
Optimizing Data Compression via Data Reordering
Qinxin Du

York University
qinxindu98@gmail.com
Toronto, ON, Canada

Xiaohui Yu
York University
xhyu@yorku.ca

Toronto, ON, Canada

Aijun An
York University
aan@yorku.ca

Toronto, ON, Canada

Dariusz Jania
IBM Cloud and Cognitive Software

dariusz.jania@pl.ibm.com
Krakowiaków 32, Warszawa, Poland

Abstract—Data compression is critical for efficient data opera-
tions such as migration, backup, and analytical processing. While
there has been significant research into compression techniques
for multimedia like videos and images, relational data has gar-
nered less attention. Current methods for compressing relational
data, such as gzip and LZ4, do not optimize record ordering
within tables, potentially missing opportunities for improved
compression. It has been shown that grouping similar records
together can enhance compression performance, as measured by
the compression ratio. As such, we propose two novel record
reordering methods: (1) clustering and (2) solving a Travelling
Salesman Problem (TSP) to reorder records. Additionally, we
apply locality-sensitive hashing (LSH) on textual columns to
convert text into vector representations, aiding in clustering
and TSP reordering. For columns with a fewer number of
distinct values, using run-length encoding (RLE) rather than
traditional dictionary-based compression may be more effective.
We therefore extend our approach to partition the set of columns
in a table into two groups based on the distinct value count
and then use appropriate compression algorithms for each,
aiming to maximize the overall compression ratio. We conducted
extensive experiments with one synthetic and three real datasets
to evaluate our proposed methods. The results confirm that our
proposed approaches significantly outperform existing baselines,
demonstrating their efficacy in relational data compression.

Index Terms—data compression, data migration, classification

I. INTRODUCTION

A. Motivation

Recent advancements in information technology have led
to the generation of massive amounts of data every sec-
ond [1]. This surge in data creation has heightened the need
for efficient methods to access, store, and update data from
various databases and applications. Concurrently, the prolif-
eration of computer communication networks has resulted
in an increased flow of data over communication links [2].
Consequently, there is an urgent need for data compression
techniques to reduce redundancy in stored or communicated
data, thereby increasing effective data density [2].

Data compression can be categorized into two types: lossless
(exact) and lossy (inexact) compression [3]. Lossless compres-
sion techniques allow the original data to be perfectly recon-
structed from the compressed data, ensuring data integrity.
On the other hand, lossy compression techniques achieve
higher compression ratios by sacrificing some data precision
or quality. Despite extensive research on lossy compression
techniques for images and videos, relatively little attention has

been given to compressing relational data, which remains the
predominant form of data organization in many enterprises.

This paper is concerned with lossless compression of re-
lational data that take a tabular form consisting of rows
(records) and columns (attributes). Standard lossless com-
pression techniques may not always yield optimal results for
tabular data as these methods might not efficiently capture
patterns, repetitions, and localized structures. To address this,
researchers have introduced additional step before applying
standard compression methods, where rows are first reordered
to make them more amenable to the compression algorithm
used. Prominently, Lemire et al. introduce a row-reordering
approach and utilize it with run-length encoding (RLE) [4]
as the compression algorithm. Another study describes an
incremental heuristic for selecting columns to compress and
determining row order to improve compression ratios for in-
memory columnar databases using RLE [5]. Both approaches
exclusively use RLE for compression after data reordering, and
thus restricting themselves to scenarios where repeated values
in a column are prevalent for RLE to be effective. They tend to
perform best when applied to columns with a limited number
of unique values.

However, for some columns, their specific repetitive pat-
terns, which involve only partial matches between different
values, might not benefit from RLE. For instance, while the
words “apply” and “apple” are similar and contain the same
segment “appl”, they are not considered the same when RLE is
applied, and thus placing these two values through reordering
does not bring any benefit in terms of compression ratio. It
is therefore highly desirable to identify suitable combinations
of compression algorithms and reordering methods to be
applied to different columns in a tabular dataset, in order to
optimize compression ratios. As such, this study focuses on
preprocessing the data before reordering it to uncover similar
patterns among data values, group them more effectively, and
select suitable compression strategies for each column based
on their characteristics.

B. Proposed Approach

Standard dictionary-based compression methods belonging
to the LZ77 family, such as gzip (Deflate) and LZ4, are widely
used in current approaches to compress tabular data due to
their versatility across different data types (e.g., numerical, tex-
tual, categorical) and broad support across various computing
platforms. However, these methods typically can only exploit

1

repeating patterns within a sliding window of fixed-size. Our
approach enhances these standard methods by initially reorder-
ing data to cluster similar or frequently occurring sequences
together. This reordering allows dictionary-based compression
algorithms to detect and compactly encode longer repetitive
sequences that appear consecutively.

We implement two data reordering methodologies: k-modes
clustering and a heuristic-based solver for the Traveling Sales-
man Problem (TSP). These techniques optimize the order
of records in a way that maximizes the effectiveness of the
compression by placing similar records near each other.

To address the challenge of exploiting textual similarities
between entries that are similar but not identical (e.g., “12345”
and “12346”), we incorporate an advanced data encoding
method called locality-sensitive hashing (LSH). LSH trans-
forms raw tabular data into low-dimensional vector repre-
sentations, assisting in the reordering process by uncovering
hidden textual similarities. This method enhances the ability
of reordering algorithms to group data items with high textual
similarity, making it possible for dictionary-based compression
to efficiently compress these groups.

