
Compact Transaction Database for Efficient
Frequent Pattern Mining

Qian Wan and Aijun An
Department of Computer Science and Engineering

York University, Toronto, Ontario, M3J 1P3, Canada
Email: {qwan, aan}@cs.yorku.ca

Abstract— Mining frequent patterns is one of the fundamental
and essential operations in many data mining applications, such
as discovering association rules. In this paper, we propose an
innovative approach to generating compact transaction databases
for efficient frequent pattern mining. It uses a compact tree
structure, called CT-tree, to compress the original transactional
data. This allows the CT-Apriori algorithm, which is revised from
the classical Apriori algorithm, to generate frequent patterns
quickly by skipping the initial database scan and reducing a great
amount of I/O time per database scan. Empirical evaluations
show that our approach is effective, efficient and promising,
while the storage space requirement as well as the mining time
can be decreased dramatically on both synthetic and real-world
databases.

I. INTRODUCTION

A transaction database is a set of records representing
transactions, where each record consists of a number of items
that occur together in a transaction. The most famous example
of transaction data is market basket data, in which each trans-
action corresponds to the set of items bought by a customer
during a single visit to a store. Text documents can also be
represented as transaction data. In this case each document
is represented by a set of words, which can be considered
a transaction. Another example of transaction databases is
a collection of web pages, where each page is treated as a
transaction containing the out-going links on the page.

Transaction databases have important role in data mining.
For example, association rules were first defined for transac-
tion databases [3]. An association rule R is an implication of
the form X ⇒ Y, where X and Y are set of items and X ∩ Y =
∅. The support of a rule X ⇒ Y is the fraction of transactions
in the database which contain X ∪ Y. The confidence of a rule
X ⇒ Y is the fraction of transactions containing X which also
contain Y. An association rule can be considered interesting
if it satisfies the minimum support threshold and minimum
confidence threshold, which are specified by domain experts.

The most common approach to mining association rules
consists of two separate tasks: in the first phase, all frequent
itemsets that satisfy the user specified minimum support are
generated; the second phase uses these frequent itemsets in or-
der to discover all the association rules that meet a confidence
threshold. Since the first problem is more computationally
expensive and less straightforward, a large number of efficient
algorithms to mine frequent patterns have been developed over
the years [1], [2], [4], [5], [8], [11]. In this paper, therefore,

we address this problem and focus on optimization of I/O
operations in finding frequent patterns.

The most important contributions of our work are as fol-
lows.

1) We propose an innovative approach to generating com-
pact transaction databases for efficient frequent pat-
tern mining. Each unique transaction of the original
database has only one entry in the corresponding com-
pact database, with a count number recording the num-
ber of its occurrence in the original database.

2) We design a novel data structure, Compact Transac-
tion Tree (CT-tree), to generate a compact transaction
database, and revise the Apriori algorithm as CT-Apriori
to take advantage of compact transaction databases. Ex-
periment results show that our approach is very practical,
and the amount of disk space as well as the running
time can be decreased dramatically on both synthetic
and real-world databases.

3) These techniques can be easily extended to other data
mining fields, such as sequential pattern mining and
classification, in which compact databases can not only
reduce space requirements but also reduce the overall
mining time.

The organization of the rest of this paper is as follows: Sec-
tion 2 describes the formal definition of compact transaction
database and discusses its generation. Section 3 develops the
notion of a CT-tree and introduces an algorithm to generate a
compact transaction database from this data structure. Section
4 then explains how to use CT-Apriori algorithm to discover
frequent patterns from a compact transaction database effi-
ciently. Empirical evaluations of our approaches on selected
synthetic and real-world databases are presented in Section
5. Finally, we conclude with a discussion of future work in
Section 6.

II. COMPACT TRANSACTION DATABASE

Before introducing the general idea of a compact transaction
database, we will first define a transaction database and discuss
some of its properties.

Let I = {i1, i2,. . . , im} be a set of m items. A subset X ⊆
I is called an itemset. A k-itemset is an itemset that contains
k items.

