemented PF-LR in Matlab. These tests were performed with the AMD Phenom II X4 995 Processor at
3.21GHz.

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 175

6. DISCUSSION AND CONCLUSION

We used TA for particle selection instead of the likelihood function as carried out
in conventional particle filtering and developed PF-LR. This article demonstrated that
PF-LR outperforms other state-of-the-art algorithms in terms of drift recovery and accu-
racy for the data sets analyzed. Synthetic data sets were used in the evaluation to develop an
understanding of PF-LR—the SEA data set was used to demonstrate the drift tolerance of
PF-LR. CIRCLES was used to show its applicability to imbalanced and noisy data. Its reac-
tion to drifts was further tested on a data set with frequent drifts. Then we applied PF-LR
to a real data set—the electricity pricing data—to show that it is able to obtain the highest
accuracy reported in the literature recorded by Z’liobaite (2013). We found that the PF-LR’s
run time is linear in the number of batches processed when implemented in MATLAB.

We showed that PF-LR outperforms APF and RegAPF. We also illustrated that using
TA as a quality measure is better suited for classification tasks than using the likelihood
function as in conventional PF. Comparisons were also made between using a fixed size
ensemble and using all best-performing particles for each batch. We found that using all
best-performing particles outperforms the method of fixed ensemble sizes in data sets with
frequent drifts or class imbalance.

The results clearly show that PF-LR outperforms DWM-NB, LB-HT, and VW. It is
important to note that DWM-NB, LB-HT, and VW use very different learning mecha-
nisms. In particular, DWM-NB and VW are online algorithm that forget previous instances
based on the classifier’s performances. DWM-NB handles drifts by adaptively creating and
removing classifiers. VW uses recent data to learn by gradient descent with an adaptive
learning rate, while LB-HT is a decision tree method using adaptive sliding windows for
drift detection. Furthermore, we have shown that PF-LR can be adapted to be used with
other regression models where a nonlinear decision boundary was used to analyze the CIR-
CLES data set. This flexibility is not exhibited by algorithms such as Naive Bayes and
decision trees. The fact that PF-LR outperforms algorithms with different learning mech-
anisms consistently shows its potential in mining evolving streaming data. PF-LR also
outperforms batch-SVM and batch-kNN on all data sets tested, with the exception that
batch-kNN outperforms PF-LR on the SS data set as the decision boundary is required to
be nonlinear.

Granted, PF-based algorithms handle concept drifts exceptionally well. They are not
without limitations. As PF is an MC method, it suffers from the curse of dimensionality
in the same way as other MC techniques. An analysis with high-dimensional data set was
performed in Section 5.7. There, we see that PF-LR with a DR method can perform well up
to 30 dimensions.

Perhaps another attractive feature of PF is that it is very intuitive and theoretically
motivated. The manner how each input parameter of PR-LF affects the performance is man-
ifest and they can be adjusted, or even be made adaptive, to fit the analysis at hand with
ease. In particular, in situations where accuracy is preferred over computation time, the
particle number M can be made larger. Data sets showing large and rapid drifts can be
handled by either choosing a proposal distribution with wide spread to improve drift recov-
ery or decreasing the batch size. For more static circumstances, a proposal function with
narrow spread as well as a large batch size can be chosen to maximize the precision and
accuracy, respectively.

On choosing the batch size, the batch size should be selected to ensure that our algorithm
is sensitive to concept drift and robust to noise to reduce false positives. Because PF-LR
relies on the chosen statistical model, a default batch size is 50, which is the more or less
agreed sample size required to ensure enough power to test the significance of parameters

176 COMPUTATIONAL INTELLIGENCE

in statistical models. The common recommendation for the Central Limit Theorem to be
applicable is also around 50. Thus, we set the batch size to be 50 when the number of
features is small or moderate (Breiman 1992; Van der Vaart 2000). When the dimensionality
is high, then the sample size should increase in principle if all features are equally important.
However, in practice, many features might not be relevant, or they could be combined by
using DR techniques. The batch size could be kept at around 50 if an effective reduction of
dimensions can be achieved.