Moreover, we observe that columns with a high number of
unique values gain substantial benefits from the LSH encoding
process. Conversely, for columns with fewer distinct values,
pre-reordering encoding using LSH shows less impact on
compression outcomes. On the other hand, in such cases, run-
length encoding (RLE) with heuristic-based TSP reordering as
proposed by Lemire et al., has shown to be highly effective, as
this method is particularly suited for sequences with limited
variability.

To optimize the overall compression ratio of a table, we have
developed an innovative strategy to partition the columns in a
table into two groups based on the distinct value count of each
column. This partitioning allows us to apply the most suitable
compression techniques to each group. Columns with fewer
distinct values are processed using TSP reordering followed by
run-length encoding, whereas columns with a larger number of
distinct values are subject to LSH encoding followed by TSP
reordering and subsequent dictionary-based compression. We
establish a threshold for partitioning based on the percentage
of unique values in each column, which dictates the appro-
priate compression strategy for each group. This partitioning
approach provides a comprehensive compression solution that
adapts to the unique characteristics of each column within the
table, significantly enhancing the overall compression ratio.

C. Contributions

In summary, our contributions are as follows:

• We explore reordering of records as a way to improve
compression ratio and propose two new methods for
this purpose, based on clustering and TSP heuristics
respectively.

• We employ Locality-Sensitive Hashing (LSH) to trans-
form data values of various data types into low-
dimensional vectors and thus achieve a representation that

is amenable to similarity computation for clustering or
TSP reordering.

• We devise a data partitioning method to enhance the
generality of our approach by considering the unique
value percentage in each column, which allows distinct
compression strategies to be adopted for different groups
of columns.

• We experimentally evaluate the effectiveness of our pro-
posal and present results from a thorough evaluation,
testing the impact of different dataset parameters using
both synthetic and real datasets, demonstrating impressive
performance improvements.

II. RELATED WORK

A. Data Compression Algorithms

Data compression algorithms can be divided into two
primary categories based on compression quality: lossy and
lossless. Our focus in this paper is on lossless compression.
Unlike lossy compression, which permanently discards some
information to reduce data size, lossless compression ensures
that no data is lost, allowing the original data to be fully
restored. Lossless compression methods can be broadly cate-
gorized into three types: dictionary-based, entropy-based, and
hybrid compression algorithms.

Dictionary-based compression reduces file sizes by iden-
tifying repeating patterns or sequences and replacing them
with references to a dictionary. Prominent algorithms include
LZ77, LZ4, and Zstandard (Zstd). LZ77, created by Ziv and
Lempel [6], uses a sliding window to find and replace recur-
ring sequences, making it suitable for compressing repetitive
data [7]. This adaptability has led to applications in fields such
as computational biology and DNA sequence compression [8],
[9], and its evolution into LZ78 has led to hybrid algorithms
and precise parameter estimation using convolutional neural
networks [10], [6]. LZ4, derived from LZ77, is known for
its high-speed compression and decompression, and has been
optimized for applications such as FPGA implementations
and cloud computing to reduce data transmission costs [11].
Zstandard, known for its efficient compression and adjustable
levels, is used in nanopore sequencing and IoT healthcare
applications to reduce data broadcast by sensors, e.g., [12].

Entropy-based compression, or entropy coding, uses sta-
tistical properties of data to reduce storage space. RLE, a
simple lossless algorithm in this category, replaces consecutive
repeated symbols with a count and the symbol itself [13],
and is effective for compressing data with long sequences of
identical symbols in image processing, signal processing, and
test data compression [14]. Enhanced RLE methods include
Golomb and frequency-directed encoding, as well as adaptive
2D RLE, improving compression ratios when combined with
other techniques like Huffman encoding [15].

Hybrid compression combines multiple algorithms for op-
timal results, with Deflate and gzip integrating LZ77 and
Huffman coding. Deflate locates and replaces recurrent se-
quences using LZ77, followed by Huffman coding for further
compression [16], and is widely used in formats like ZIP,

2

HTTP, and PNG for faster data transmission and better user
experience [17]. Gzip, based on Deflate, includes additional
features like checksums and file packaging, serving as a
benchmark for comparing compression methods and has been
improved for real-time compression [18]. Despite its preva-
lence, gzip has limitations, such as the inability to decompress
at arbitrary locations due to the nature of Deflate [19].

B. Data Reordering for Data Compression

Multiple compression techniques used in databases can be
affected by data reordering, particularly when it comes to
rearranging rows [4].

Poss and Potapov proposed an innovation compression
technique in Oracle [20]. Their work highlights that reordering
data before loading can enhance the compression ratio of a
database table, as columns arranged sequentially may possess
identical content. Sorting the data on fields with fewer unique
values in a database object will likely enhance the compression
factor.

Data compression in the column-oriented database systems
is improved through the process of data reordering, where data
is stored by column rather than by row. Stonebraker et al.
discovered that in C-Store, a column-oriented database, sorting
a column results in grouping the same values together [21].
This grouping facilitates the compression of these values using
techniques like run-length encoding.

Lemire et al. evaluate several row reordering heuristics,
including the Lexicographic Order heuristic, the Vertex heuris-
tic, the Multiple Lists heuristic, and the TSP heuristic to
improve compression rate for database tables [4]. We employ
this method as part of our proposed DVP-partitioned table
compression strategies for cetain columns.

Pan et al. [22] explore the use of online clustering of records
in a table to achieve a higher compression ratio in the partic-
ular setting of data migration from one site to another, where
the main focus is the trade-off between clustering overhead
and the improvement in compression ratio. In contrast, we
deal with the general setting of data compression with the
objective of optimizing the compression ratio.