Definition 2.1: A transaction database TDB = {T1, T2,. . . ,
TN} is a set of N transactions, where each transaction Tn (n ∈

TABLE I

AN EXAMPLE TRANSACTION DATABASE TDB

TID List of itemIDs

001 A, B, C, D

002 A, B, C

003 A, B, D

004 B, C, D

005 C, D

006 A, B, C

007 A, B, C

008 B, C

009 B, C, D

010 C, D

{1, 2, . . . , N}) is a set of items such that Tn ⊆ I. A transaction
T contains an itemset X if and only if X ⊆ T.

An example transaction database TDB is shown in Table I.
In TDB, I = {A, B, C, D} and N = 10.

The support (or occurrence frequency) of a pattern A,
where A is an itemset, is the percentage of transactions in
D containing A: support(A)=‖{t | t ∈ D, A ⊆ t}‖ / ‖{t | t
∈ D}‖, where ‖X‖ is the cardinality of set X. A pattern in
a transaction database is called as a frequent pattern if its
support is equal to, or greater than a user-specified minimum
support threshold, min sup.

Given a transaction database TDB and a minimum support
threshold min sup, the problem of finding the complete set of
frequent patterns is called frequent-pattern mining. The two
most important performance factors of the frequent pattern
mining are the number of passes made over the transaction
database and the efficiency of those passes [7]. As the
data volume increases rapidly these days, the I/O read/write
frequency plays an important role for the performance of
database mining. Reducing the I/O operations during the
mining process can improve the overall efficiency.

Our motivation for building a compact transaction database
came from the following observations:

1) A number of transactions in a transaction database
may contain the same set of items. For example, as
shown in Table I, transaction {A, B, C} occurs three
times, and transactions {B, C, D} and {C, D} both
occur two times in the same database. Therefore, if
the transactions that have the same set of items can
be stored in a single transaction with their number of
occurrence, it is possible to avoid repeatedly scanning
the same transaction in the original database.

2) If the frequency count of each item in the given
transaction database can be acquired when constructing
the compact database before mining takes place, it is
possible to avoid the first scan of database to identify
the set of frequent items as most approaches to efficient
mining of frequent patterns do.

Definition 2.2: The Compact Transaction Database CTDB
of an original transaction database TDB is composed of two

TABLE II

THE compact transaction database OF TDB

head

Item C B D A

Count 9 8 6 5

body

Count List of itemIDs

3 C, B, A

1 C, B, D, A

1 B, D, A

1 C, B

2 C, B, D

2 C, D

parts: head and body. The head of CTDB is a list of 2-tuples
(In, Ic), where In ∈ I is the name of an item and Ic is the
frequency count of In in TDB; and all items in the head are
ordered in frequency-descending order. The body of CTDB
is a set of 2-tuples (Tc, Ts), where Ts ∈ TDB is a unique
transaction, Tc is the occurrence count of Ts in TDB, and the
items in each transaction of the body are ordered in frequency-
descending order.

The compact transaction database of the example trans-
action database TDB is shown in Table II. All four items in
TDB, {A, B, C, D}, are listed in the head with their frequency
count, ordered in frequency-descending order, {C:9, B:8, D:6,
A:5}. The body consists of 6 unique transactions, instead
of 10 in TDB (which is the total transaction count in the
compact transaction database). The items in each transaction
are ordered in frequency-descending order as well.

In the next section, we will discuss an efficient method to
construct the compact transaction database by using a novel
data structure compact transaction tree, denoted as CT-tree.

III. CT-tree: DESIGN AND CONSTRUCTION

A. Illustration of CT-tree with an example

To design an efficient data structure for compact transaction
database generation, let’s first examine an example using the
transaction database shown in Table I.

First of all, the root of a tree is created and labeled with
“ROOT”. Every other node in this tree consists of two parts:
item id and occurrence count of the path from root to this
node. The CT-tree is constructed as follows by scanning the
example transaction database once.

For the first transaction, after sorting the items of this
transaction in order (we use lexicographic order in this paper),
the first branch of the tree is constructed as {(A:0), (B:0),
(C:0), (D:1)}. The last node (D:1) records the occurrence of
the path ABCD. At the same time, the frequency count of all
these items are recorded in a list as [A:1, B:1, C:1, D:1].