As we only implemented the PF algorithm with the most basic features, a naive choice
of the proposal function with parameters �i and a fixed batch size, the possibilities to boost
the performance of PF-LR are many. For example, a drift detection algorithm could be used
and update the spread parameters �i of the proposal function accordingly—using a nar-
row spread for static situations and a wide spread immediately after drifts. Also, a large
change in the learned parameter usually implies a drift is occurring. Therefore, an alternative
method would be updating �i in a way that depends on the magnitude in which the param-
eters have changed from the last batch. We leave the opportunities to improve PF-LR for
future research.

REFERENCES

ADAE, I., and M. BERTHOLD. 2013. Eve: a framework for event detection. Evolving Systems, 4: 61–70.

AGGARWAL, C. C. 2007. Data Streams: Models and Algorithms. Springer: New York, p. 41.

ALBERG, D., M. LAST, and A. KANDEL. 2012. Knowledge discovery in data streams with regression tree
methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2: 69–78.

ANG, H., V. GOPALKRISHNAN, I. Z’LIOBAITE, M. PECHENIZKIY, and S. HOI. 2012. Predictive handling
of asynchronous concept drifts in distributed environments. IEEE Transactions on Knowledge and Data
Engineering, 25(10): 2343–2355.

BACHE, K., and M. LICHMAN. 2013. UCI Machine Learning Repository. University of California, Irvine,
School of Information and Computer Sciences. http://archive.ics.uci.edu/ml.

BREIMAN, L. 1992. Probability, Classics in Applied Mathematics, Vol. 7. SIAM: Philadelphia, PA.

BREIMAN, L. E., and T. PETRIE. 1966. Statistical inference for probabilistic functions of finite state Markov
chains. The Annals of Mathematical Statistics, 36(6): 1554–1563.

BIFET, A., G. HOLMES, and B. PFAHRINGER. 2010a. Leveraging bagging for evolving data streams. In Pro-
ceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases:
Part I, ECML PKDD–10, Barcelona, Spain, pp. 135–150.

BIFET, A., G. HOLMES, R. KIRKBY, and B. PFAHRINGER. 2010b. MOA: Massive online analysis. Journal of
Machine Learning Research, 11: 1601–1604.

BOUCHACHIA, A. 2011a. Fuzzy classification in dynamic environments. Soft Computing, 15(5): 1009–1022.

BOUCHACHIA, A. 2011b. Incremental learning with multi-level adaptation. Neurocomputing, 74(11):
1785–1799.

BREIMAN, L. 1996. Bagging predictors. Machine Learning, 24: 123–140.

BREIMAN, L. 1998. Arcing classifiers. The Annals of Statistics, 26(3): 801–849.

CASARIN, L., and J. MARIN. 2009. Online data processing: comparison of Bayesian regularized particle filters.
Electronic Journal of Statistics, 3: 239–258.

CHOPIN, N. 2002. A sequential particle filter method for static models. Biometrika, 89(3): 539–552.

DOMINGOS, P., and G. HULTEN. 2000. Mining high-speed data streams. In Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press: New York,
pp. 71–80.

http://archive.ics.uci.edu/ml

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 177

DOUCET, A., and A. M. JOHANSEN. 2011. A tutorial on particle filtering and smoothing: fifteen years later. In
Handbook of Nonlinear Filtering. Oxford University Press: Oxford, UK, pp. 656–704.

FREUND, Y., and R. E. SCHAPIRE. 1996. Experiments with a new boosting algorithm. In Proceedings of
the Thirteenth International Conference on Machine Learning. Morgan Kaufmann: San Francisco, CA,
pp. 148–156.

FREUND, Y., and R. E. SCHAPIRE. 1999. A short introduction to boosting. Journal of Japanese Society for
Artificial Intelligence, 14(5): 771–780.

GAMA, J., and P. KOSINA. 2011. Learning about the learning process. In Proceedings of the 10th International
Conference on Advances in Intelligent Data Analysis. IDA. Springer: Berlin Heidelberg, pp. 162–172.

GAMA, J., R. SEBASTIAO, and P. RODRIGUES. 2013. On evaluating stream learning algorithms. Machine
Learning, 90(3): 317–346.