III. PROBLEM DESCRIPTION

Let T denote a relational table comprising multiple columns
C, where each specific column ci represents an attribute. We
use rj to denote the j-th record in T as per the physical order
of records in T. The data entry at i-th column and j-th row
in T is represented as dij . Our research goal is to optimize
the compression ratio of the relational table T and improve its
storage efficiency.

As ci represents a single attribute in T, such as the gender
or age of a person, it contains data of uniform type with
repeating values. Thus, instead of compressing data row by
row, we compress ci independently to better exploit the
similarities between values in the same ci to achieve a higher
compression ratio. Specifically, we apply either a dictionary-
based compression algorithm or RLE to ci stored in T to
implement column-wise compression.

TABLE I
NOTATIONS USED IN THE PROBLEM DESCRIPTION

Notation Description
T A relational table
C The set of columns within T
ci The ith column in original T
rj The jth record in original T
dij The data entry at ith column and jth row in T

IV. METHODOLOGIES

The primary idea of our methodologies is to reorder the
data records based on their similarity so that the compression
algorithms can better exploit the repeating sequences and
compress the data into smaller sizes. We propose two data
reordering methods: Clustering-based and Traveling Salesman
Problem (TSP)-based. Since the dictionary-based compression
algorithms treat all values as strings, we consider all col-
umn values as strings by default, and a data representation
algorithm, Locality Sensitive Hashing (LSH), is applied to
the data values before data reordering. It aims to transform
different types of data (e.g., categorical, numerical, textual,
or mixed) into a uniform format (low-dimensional vector
representations) and expose hidden textual similarity to data
reordering algorithms.

Yet for some columns, it may be the case that there are
only a very limited number of distinct values being repeated
across records, and thus it is more sensible to apply the RLE
compression algorithm after reordering as done in [4]. To
handle such cases, a table-partitioned compression strategy
based on the number of distinct values within an individual
column is proposed to further improve the overall compression
ratio for a whole table. The table is partitioned into two groups
via a configurable threshold: columns with a few distinct
values and columns with many distinct values. Each group
of columns will then undergo suitable recording strategies
respectively. Finally, the compression algorithm compresses
tabular data column by column.

Data reordering methods are discussed in Section IV-B
(Clustering-based) and Section IV-C (TSP-based) respectively.
Before discussing these methods, we present the data represen-
tation algorithm in Section IV-A. In Section IV-D, we describe
our table-partitioned compression strategies.

A. Data Representation Algorithm

Repetitive patterns often appear among values in a column.
Some of them are the same, while others are just similar. For
instance, A column representing attribute “Gender” has many
repeating values of “Male” and “Female”. Another column
represents the attribute “ID” with values like “ID-1110”, “ID-
1111”, and “ID-1112”. Even though they share the same
substring “ID-111”, they are different data entries which data
reordering algorithms will not group them closer.

To account for overlapping substrings in similarity compu-
tations, we utilize Locality Sensitive Hashing (LSH) [23] to
represent the values in the data table. With LSH, each value
in a column is first sliced into pieces (called shingles), which

3

are stored in a vocabulary. Then each shingle in a value is
represented by the index of the shingle in the vocabulary. Such
indexes for all shingles of a data value dij are then converted
into a dense vector of a small, fixed size using the minHashing
technique [24]. This dense vector is called the signature of dij .
The LSH method consists of the following two steps.

(1) Shingling is the process of transforming a string into a
set of shingles. It’s akin to sliding a window of length Q down
the data string and capturing a snapshot at each step. These
snapshots are saved to create a set of shingles. The vocabulary
vocab comprises all the shingles spanning all dijs. The vector
representation of each dij is formed using this vocab.

For example, for the string “Hello”, when we set Q to 2,
the vocab contains shingles: “He”, “el”, “ll”, “lo”.

(2) MinHashing: After the shingles are obtained, we further
apply MinHashing to generate lower-dimensional signatures
for computing similarity between values dij . For each set of
shingles corresponding to a dij , M hash functions are applied
to produce hash values, and the minimum hash value for each
hash function is recorded. This process generates a MinHash
signature, a compact representation of the set. The similarity
between two sets can then be estimated by comparing their
MinHash signatures, specifically by counting the number of
matching hash values and dividing by the total number of hash
functions used. Compared to main competing methods like
exact Jaccard similarity, MinHash offers significant benefits:
it is highly scalable, reducing computational complexity from
quadratic to linear; it is space-efficient, storing small signatures
instead of large sets; it provides fast, approximate similarity
estimations, which are often sufficient for practical applica-
tions; it is simple to implement and can be easily parallelized
for distributed computing environments, making it ideal for
handling large-scale data.

The procedure to implement locality sensitive hashing for
single value dij is described in Algorithm 1. Initially, we ex-
tract shingles of sliding window size Q from a data entry dij ,
where each shingle is added to the set shingles (lines 6-10).
Next, M hash functions are generated using random integers a
and b within the range of the vocabulary size |vocab|, defining
each hash function as h(x) = (a · x+ b) mod |vocab| (lines
11-17). For each hash function, the algorithm iterates over
all shingles of dij to compute hash values and determine the
minimum hash value for each hash function (lines 18-28).
Finally, the computed MinHashing signature vector signature
is returned as the output which used to represent a dij (line 26).
Without MinHashing process, the dimensionality of the data
representation vector for each data entry depends on the size of
vocab which is typically high for columns with many distinct
values. In contrast, the dimensionality can be significantly
reduced after applying hash functions while preserves the
similarity between signatures.