For the second transaction, since its ordered item list {A,
B, C} shares a common path {A, B, C} with the first branch,
no new branch is created, but the occurrence count of the last
shared node is incremented by 1 as (C:1). And the frequency

ROOT

A : 0 C : 0 B : 0

D : 1

D : 1

C : 3

B : 0 C : 1 D : 2

D : 2

Fig. 1. CT-tree for the database TDB in Table I.

count of each item in this transaction is incremented by 1 in
the list as [A:2, B:2, C:2, D:1].

For the third transaction, since its ordered item list {A, B,
D} shares a common path {A, B} with the first branch, one
new node (D:1) is created and linked as a child of (B:0). And
the frequency count list becomes [A:3, B:3, C:2, D:2].

The scan of the fourth and fifth transactions leads to the
construction of two branches of the tree, {(B:0), (C:0), (D:1)}
and {(C:0), (D:1)}, respectively. And the frequency count list
becomes [A:3, B:4, C:4, D:4].

After the scan of all the transactions, the complete CT-tree
for the example transaction database TDB is shown in Fig. 1.
And the frequency count list becomes [A:5, B:8, C:9, D:6],
as shown in the head part of Table II in frequency-descending
order.

Having built a CT-tree, the body part of the compact
transaction database is constructed as follows. For every node
v whose count value is greater than 0 in the CT-tree, a unique
transaction t is created in the body part of CTDB. The count
value associated with the node is recorded as the occurrence
count of t, and the sequence of items labelling the path from
the root to v is sorted in frequency-descending order and
recorded as the item list of t. For example, no transaction
is created for node A or B in the leftmost path because their
count values are 0. Whereas transactions [3 C B A] and [1 C
B D A] are created for nodes C and D, respectively, as shown
in the first two rows in the body part of Table II.

B. Algorithm description

Having shown the above example, we now define CT-tree
as follows.

Definition 3.1: The Compact Transaction Tree (CT-tree)
of a transaction database TDB is a tree where each tree node
V (except the root of the tree, which is labeled as “ROOT”)
is a 2-tuple (v, vc) (denoted by v : vc in the tree), where v
is an item in TDB and vc is the number of occurrences in
TDB of a unique transaction consisting of all the items in the
branch of the tree from the root to node V .

The algorithm for generating a CT-tree from a transaction
database and for generating a compact transaction database
from a CT-tree is described as follows.

Method: Compact Transaction Database Generator.

Input: Original transaction database TDB.
Output: Compact transaction database CTDB.

1: root[CTtree] ← ROOT
2: list[item][count] ← null
3: for each transaction Tn in TDB do
4: To ← sort items of Tn in lexicographic order
5: insert(To, CTtree)
6: end for
7: if CTtree is not empty then
8: list ← sort list[item][count] in count descending order
9: for each item i in list[item] do

10: CTDB ← write i
11: CTDB ← write count[list[i]]
12: end for
13: startNode ← child[root[CTtree]]
14: write(startNode, CTDB)
15: else
16: output ”The original transaction database is empty!”
17: end if

procedure insert(T , CTtree)

1: thisNode ← root[CTtree]
2: for each item i in transaction T do
3: if i is not in list[item] then
4: list[item] ← add i
5: end if
6: list[count[i]] ← list[count[i]] + 1
7: nextNode ← child[thisNode]
8: while nextNode 	= null and item[nextNode] 	= i do
9: nextNode ← sibling[nextNode]

10: end while
11: if nextNode = null then
12: item[newNode] ← i
13: if i is the last item in T then
14: count[newNode] ← 1
15: else
16: count[newNode] ← 0
17: end if
18: parent[newNode] ← thisNode
19: sibling[newNode] ← child[thisNode]
20: child[newNode] ← null
21: child[thisNode] ← newNode
22: thisNode ← newNode
23: else
24: if item i is the last item in T then
25: count[thisNode]++
26: else
27: thisNode ← nextNode
28: end if
29: end if
30: end for

procedure write(node, CTDB)

1: if count[node] 	= 0 then
2: count[newTrans] ← count[node]
3: nextNode ← node
4: while nextNode 	= root[CTtree] do