GAMA, J., A. BIFET, A. BOUCHACHIA, M. PENCHENIZKIY, and I. Z’LIOBAITE. 2014. A survey on concept
drift adaptation. ACM Computing Surveys, 46(4): 44.

GEWEKE, J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica, 57:
1317–1339.

GOMES, J. B., E. M. GUIZ, and P. A. C. SOUSA. 2011. Learning recurring concepts from data streams with a
context-aware ensemble. In Proceedings of the ACM Symposium on Applied Computing. SAC: New York,
pp. 994–999.

GREST, D., and V. KRUEGER. 2007. Gradient-enhanced particle filter for vision-based motion capture. human
motion understanding, modeling, capture and animation. Lecture Notes in Computer Science, 4814: 28–41.

GUSTAFSSON, F., F. GUNNARSSON, N. BERGMAN, U. FORSSELL, J. JANSSON, R. KARLSSON, and P. J.
NORDLUND. 2002. Particle filters for positioning, navigation and tracking. IEEE Transactions on Signal
Processing, 50(2): 425–437.

HARRIES, M. 2007. Splice-2 comparative evaluation: electricity pricing. In Technical report, University of New
South Wales.

HALL, M., E. FRANK, G. HOLMES, B. PFAHRINGER, P. REUTEMANN, and I. H. WITTEN. 2007. The WEKA
data mining software: an update. SIGKDD Explorations, 11(1): 10–18.

HEDIBERT, F. L., and R. S. TSAY. 2011. Particle filters and Bayesian inference in financial econometrics. Journal
of Forecasting, 30: 168–209.

HOEFFDING, W. 1963. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301): 13–30.

HULTEN, G., L. SPENCER, and P. DOMINGOS. 2001. Mining time-changing data streams. In Proceedings of the
7th ACM SIGKDD, New York, pp. 97–106.

IKONOMOVSKA, E., J. GAMA, and S. DZEROSKI. 2011. Learning model trees from evolving data streams. Data
Mining Knowledge Discovery, 23(1): 128–168.

JI, C., Y. ZHANG, M. TONG, and S. YAN. 2008. Parallel problem solving from nature – PPSN X. Lecture Notes
in Computer Science, 5199: 909–918.

KADLEC, P., R. GRBIC, and B. GABRYS. 2011. Review of adaptation mechanisms for data-driven soft sensors.
Computers & Chemical Engineering, 35(1): 1–24.

KENNEDY, J., and R. EBERHART. 1995. Particle swarm optimization. In Proceedings of IEEE International
Conference on Neural Networks IV, Perth, Australia, pp. 1942–1948.

KLAMARGIAS, A. D., K. E. PARSOPOULOS, P. D. ALEVIZOS, and M. N. VRAHATIS. 2008. Particle filtering with
particle swarm optimization in systems with multiplicative noise. In Genetic and Evolutionary Computation
Conference 2008, Atlanta, GA, pp. 57–62.

KOLTER, J. Z., and M. A. MALOOF. 2007. Dynamic weighted majority: an ensemble method for drifting
concepts. Journal of Machine Learning Research, 8: 2755–2790.

LANGFORD, J., L. LI, and A. STREHL. 2007. Vowpal Wabbit open source project. In Technical Report, Yahoo.

LITTLESTONE, N., and M. K. WARMUTH. 1994. The weighted majority algorithm. Information and Computa-
tion, 108: 212–261.

178 COMPUTATIONAL INTELLIGENCE

LIU, J., and M. WEST. 2001. Combined parameter and state estimation in simulation based filtering, Sequential
Monte Carlo Methods in Practice. Springer-Verlag: New York.

MALOOF, M. A. 2005. Concept drift. In Encyclopedia of Data Warehousing and Mining: 202–206. Available at:
http://www.irma-international.org/chapter/concept-drift/10593/.

MINKU, L. L., A. P. WHITE, and X. YAO. 2010. The impact of diversity on on-line ensemble learn-
ing in the presence of concept drift. IEEE Transactions on Knowledge and Data Engineering, 22(5):
730–742.

MINKU, L., and X. YAO. 2011. DDD: A new ensemble approach for dealing with concept drift. IEEE
Transactions on Knowledge and Data Engineering, 24(4): 619–633.