Figure 1 illustrates an example of LSH. Each data entry in
the column Car Name is transformed into a four-dimensional
vector using sliding window size Q=2 for shingling and M=4
for MinHashing. For instance, the shingles for the string
“Hyundai Grand i10 CRDi Asta” include “Hy”, “yu”, “un”,

“nd” . . . , “ta”. After applying shingling to all the dij in the
column, the vocab consists of 1,369 shingles. We apply four
hash functions to produce a 4-dimensional signature, such as
[74, 27, 454, 1246], for this long string. We can observe that
similar strings share similar signatures.

Note that the dictionary-based compression also utilizes the
concept of sliding window to identify repeated data patterns.
Therefore, the segmentation of dij via the shingling process
shares similarity with dictionary-based compression. Thus,
grouping data based on the LSH data representation can
benefit dictionary-based compression by detecting repetitive
subsequences in data values.

Fig. 1. An LSH Representation Example for Column Car Name

Algorithm 1 Locality Sensitive Hashing
1: Input: dij : data entry at ith column and jth row,
2: Q: shingling window size,
3: vocab: vocabulary of shingles,
4: M : dimension of signature
5: Output: signature of dij
6: shingles← ∅
7: for k ← 1 to |dij | −Q+ 1 do
8: shingle← dij [k : k +Q]
9: shingles← shingles ∪ {shingle}

10: end for
11: hashFunctions← ∅
12: for i← 1 to M do
13: a← random.randint(1, |vocab|)
14: b← random.randint(1, |vocab|)
15: hashFunction← λx : (a · x+ b) mod |vocab|
16: hashFunctions ← hashFunctions ∪
{hashFunction}

17: end for
18: m← 1
19: for hashFunc in hashFunctions do
20: minV alue← +∞
21: for shingle in shingles do
22: i← index of shingle in vocab
23: hashV alue← applyHashFunction(i, hashFunc)
24: minV alue← min(minV alue, hashV alue)
25: end for
26: signature[m]← minV alue
27: m← m+ 1
28: end for
29: return signature

B. Clustering-based Methods
Data compression entails encoding information using fewer

bits than its original representation. However, similar or iden-

4

tical values dispersed throughout a table may not be efficiently
exploited by conventional compression algorithms. Clustering
is the process of grouping object attributes and features such
that the data objects in one group are more similar than data
objects in another group with no prior knowledge of data
structure [25]. It can enhance data compression by identifying
patterns or similarities within the data and subsequently group-
ing similar elements together, thereby improving the efficiency
of data compression.

K-modes clustering is an unsupervised machine learning
algorithm that is analogous to the k-means algorithm but
designed to handle only categorical variables [26]. In our pro-
posed technique, clustering is performed on the concatenation
of signatures obtained from LSH, which represent dijs in
each ci and belong to the same rj . Each signature consists
of hash values, which are by definition un-ordered and thus
should be treated as categorical values as opposed to numerical
(hence the choice of k-modes over k-means). The number of
clusters, K, is set as a parameter for the experiments before the
clustering process. After k-modes clustering, T is partitioned
into K groups. As shown in Figure 2, all rows rj are grouped
into three clusters Each cluster exhibits a significant degree of
internal similarity. These three clusters are then sequentially
merged to form the reordered T. Subsequently, dictionary-
based compression techniques are expected to be applied to
each reordered ci.

Fig. 2. Clustering-based Table Reordering Diagram

While k-modes clustering is effective in improving compres-
sion ratios, its application to large datasets presents a compu-
tational challenge. In real-life scenarios, the amount of time
required for reordering data using clustering methodologies
renders it impractical. Hence, there is an urgent need to explore
alternative, more time-effective approaches for rearranging
data and identifying similar patterns suitable for dictionary-
based compression.

C. TSP-based Methods

In our methodology, TSP solutions serve a distinct pur-
pose: they function as a data reordering technique, aiming
to optimize the arrangement of data items based on their

similarity. Unlike the traditional TSP formulation, which con-
ceptualizes cities as physical entities with spatial relationships,
data elements are abstract entities typically representing data
points or vectors in data reordering. As a result, the distance
calculation is adjusted to assess the similarity between data
points rather than computing physical spatial distances. In
contrast to graph-based reordering algorithms, which heavily
rely on clear hierarchical or relational structures present in the
given data, TSP solutions offer greater adaptability to general
cases, as they do not necessarily require prior knowledge of
the data structure.

We consider the open-loop Traveling Salesman Problem
(TSP) where the salesperson does not return to the starting
city and find the optimal order for data items using a greedy
local-search heuristic, which is referred to as a heuristic-based
TSP solver in our approach [27]. To initiate the process of
applying this heuristic-based TSP solver to data reordering,
we first construct a square matrix representing the distances
between data points, denoted as dij . For clarity, let’s consider
an example illustrated in Figure 3 featuring three data points:
X, Y, and Z. The distance from point X to itself is 0, the
distance from X to Y is 2, and the distance from X to Z is
3. As a result, the first row of the square matrix displays the
distances originating from X, denoted as (0, 2, 3). Following
the same procedure for Y and Z, we can derive the complete
square matrix encompassing all three data points.