5: newTrans ← insert item[nextNode]
6: nextNode ← parent[nextNode]
7: end while
8: if newTrans is not empty then
9: newTrans ← sort newTrans in list order

10: CTDB ← write newTrans
11: end if
12: end if
13: if child[node] 	= null then
14: write(child[node], CTDB)
15: end if
16: if sibling[node] 	= null then
17: write(sibling[node], CTDB)
18: end if

In the first two steps in the above method, the root of an
empty CT-tree and a 2-dimension array list are initialized. All
items in the original transaction database TDB will be stored
in this list along with their support counts after constructing
the CT-tree. From step 3 to step 6, a complete CT-tree is built
with one database scan, where each transaction T in TDB is
sorted and inserted into the CT-tree by calling the procedure
insert(T, CT-tree).

Then, the list is sorted in frequency descending order and
written as the head part of the compact transaction database
CTDB, as shown in step 8 to step 12. After calling the
procedure write(startNode, CTDB) in step 13 recursively, a
unique transaction newTrans is written into the body of CTDB
for each node whose count value is not equal to zero in the
CT-tree. The occurrence count of newTrans is the same as the
count value (step 2 of write), and the item list of newTrans is
the sequence of items labelling the path from the node to the
root (step 4 to step 7 of write), sorted in frequency-descending
order (step 9 of write). Thus, a complete compact transaction
database is generated.

IV. CT-Apriori ALGORITHM

The Apriori algorithm is one of the most popular algorithms
for mining frequent patterns and association rules [4]. It
introduces a method to generate candidate itemsets Ck in the
pass k of a transaction database using only frequent itemset
Fk−1 in the previous pass. The idea rests on the fact that any
subset of a frequent itemset must be frequent as well. Hence,
Ck can be generated by joining two itemsets in Fk−1 and
pruning those that contain any subset that is not frequent.

In order to explore the transaction information stored in
a compact transaction database efficiently, we modify the
Apriori algorithm and the pseudocode for our new method,
CT-Apriori, is shown as follows. We use the notation X[i] to
represent the ith item in X . The k-prefix of an itemset X is
the k-itemset {X[1],X[2],...,X[k]}.

Algorithm: CT-Apriori algorithm
Input: CTDB (Compact transaction database) and min sup

(minimum support threshold).
Output: F (Frequent itemsets in CTDB)

1: F1 ← {{i} | i ∈ items in the head of CTDB}

2: for each X ,Y ∈F1, and X<Y do
3: C2 ← C2 ∪ {X∪Y }
4: end for
5: k ← 2
6: while Ck 	= ∅ do
7: for each transaction T in the body of CTDB do
8: for each candidate itemsets X ∈ Ck do
9: if X ⊆ T then

10: count[X] ← count[X] + count[T]
11: end if
12: end for
13: end for
14: Fk ← {X | support[X] ≥ min sup}
15: for each X ,Y ∈Fk, X[i]=Y [i] for 1≤i≤k and

X[k]<Y [k] do
16: L ← X ∪ {Y [k]}
17: if ∀J ⊂ L, |J | = k : J ∈ Fk then
18: Ck+1 ← Ck+1 ∪ L
19: end if
20: end for
21: k ← k + 1
22: end while
23: return F =

⋃
kFk

There are two essential differences between this method and
the Apriori algorithm:

1) The CT-Apriori algorithm skips the initial scan of
database in the Apriori algorithm by reading the head
part of the compact transaction database and inserting
the frequent 1-itemsets into F1. Then candidate 2-
itemset C2 is generated from F1 directly, as shown in
step 1 - 4 in the above algorithm.

2) In the Apriori algorithm, to count the supports of all
candidate k-itemsets, the original database is scanned,
during which each transaction can add at most one count
to a candidate k-itemset. In contrast, in CT-Apriori, as
shown in step 10, these counts are incremented by the
occurrence count of that transaction stored in the body
of the compact transaction database, which is, in most
of the time, greater than 1.

V. EXPERIMENTAL STUDIES

In this section, we report our experimental results on the
generation of compact transaction databases as well as the
performance of CT-Apriori using the compact transaction
databases in comparison with the classic Apriori algorithm
using traditional transaction databases.