MORAL, P. D., A. DOUCET, and A. JASRA. 2006. Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68(3): 411–436.

MORENO-TORRES, J. G., T. RAEDER, R. ALAIZ-RODRIGUEZ, N. V. CHAWLA, and F. HERRERA. 2012. A
unifying view on dataset shift in classification. Pattern Recognition, 45(1): 521–530.

MUSSO, C., N. OUDJANE, and F. LEGLAND. 2001. Improving regularized particle filters, Sequential Monte
Carlo methods in Practice. Springer-Verlag: New York.

NISHIDA, K., and K. YAMAUCHI. 2007. Detecting concept drift using statistical testing. In Discovery Science.
Springer: Heidelberg Berlin, pp. 264–269.

PITT, M., and N. SHEPHARD. 1999. Filtering via simulation: auxiliary particle filters. Journal of the American
Statistical Association, 94(446): 590–599.

ROKACH, L. 2010. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2): 1–39.

SCHLIMMER, J. C., and R. H. GRANGER. 1986. Beyond incremental processing: tracking concept drift. In
Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia, PA, pp. 502–507.

SCHLIMMER, J. C., and R. H. GRANGER. 1986. Incremental learning from noisy data. Machine Learning, 1(3):
317–354.

SHALEV-SHWARTZ, S., Y. SINGER, and N. SREBRO. 2007. Pegasos: primal estimated sub-gradient solver for
SVM. In 24th International Conference on Machine Learning, Corvalis, OR, pp. 807–814.

SOTOUDEH, D., and A. AN. 2010. Partial drift detection using a rule induction framework. In Proceedings of
the 19th ACM International Conference on Information and Knowledge Management. ACM: New York,
pp. 769–778.

STREET, W., and Y. KIM. 2001. A streaming ensemble algorithm (SEA) for large-scale classification. In
Proceedings of the 7th ACM SIGKDD, New York, pp. 377–382.

TSYMBAL, A. 2004. The Problem of Concept Drift: Definitions and Related Work. Computer Science
Department, Trinity College, Dublin, Ireland.

VAN DER VAART, A. W. 2000. Asymptotic Statistic. Cambridge University Press: New York.

WANG, H., W. FAN, P. YU, and J. HAN. 2003. Mining concept-drifting data streams using ensemble classifiers.
ACM SIGKDD: 226–235. Available at: http://dl.acm.org/citation.cfm?id=956778.

WIDMER, G., and M. KUBAT. 1996. Learning in the presence of concept drift and hidden contexts. Machine
Learning, 23(1): 69–101.

WOLPERT, D. H. 1992. Stacked generalization. Neural Networks, 5(2): 241–259.

YAO, R., Q. SHI, C. SHEN, Y. ZHANG, and A. VAN DEN HENGEL. 2012. Robust tracking with weighted
online structured learning. In Proceedings of the 12th European Conference on Computer Vision, ECCV,
Florence, Italy, pp. 158–172.

ZHAO, P., S. HOI, R. JIN, and T. YANG. 2011. Online AUC maximization. In Proceedings of the 28th
Internarional Conference on Machine Learning, Bellevue, WA, pp. 233–240.

Z’LIOBAITE, I., A. BIFET, M. M. GABER, B. GABRYS, J. GAMA, L. L. MINKU, and K. MUSIAL. 2012. Next
challenges for adaptive learning systems. SIGKDD Explorations, 14(1): 48–55.

Z’LIOBAITE, I. 2013. How good is the electricity benchmark for evaluating concept drift adaptation.
arXiv:1301.3524v1.

http://www.irma-international.org/chapter/concept-drift/10593/
http://dl.acm.org/citation.cfm?id=956778

MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS 179

APPENDIX A

A.1. Regularized PF-LR

In regularized particle filtering, the parameters for the conditional proposal function,
†, are regularized by a conditional hyperprior distribution with hyperparameters a and h,
where a controls the mean of the hyperprior and h controls its variance. We choose the
covariance matrix † to be a diagonal matrix with elements �i , where i 2 ¹1; : : : ;Dº andD
the dimensionality of the regression coefficients ˇ. We choose the hyperprior on �i to be a
log-normal distribution. At batch n, the i-th component of the m-th particle is denoted by

the tuple
�
ˇ
.n/
im ; �

.n/
im

�
. Let � .n/im D log � .n/im and N� .n/i be its mean over the particle index, and

the generation scheme is

�
.n/
im � N

�
a�

.n�1/
im C .1 � a/ N�

.n�1/
i ; h2

�

ˇ
.n/
im � N

�
ˇ
.n�1/
im ;

�
�
.n/
im

�2�
:

Algorithm 4 shows RegPF-LR. It is structurally similar to that of PF-LR, other than the
extra steps involved in the generation of the proposal parameters �im. The algorithm of the
regAPF is described in Casarin and Marin (2009).

Algorithm 4. Classification algorithm with a regularized PF-LR

Inputs:
¹x; yº.n/, the training data in batch n
B , number of instances in a batch
M , number of particles
�
.n�1/
0 , the combined logarithm of the parameters of the proposal function

ˇ
.n�1/
0 , the combined parameters from the previous batch

Outputs:�
ˇ
.n/
0 ;�

.n/
0

�
, the combined particle for batch n

¹ˇ�.n/º, the trained regression parameters for batch n
k
.n/
m , the auxiliary indices for batch n

Step 1: For m 1 WM

Step 1.1 : For i 1 : D,

Step 1.1.1 : Calculate N�i mean of � .n�1/im

Step 1.1.2 : Generate � .n/im � N
�
a�

.n�1/

i;k
.n�1/
m

� .1 � a/ N�i ; h
2
�

Step 1.1.3 : Calculate � .n/im exp
�
�
.n/
im

�
Step 1.1.4 : Generate ˇ.n/im � N

�
ˇ
.n�1/

i;k
.n�1/
m

; �
.n/
im

�

Step 1.2 : Calculate training accuracy Am AmŒf .ˇ
.n/
m ; ¹x; yº.n//; B� from

Algorithm 2.

180 COMPUTATIONAL INTELLIGENCE

Step 2: Calculate TA using the classifier from last batch
A0 A0Œf .ˇ

.n�1/
0 ; ¹x; yº.n//; B�

Step 3: Uniformly generate a list of M indices k.n/m 2 K.n/ for each particle, where
K.n/ D ¹k.n/jAk.n/ D max¹Aj º; j 2 ¹0; : : : ;M ºº

Step 4: Combine the classifiers
ˇ
.n/
0

Ň , where Ň is the mean of ˇ.n/
k.n/

over all k.n/

Step 5: �.n/0 N� , where N� is the mean of �.n/
k.n/

over all k.n/

Step 6: ¹ˇ�.n/º the ensemble of ˇ.n/ that gives the highest accuracy

Step 7: return
�
ˇ
.n/
0 ;�

.n/
0

�
, ¹ˇ�.n/º, and k.n/m

	MINING EVOLVING DATA STREAMS WITH PARTICLE FILTERS
	INTRODUCTION
	Related Work
	Ensemble Learning
	Learning with Concept Drifts
	Particle Filtering

	PARTICLE FILTERING FOR CLASSIFICATION
	The Drift Adaptability of Particle Filters
	Features of Particle Filter-Based Learning Method
	The Particle Filter-Based Learning Method Algorithm
	Likelihood versus Training Accuracy

	DIMENSIONAL REDUCTION WITH DRIFT DETECTION
	*-6pt EXPERIMENTAL EVALUATION
	Data Sets
	Comparisons with the Maximum Likelihood Approach
	Using a Fixed Size Ensemble
	Comparisons with the Auxiliary Particle Filters
	The Regularized Particle Filter-Based Learning Method
	Comparisons with Naive Bayes with Dynamic Weighted Majority, Hoeffding Tree with Leveraging Bagging, and Vowpal Wabbit System
	Performance of Particle Filter-Based Learning in High Dimensions
	Real Data Analysis: Electricity Pricing
	Real Data Analysis: Breast Cancer and Skin Segmentation
	Run Time and Memory Requirement

	DISCUSSION AND CONCLUSION