Fig. 3. Example of Square Matrix Formation

The distance between dij is measured by Jaccard distance
in our work. The Jaccard index, also referred to as the Jaccard
similarity coefficient, assesses the similarity and dissimilarity
of sample sets [28]. This coefficient quantifies the similarity
between sample sets by evaluating the ratio of the intersection
to the union of the sets. Conversely, the Jaccard distance,
representing dissimilarity between sample sets, complements
the Jaccard coefficient. Equation 1 illustrates the calculation
of the Jaccard distance:

J(A,B) = 1− |A ∩B|
|A ∪B|

(1)

where A and B are two sets, |A∩B| denotes the cardinality of
the intersection of A and B, and |A∪B| denotes the cardinality
of the union of A and B.

Utilizing the distance matrix generated using the Jaccard
distance, the heuristic-based TSP solver starts to construct an
initial solution greedily aiming to minimize the total distance
traveled. Subsequently, the local search heuristic is applied to
optimize this initial solution. This heuristic iterates through

5

pairs of edges in the solution, attempting to replace them with
more optimal pairs whenever possible. This iterative process
continues until no further improvement can be achieved.
Finally, the rows (records) are reordered based on the optimal
path derived from the heuristic-based TSP solver.

TSP is a well-known NP-hard problem [29]. For an efficient
(yet approximate) solution, our approach involves partitioning
the T into chunks of records, solving TSP within each indi-
vidual chunk. Based on resolved tours for TSP, we reorder the
tuples within each chunk. As illustrated in Figure 4, all the dij
of T are reordered by chunk. Finally, we concatenate all the
chucks of T with the optimal order together.

Fig. 4. Example of Chunk-wise TSP Solution

Reordering the data through a heuristic-based TSP solver
based on similarity facilitates the detection of repetitive pat-
terns, particularly through the application of dictionary-based
compression techniques. Compared to the previously men-
tioned k-modes clustering method, the heuristic-based TSP
solver reorders data by chunks, proving to be more time-
efficient while providing excellent reordering capability.

For the compression process, column-wise compression will
be implemented on individual ci of the reordered table to
attain a higher compression ratio, given that the data within
ci typically shares similar traits in tabular data.

D. DVP-Partitioned Table Compression

The work by Lemire et al. has been shown to be effective for
compressing columns with a smaller number of distinct val-
ues [4]. Therefore, to integrate it with the reordering methods
introduced in Sections IV-B and IV-C, we introduce a novel
table-partitioned compression strategy based on the distinct
value percentages in individual columns. We call it DVP
(Distinct Value Percentage)-Partitioned table compression.

The DVP in a column is calculated as follows:

DVP =
the number of unique values within the column

total number of records
(2)

DVP-Partitioned table compression aims to categorize C into
different groups based on DVP. The same compression strategy
is applied to the C within the same group. Additionally, each
group is reordered by the heuristic-based TSP solver together,
and a corresponding row ID for each rj is assigned before
reordering. This is to ensure the recovery of the original order
after decompression. If T contains only a few columns and
rows, dividing it into too many groups will lead to a large extra
storage cost for row IDs, which is not favorable for calculating
the overall compression ratio.

As a result, we decide to partition use a single DVP
threshold to partition C into two groups only:
1. DVP > DVP threshold
2. DVP ≤ DVP threshold

The DVP threshold here is adjustable, and based on the
results of numerous experiments, we typically set its value in
the range of [0.01, 0.1].

The procedures for DVP-Partitioned table compression are
illustrated in Figure 5. DVP-Partitioned table compression
works as follows. For a table T to be compressed, the DVP for
every ci in T is calculated to facilitate the following column
grouping process. After comparing each column’s DVP with
the DVP threshold, all the columns are divided into two
groups.

The LSH algorithm preprocesses the group of ci with DVP
larger than the DVP threshold: each ci undergoes LSH once
and is transformed into high-dimensional vectors. The re-
ordering via the heuristic-based TSP solver is then performed
utilizing the vectors generated from all ci within the group.
Finally, the dictionary-based compression algorithm is applied
to each reordered column.

The other group of ci with DVP smaller than the DVP
threshold undergoes a simple data preprocessing stage. The
distinct values in each ci are assigned ordinal values to aid
the following data reordering and run-length encoding proce-
dures. The compression process for this group involves three
compression algorithms performing different functions. First,
run-length encoding is applied to compress each reordered ci
as it is used to handle repetitive sequences efficiently. Then, the
RLE result is further compressed and converted into compact
binary files using the messagepack algorithm, which aims to
optimize serialization to reduce overhead and represent data
compactly. Finally, Zstandard compression, which provides
adaptive compression for different data types, is applied to
compact binary files to further reduce the compressed files’
size and enhance compression performance. As the three
compression algorithms work differently but corporately to
exploit the duplicate patterns in smaller DVP columns, there
is no existing single compression technique that can achieve
similar functions and compression performance.

6

Fig. 5. DVP-Partitioned Table Compression

V. EXPERIMENTS

A. Settings

The experiments are conducted on a server with an AMD
Ryzen 24-Core Processor and 128GB RAM. The codes for
all the experiments were written in Python 3.9. The primary
libraries utilized include Pandas, NumPy, and SciPy.