A. Environment of experiments

All the experiments are performed on a double-processor
server, which has 2 Intel Xeon 2.4G CPU and 2G main
memory, running on Linux with kernel version 2.4.26. All the
programs are written in Sun Java 1.4.2. The algorithms are
tested on two types of data sets: synthetic data, which mimic
market basket data, and anonymous web data, which belong to
the domain of web log databases. To evaluate the performance
of the algorithms over a large range of data characteristics,

TABLE III

PARAMETERS USED IN THE SYNTHETIC DATA GENERATION PROGRAM

Parameter Meaning

|D| Total number of transactions
|T| Average size of transactions
|I| Average size of maximal potentially frequent itemsets
|L| Number of maximal potentially frequent itemsets
N Total number of items

TABLE IV

PARAMETERS SETTINGS OF SYNTHETIC DATA SETS

Transaction Database |T| |I| |D|
T5.I3.D100k 5 3 100k

T10.I5.D100k 10 5 100k
T20.I10.D100k 20 10 100k

T10.I5.D200k 10 5 200k
T15.I10.D200k 15 10 200k
T20.I15.D200k 20 15 200k

we have tested the programs on various data sets and only the
results on some typical data sets are reported here. Moreover,
these two algorithms generate exactly the same set of frequent
patterns for the same input parameters.

The synthetic data sets that we used in our experiments
were generated using the procedure described in [4]. These
transactions mimic the actual transactions in a retail environ-
ment. The transaction generator takes the parameters shown
in Table III.

Each synthetic data set is named after these parameters.
For example, the data set T10.I5.D20K uses the parameters
|T| = 10, |I| = 5, and |D| = 20000. For all the experiments,
we generate data sets by setting N = 1000 and |L| = 2000
since these are the standard parameters used in [4]. We chose
4 values for |T|: 5, 10, 15 and 20. We also chose 4 values
for |I|: 3, 5, 10 and 15. And the number of transactions are
set to 100,000 and 200,000. Table IV summarizes the data set
parameter settings.

We report experimental results on two real-
world data sets. One of them was obtained from
http://kdd.ics.uci.edu/databases/msweb/msweb.html. It was
created by sampling and processing the web logs of Microsoft.
The data records the use of www.microsoft.com by 38000
anonymous, randomly-selected users. For each user, the data
lists all the areas of the web site that user visited in a one
week time frame. The data set contains 32711 instances
(transactions) with 294 attributes (items); each attribute is an
area of the www.microsoft.com web site.

The other data set was first used in [9] to discovery interest-
ing association rules from Livelink 1 web log data. This data
set is not publicly available for proprietary reasons. The log
files contain Livelink access data for a period of two months
(April and May 2002). The size of the raw data is 7GB. The
data describe more than 3,000,000 requests made to a Livelink
server from around 5,000 users. Each request corresponds to
an entry in the log files. The detail of data preprocessing,

1Livelink is a web-based product of Open Text Corporation.

which transformed the raw log data into the data that can be
used for learning association rules, was described in [9].

The resulting session file used in our experiment was
derived from the 10-minute time-out session identification
method. The total number of sessions (transactions) in the
data set is 30,586 and the total number of objects 2 (items) is
38,679.

B. Generation of compact databases

To evaluate the effectiveness of compact transaction
databases, we compared the compact transaction database with
the original database in terms of the size of the databases and
the number of transactions in the databases. The compression
results are summarized in Table V.

As the experimental data show, the proposed approach
guarantees a good compression in the size of the original
transaction database with an average rate of 16.2%, and an
excellent compression in the number of transactions with an
average rate of 28.0%.

In the best case, a compression down to 63.1% of the
size of the original transaction database and 34.3% of the
number of transactions can be achieved in the Microsoft web
data. Moreover, as can be seen, much higher compression
rates are achieved in real-world data sets, which indicates that
the compact transaction database provides more effective data
compression in real-world applications.

C. Evaluation of efficiency

To assess the efficiency of our proposed approach, we
performed several experiments to compare the relative perfor-
mance of the Apriori and CT-Apriori algorithms. Fig. 2 and
Fig. 3 illustrate the corresponding execution times for the two
algorithms on two different types of databases with various
support thresholds from 2% down to 0.25%.