B. Datasets

The proposed methodologies are assessed using one syn-
thetic and three real datasets. Both numerical and categorical
data are present throughout every dataset. DS001 dataset is a
proprietary dataset derived from the TPC-H benchmark [30]
that is used internally at IBM. The Bank Marketing and Census
Income datasets are sourced from the UCI Machine Learning
Repository [31], [32]. The Vehicle dataset is obtained from
Kaggle [33]. These datasets are chosen to represent small,
medium, and large datasets based on the number of columns
and tuples, ensuring the versatility of DVP-partitioned table
compression. An overview of the datasets’ information is
presented in Table II. The Cols represents the total number
of columns in datasets. In addition, we present the number of
columns with numerical (Num.), categorical (Cat.), and mixed
(numerical and categorical) data for each dataset.

TABLE II
OVERVIEW OF DATASET INFORMATION

Name #Rows #Cols Num. Cat. Mix. Size
(MB)

DS001 386,671 7 4 3 0 63.7
Bank Marketing 45,212 17 7 10 0 3.8
Census Income 32,462 15 6 7 2 3.6
Vehicle 8,129 13 4 5 4 1.1

C. Evaluation

The data compression ratio is used to evaluate the result. It
is calculated as the ratio of the uncompressed file size to the
compressed file size:

Compression Ratio =
Uncompressed Files Size
Compressed Files Size

(3)

The compression ratio of the random arrangement of
columns serves as the benchmark for the compression ratio
of individual columns.

For the evaluation of DVP-Partitioned table compression,
the overall compression ratio (OCR) after reordering is calcu-
lated as indicated in Equation 4. As the columns are reordered
by groups, individual group obtains a sequence of row IDs
which is used to recover the original order after decompres-
sion. The uncompressed files are reordered columns and two
sets of row IDs as the table is divided into two groups based
on each column’s DVP. The compressed files are compressed
columns and compressed sets of row IDs.

OCR =

∑
(Uncompressed Files Size + Row IDs Size)∑
(Compressed Files Size + Row IDs Size)

(4)

To ensure a fair comparison, we compress columns sepa-
rately in random order. The baseline is calculated as the sum
of all the compressed random-order column sizes divided by
the sum of all the uncompressed random-order column sizes.

D. LSH and K-modes clustering

To investigate the impacts of two LSH parameters and
the number of clusters on the column-wise compression ratio
when reordering via k-modes clustering. We introduce three
major parameters employed in the LSH and k-modes cluster-
ing experiments:

• Q is the size of sliding windows for shingling
• M is the dimension level for signiture
• K is the number of clusters for k-modes clustering
The ultimate reordered file is formed through the concatena-

tion of all clusters. Specifically, cluster 2 is appended to cluster
1, and this process extends sequentially to include cluster 3 and
beyond. The comparison is between one compressed original
file and one compressed reordered file.

We showcase the mileage column from the Vehicle
dataset for LSH parameters’ experiments due to its inclusion
of multiple recurring patterns, a characteristic that is easily
discernible for humans but poses a challenge for computational
analysis. Furthermore, the tuples within mileage consist of

7

mixed types of data (categorical and numerical data) instead
of solely one type of data (categorical or numerical data) in
other columns, reflecting a scenario akin to those encountered
in real-life situations.

Regarding the clustering parameter K, the column
Customerkey from the DS001 dataset is employed, given its
substantial number of tuples, which can significantly influence
the determination of the optimal number of clusters.

1) Sliding Window Size Q for LSH: In this experiment,
we aim to investigate the impact of the LSH parameter Q
on compression results. We select a column mileage to
perform the experiments as it contains numerical and textual
data. To maintain consistency, we employ k-modes cluster-
ing as the method for data reordering, with a fixed cluster
number of 10. Another crucial LSH parameter, M , is set to
a constant value of 2 or 3. Subsequently, we vary the size of
Q to obtain reorganized columns and apply three commonly
used dictionary-based compression algorithms to assess the
compression outcomes.

Fig. 6. Compression Ratio for mileage – Varying Q (M=2/3, K=10)

As depicted in Figure 6, we observe that, under the influence
of three different compression algorithms, the tendencies of
compression ratios for the reordered column are different when
increasing Q.

Figure 6(a) shows that the LZ4 compression ratio increases
when Q increases from 2 to 5, with M=2 and K=10. However,
when M is set to 3, the tendency is distinct when Q ranges
from 2 to 5. The highest compression ratio is 3.655, achieved
when Q=1 and M=3, or when Q=5 and M=2. This indicates
that the parameters M and Q are highly relevant for the LZ4
compression method.

Figure 6(b) illustrates that increasing Q leads to a generally
decreasing compression ratio for M=2 and M=3 for gzip. The
highest compression ratio is obtained when Q=1.

Figure 6(c) demonstrates a distinct tendency when M=2
and M=3. The settings of Q and D are highly relevant for
Zstd. The highest compression ratio is achieved when Q=2
and M=3.

In summary, optimal compression performance is achieved
for all three compression methods when Q is set to a relatively
small value. A smaller sliding window size Q usually leads to
a smaller vocabulary (vocab) and better string matching when
the column contains many repetitive patterns. However, the
effect of Q might vary when the setting of M changes. No-
tably, each column possesses distinct properties and features,
resulting in varying impacts of Q across different columns.

2) Dimensional Level M for LSH: Similar to the ex-
perimentation with the parameter Q mentioned above, the

experiment on the parameter M employed the method of
controlling variables to investigate its impact on compression
effectiveness. The cluster number K for k-modes clustering
is fixed at 10, and the value of parameter Q is set to 2 or 3.
By varying the value of M , we aimed to observe its influence
on the compression of the reordered column “mileage”. The
compression algorithms utilized in this experiment are LZ4,
gzip, and Zstd.