From these performance curves, it can be easily observed
that CT-Apriori performs better in all situations. As the support
threshold decreases, the performance difference between the
two algorithms becomes prominent in almost all the cases,
showing that the smaller the support threshold is, the more
advantageous CT-Apriori is over Apriori. The performance
gaps between these two methods are even more substantial
on the T15.I10.D200K and Microsoft data sets, as shown in
Fig. 2 and Fig. 3 respectively.

It is easy to see why this is the case. First, Apriori needs
one complete database scan to find candidate 1-itemsets, while
CT-Apriori can generate them from the head part of com-
pact transaction database. Even though it takes time to con-
struct a compact transaction database, the resultant compact
transaction database can be used multiple times for mining
patterns with different support thresholds. Second, when the
support threshold gets lower, these two algorithms have to scan
databases more times to discover the complete set of frequent
patterns. For instance, the Apriori algorithm requires 18 passes

2An object could be a document (such as a PDF file), a project description,
a task description, a news group message, a picture and so on [9].

TABLE V

GENERATION OF COMPACT TRANSACTION DATABASES

Transaction Size of Databases Number of Transactions
Databases Original (Kb) Compact (Kb) Compression Ratio (%) Original Compact Compression Ratio (%)

T5.I3.D100K 2,583 2,238 13.4 100,000 67,859 32.1
T10.I5.D100K 4,541 4,349 4.2 100,000 83,095 16.9

T20.I10.D100K 8,451 8,227 3.7 100,000 89,023 11.0
T10.I5.D200K 9,000 8,644 4.0 200,000 166,161 16.9

T15.I10.D200K 13,358 11,108 16.8 200,000 142,863 28.6
T20.I15.D200K 17,913 14,155 21.0 200,000 151,306 24.3

Average Compression Ratio 10.4 Average Compression Ratio 21.6

Microsoft Web Data 545 344 36.9 32,711 11,233 65.7
LiveLink Web Data 3,275 2,262 30.9 30,586 21,921 28.3

Average Compression Ratio 33.9 Average Compression Ratio 47.0

Compression Ratio 16.2% 28.0%

 2 1.5 1 0.75 0.5 0.33 0.25
0

50

100

150

200

250

300

350

Minimum Support (%)

R
u

n
 T

im
e

 (
se

co
n

d
)

T5.I3.D100K

CT−Apriori
Apriori

 2 1.5 1 0.75 0.5 0.33 0.25
0

100

200

300

400

500

600

Minimum Support (%)

R
u

n
 T

im
e

 (
se

co
n

d
)

T10.I5.D100K

CT−Apriori
Apriori

 2 1.5 1 0.75 0.5 0.33
0

200

400

600

800

1000

1200

Minimum Support (%)

R
u

n
 T

im
e

 (
se

co
n

d
)

T20.I10.D100K

CT−Apriori
Apriori

 2 1.5 1 0.75 0.5 0.33 0.25
0

100

200

300

400

500

600

700

800

900

1000

Minimum Support (%)

R
u

n
 T

im
e

 (
se

co
n

d
)

T10.I5.D200K

CT−Apriori
Apriori

 2 1.5 1 0.75 0.5
100

200

300

400

500

600

700

800

900

1000

1100

Minimum Support (%)

R
u

n
 T

im
e

 (
se

co
n

d
)

T15.I10.D200K

CT−Apriori
Apriori

 2 1.5 1 0.75
300

400

500

600

700

800

900

1000

1100

1200

1300

Minimum Support (%)

R
u

n
 T

im
e

 (
se

co
n

d
)

T20.I15.D200K

CT−Apriori
Apriori

Fig. 2. Execution times on synthetic databases.

 2 1.5 1 0.75 0.5 0.33 0.25
2

3

4

5

6

7

8

9

10

Minimum Support (%)

R
u

n
 T

im
e

 (
se

co
n

d
)

Microsoft Web Data

CT−Apriori
Apriori

 2 1.5 1 0.75 0.5 0.33 0.25
0

5

10

15

20

25

30

35

Minimum Support (%)

R
u

n
 T

im
e

 (
se

co
n

d
)

LiveLink Web Data

CT−Apriori
Apriori

Fig. 3. Execution times on real-world databases.

over the database T15.I10.D200K when the support threshold
is set to 0.25%.