Figure 7 shows that different values of Q lead to nearly
opposite tendencies for all three compression methods, espe-
cially for LZ4 and Zstd. This emphasizes that parameter M
is significantly related to parameter Q when it comes to the
compression ratio of the reordered column.

The highest compression ratio for LZ4 is achieved when
M=4, as shown in Figure 7(a). Similarly, in the case of gzip,
the compression ratio in Figure 7(b) reaches its optimal when
the value of M is 4. Figure 7(c) indicates that the peak point
of the Zstd compression ratio is obtained when M=3.

In conclusion, the impact of parameter M on the reordered
column’s compression ratio is sensitive to the setting of
parameter Q. The optimal compression ratio is more likely to
be achieved when M is a relatively large value. M represents
the dimensional level of the signature. A higher dimensional
level of the signature can typically reveal more details and
patterns of data than a lower dimensional level of the signature.
It is noticed that the impact of parameter M on the reordered
column’s compression ratio may vary across columns due to
differences in data types and lengths for each column.

Fig. 7. Compression Ratio for mileage – Varying M (Q=2/3, K=10)

Fig. 8. Compression Ratio for Customerkey – Varying K (Q=3, M=5)

3) Number of Clusters K for K-modes Clustering: After
conducting numerous experiments with various parameter set-
tings, the optimal LSH parameters for the “CustomerKey”
column were determined to be Q = 3 and M = 5. Conse-
quently, to investigate the impact of the cluster number K,
we set Q and M as 3 and 5, respectively. The rearranged
column is compressed using the LZ4 and gzip algorithms.
As illustrated in Figure 8, with K varying from 10 to 48,
the compression ratio exhibits a continuous increase. On
average, the compression ratio increases by 17.01% for LZ4
and 12.80% for gzip as K varies. When K is set to 30,

8

the compression ratio obtains a 25.6% improvement for LZ4
and a 16.1% improvement for gzip compared to baselines of
1.408 and 1.377, respectively, which were generated from the
random split of the column for LZ4 and gzip.

Also, considering the diverse data types, lengths, and record
counts of distinct columns, the influence of parameter K on
the overall compression ratio may vary for different columns.

E. TSP-based vs Clustering-based

Both the heuristic-based TSP solver and k-modes clustering
serve as data reordering methods in our approach. Experiments
on whole table compression using the Bank Marketing dataset
are conducted to assess their respective effects on enhancing
overall compression performance. In real-life scenarios, the
execution time of data reordering algorithms may be a limiting
factor. Therefore, we record not only the overall compression
ratio of both methods but also their processing time.

To guarantee an unbiased comparison, the heuristic-based
TSP solver and k-modes clustering undergo identical data
preprocessing stages. For each record, the values from all
columns are concatenated into a single column, and LSH is
applied to this consolidated column. Both LSH parameters, Q
and M , are set to 6 to ensure the revelation of more detailed
patterns within the consolidated column.

The heuristic-based TSP solver works chunk-by-chunk to
expedite the reordering process. The chunk size is consistently
set to 5,000 for all experiments.

TABLE III
COMPRESSION RATIOS AND EXECUTION TIMES FOR BANK MARKETING

DATASET USING HEURISTIC TSP SOLVER / K-MODES CLUSTERING

Method LZ4 ratio gzip ratio Time (hh:mm:ss)

TSP Solver 3.798 5.863 00:11:30
K-modes (K=5) 3.613 5.963 00:28:00
K-modes (K=10) 3.696 6.048 00:54:25
K-modes (K=15) 3.765 6.122 01:17:16

In Table III, it is evident that the execution time for all
k-modes clustering experiments is considerably longer than
that for the heuristic-based TSP solver. The compression ratio
for k-modes clustering shows a slight increase with the rise of
parameter K. The heuristic-based TSP solver achieves a higher
compression ratio than all clustering methods when using LZ4.
However, it attains the lowest compression ratio when using
gzip. Overall, the compression ratios for the heuristic-based
TSP solver and k-modes clustering show minimal differences,
indicating that they can achieve comparable performance for
the Bank Marketing dataset. The shorter execution time for
the heuristic-based TSP solver stands out as a significant ad-
vantage over clustering methods. Consequently, the heuristic-
based TSP solver is employed for the data reordering proce-
dure in the subsequent DVP-partitioned table compression.

F. DVP-Partitioned table compression with heuristic-based
TSP solver

To ensure the universality of this strategy, we conducted
evaluations using three datasets derived from real-world sce-

narios.
Initially, we conducted experiments on the Vehicle dataset.

After determining the DVP for each column, we iteratively
grouped columns ten times based on DVP thresholds ranging
from 0.01 to 0.1. The values in high DVP columns (columns
with fewer unique values) were transformed into signatures
through LSH.

The impact of parameters Q and M on the compression
ratio depends on the unique properties of individual columns,
as explained previously. As a rule-of-thumb, we selected Q=2
and M=4 as the LSH parameters to generate signatures for all
columns in the high DVP group. The other group of columns
with low DVP underwent the corresponding process.

The calculation of the overall compression for the reordered
table accounted for the inclusion of row IDs, ensuring accurate
recovery of the original sequences after decompression, as
illustrated in Equation 4.

In Figure 9, the blue line depicts the overall compression
ratio for the reordered table across DVP thresholds ranging
from 0.01 to 0.1. The red line serves as the baseline, calculated
as the sum of all compressed random column sizes divided
by the sum of all uncompressed random column sizes. Both
the blue and red lines are compressed using Zstd, which was
chosen for its superior performance compared to LZ4 and gzip.