As shown in the above section, the number of transactions
in a compact transaction database is always smaller than
that in its corresponding original database, which results in
time saving in each scan of the database. The time saved
in each individual scan by CT-Apriori collectively results in
a significant saving in the total amount of I/O time of the
algorithm.

VI. RELATED WORK

Data compression is an effective method for reducing stor-
age space and saving network bandwidth. A large number of
compression schemes have been developed based on character
encoding or on detection of repetitive strings, and comprehen-
sive surveys of compression methods and schemes are given
in [6], [10], [16].

There are two fundamentally different types of data com-
pression: lossless and lossy. As we have mentioned at the
beginning of our experimental evaluations, the set of frequent
patterns generated from an original transaction database and its
corresponding compact transaction database are identical with
the same input parameters, therefore, the compact transaction
database approach proposed in this paper is lossless.

The major difference of our approach from others is that our
main purpose of compression is to reduce the I/O time when
mining patterns from a transaction database. Our compact
transaction database can be further compressed by any existing
lossless data compression technique for storage and network
transmission purposes.

Mining frequent patterns is a fundamental step in data
mining and considerable research effort has been devoted to
this problem since its initial formulation. A number of data
compression strategies and data structures, such as prefix-tree
(or trie) [2], [5], [7] and FP-tree [8], have been devised to
optimize the candidate generation and the support counting
process in frequent patterns mining.

The concept of prefix-tree is based on the set enumeration
tree framework [14] to enable itemsets to be located quickly.

(∅)

(A:5)

(D:2)

(C:2) (B:3)

(B:5)

(C:4) (D:1)

(C:3)

(D:2)

(D:1)

Fig. 4. Prefix-tree for the database TDB in Table I.

Fig. 4 illustrates the prefix-tree for the example transaction
database in Table I. The root node of the tree corresponds to
the empty itemset. Each other node in the tree represents an
itemset consisting of the node element and all the elements
on nodes in the path (prefix) from the root. For example, the
path (∅)-(B:3)-(C:3)-(D:3) in Fig. 4 represents the itemset {B,
C, D} with support of 3.

It can be seen that the set of paths from the root to the
different nodes of the tree represent all possible subsets of
items that could be present in any transaction. Compression is
achieved by building the tree in such a way that if an itemset
shares a prefix with an itemset already in the tree, the new
itemset will share a prefix of the branch representing that
itemset. Further compression can also be achieved by storing
only frequent items in the tree.

The FP-growth method proposed in [8] uses another com-
pact data structure, FP-tree (Frequent Pattern tree), to represent
the conditional databases. FP-tree is a combination of prefix-
tree structure and node-links, as shown in Fig. 5.

All frequent items and their support counts are found by
the first scan of database, and are then inserted into the header
table of FP-tree in frequency descending order. To facilitate
tree traversal, the entry for an item in the header table also
contains the head of a list that links all the corresponding

C 9

B 8

D 6

A 5

(null)

(C:9)

(B:7)

(D:2)

(D:3)

(D:1)

(A:3)

(A:1)

(A:1)

Item ID

Support

Count
Node-link

(B:1)

Fig. 5. FP-tree for the database TDB in Table I.

nodes of the FP-tree.
In the next scan, the set of sorted (frequency descending

order) frequent items in each transaction are inserted into a
prefix-tree as a branch. The root node of the tree is labeled
with “null”, every other node in the FP-tree additionally stores
a counter which keeps track of the number of itemsets that
share that node. When the frequent items are sorted in their
frequency descending order, there are better chances that more
prefixes can be shared, thus the FP-tree representation of the
database can be kept as small as possible.

The compact transaction database and CT-tree data struc-
ture introduced in the previous sections are very different from
above approaches. First of all, the prefix-tree and FP-tree data
structure are constructed in the main memory to optimize the
frequent pattern mining process, whereas CT-tree is designed
to generate compact transaction database and store it to disk
for efficient frequent pattern mining and other mining process,
in which compact database can save storage space and reduce
mining time.

In addition, the counter associated with each node in the
prefix-tree and FP-tree stores the number of transaction con-
taining the itemset represented by the path from the root to
the node. However, each path from every node of the CT-tree
to the root represents a unique transaction, and the associated
counter records the number of occurrences of this transaction
in the original transaction database.

Moreover, for a given transaction database, the number of
nodes and node-links in FP-tree will change with different
minimum support threshold specified by the user. But there
is only one unchanged CT-tree for every transaction database.
And the FP-tree structure can be constructed from a compact
transaction database more efficiently in only one database
scan, since the head part of a compact transaction database
lists all items in frequency descending order, and the body part
stores all ordered transactions associated with their occurrence
counts.

VII. CONCLUSIONS

We have proposed an innovative approach to generating
compact transaction databases for efficient frequent pattern
mining. The effectiveness and efficiency of our approach are

verified by the experimental results on both synthetic and
real-world data sets. It can not only reduce the number of
transactions in the original databases and save storage space,
but also greatly reduce the I/O time required by database scans
and improve the efficiency of the mining process.

We have assumed in this paper that the CT-tree data
structure will fit into main memory. However, this assumption
will not apply for very large databases. In that case, we plan
to partition original databases into several small parts until the
corresponding CT-tree can be fit in the available memory. This
work is currently in progress.

VIII. ACKNOWLEDGMENTS

This research is supported by Communications and Infor-
mation Technology Ontario (CITO) and Natural Sciences of
Engineering Research Council of Canada (NSERC).

REFERENCES

[1] R. Agarwal, C. Aggarwal, and V. V. V. Prasad. Depth first generation of
long patterns. In Proceedings of ACM-SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2000.

[2] R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm
for generation of frequent itemsets. In Journal of Parallel and Distributed
Computing (Special Issue on High Performance Data Mining), 2000.

[3] R. Agarwal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In Proceedings ACM SIGMOD
International Conference on Management of Data, pages 207–216, Wash-
ington, D.C., USA, May 1993.

[4] R. Agarwal and R. Strikant. Fast algorithms for mining association rules.
In Proceedings of 20th International Conference on Very Large Data Bases,
pages 487–499, Santiago, Chile, September 1994.

[5] R. J. Bayardo. Efficiently mining long patterns from databases. In
Proceedings of the International ACM SIGMOD Conference, pages 85–
93, May 1998.

[6] T. Bell, I. H. Witten and J. G. Cleary. Modelling for Text Compression.
In ACM Computing Surveys, 21, 4 (December 1989), 557.

[7] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting
and implication rules for market basket data. In Proceedings of the In-
ternational ACM SIGMOD Conference, pages 255–264, Tucson, Arizona,
USA, May 1997.

[8] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proceedings of ACM-SIGMOD International Conference on
Management of Data, pages 1–12, Dallas, TX, May 2000.

[9] X. Huang, A. An, N. Cercone, and G. Promhouse. Discovery of
interesting association rules from livelink web log data. In Proceedings
of IEEE International Conference on Data Mining, Maebashi City, Japan,
2002.

[10] D. A. Lelewer and D. S. Hirschberg. Data Compression. In ACM
Computing Surveys, 19, 3 (September 1987), 261.

[11] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent itemsets
by opportunistic projection. In Proceedings of ACM-SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Edmonton,
Canada, July 2002.

[12] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for
discovering association rules. In AAAI Workshop on Knowledge Discovery
in Databases, pages 181–192, July 1994.

[13] J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based
algorithm for mining association rules. In Proceedings of ACM-SIGMOD
International Conference on Management of Data, San Jose, CA, May
1995.

[14] R. Rymon. Search through systematic set enumeration. In Proceedings
of 3rd International Conference on Principles of Knowledge Representa-
tion and Reasoning, pages 539-550, 1992.

[15] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large databases. In Proceedings of the 21st
International Conference on Very Large Data Bases, Zurich, Switzerland,
September 1995.

[16] J. A. Storer. Data Compression: Methods and Theory. In Computer
Science Press, New York, NY, 1988.