Fig. 9. Overall Compression Ratios for Three Datasets

The peak point of the blue line, reaching an overall com-
pression ratio of 11.692 in Figure 9(a), corresponds to the
table partitioned by DVP thresholds of 0.01 and 0.02. This
represents a notable improvement compared to the red line,
which registers a compression ratio of 6.774. The compression
ratio for the Vehicle dataset experiences a substantial increase
of 72.6%.

Similar procedures involving appropriate LSH parameter
selections are applied to both the Census Income dataset
and the Bank Marketing dataset. Specifically, for the Census
Income dataset, the parameters Q and M are set to 2 and 3,
respectively, while for the Bank Marketing dataset, they are
set to 1 and 2.

Figure 9(b) represents the experiment results for the Census
Income dataset using DVP-Partitioned table compression. The
value of the red line is 9.811. When the DVP threshold is
set to 0.03 and 0.04, the optimal table partition is achieved,
contributing to an overall compression ratio of 12.503. Com-
pared to the baseline represented by the red line, the reordered
table consistently demonstrates a significant improvement in
the overall compression ratio, achieving an increase of 27.4%.

The baseline compression ratio is recorded in the Bank
Marketing dataset at 7.586, as illustrated in Figure 9(c). The

9

maximum overall compression ratio is observed at 9.215,
achieved when the DVP threshold ranges from 0.03 to 0.06.
With the implementation of DVP-Partitioned table compres-
sion, the overall compression ratio significantly increases,
notably by 21.5%.

VI. CONCLUSIONS

In conclusion, this study addresses the gap in compression
techniques for relational data by introducing innovative record
reordering methods that enhance compression performance.
Unlike traditional methods that do not consider record or-
dering, our approaches—clustering and solving a Travelling
Salesman Problem (TSP)—significantly improve the compres-
sion ratio by grouping similar records together. Additionally,
we leverage locality-sensitive hashing (LSH) to convert textual
data into vector representations, facilitating effective clustering
and TSP reordering. For columns with fewer distinct values,
we utilize run-length encoding (RLE) to further optimize com-
pression. By partitioning table columns based on distinct value
counts and applying the most suitable compression algorithms,
our methods achieve superior results. Extensive experiments
with both synthetic and real datasets validate the efficacy of
our approaches, demonstrating significant improvements over
existing compression techniques for relational data.

ACKNOWLEDGEMENT

Xiaohui Yu and Aijun An are the corresponding authors.
This work was supported by an IBM CAS Fellowship and
NSERC Discovery Grants.

REFERENCES

[1] U. Jayasankar, V. Thirumal, and D. Ponnurangam, “A survey on data
compression techniques: From the perspective of data quality, coding
schemes, data type and applications,” Journal of King Saud University-
Computer and Information Sciences, vol. 33, no. 2, pp. 119–140, 2021.

[2] D. A. Lelewer and D. S. Hirschberg, “Data compression,” ACM Com-
puting Surveys (CSUR), vol. 19, no. 3, pp. 261–296, 1987.

[3] A. Gopinath and M. Ravisankar, “Comparison of lossless data com-
pression techniques,” in 2020 International Conference on Inventive
Computation Technologies (ICICT). IEEE, 2020, pp. 628–633.

[4] D. Lemire, O. Kaser, and E. Gutarra, “Reordering rows for better
compression: Beyond the lexicographic order,” ACM Transactions on
Database Systems (TODS), vol. 37, no. 3, pp. 1–29, 2012.

[5] J. Shi, “Column partition and permutation for run length encoding
in columnar databases,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 2873–2874.

[6] B. Kwon, H. C. Song, and S. H. Lee, “Accurate blind lempel-ziv-77
parameter estimation via 1-d to 2-d data conversion over convolutional
neural network,” IEEE Access, vol. 8, pp. 43 965–43 979, 2020.

[7] S. Shu and Y. Shu, “A two-stage data compression method for real-
time database,” 2012 3rd International Conference on System Science,
Engineering Design and Manufacturing Informatization, 2012.

[8] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki, “Storage and
retrieval of highly repetitive sequence collections,” Journal of Compu-
tational Biology, vol. 17, pp. 281–308, 2010.

[9] A. I. Maarala, O. Arasalo, D. Valenzuela, V. Mäkinen, and K. Heljanko,
“Distributed hybrid-indexing of compressed pan-genomes for scalable
and fast sequence alignment,” Plos One, vol. 16, p. e0255260, 2021.

[10] Y. Li, B. Yu, D. Su, and X. Dai, “A nearly loss-less compression
technology based on ctp and partial sample points calibration for ofdm
signal,” Proceedings of the 2015 International Conference on Computer
Science and Intelligent Communication, 2015.

[11] A. Haghighatkhah, M. Mäntylä, M. Oivo, and P. Kuvaja, “Test prioriti-
zation in continuous integration environments,” Journal of Systems and
Software, vol. 146, pp. 80–98, 2018.

[12] H. Gamaarachchi, H. Samarakoon, S. P. Jenner, J. M. Ferguson, T. G.
Amos, J. M. Hammond, H. Saadat, M. A. Smith, S. Parameswaran, and
I. W. Deveson, “Fast nanopore sequencing data analysis with slow5,”
Nature biotechnology, vol. 40, no. 7, pp. 1026–1029, 2022.

[13] B. Madoš, Z. Bilanova, and J. Hurtuk, “rle,” Journal of Information and
Organizational Sciences, vol. 45, pp. 329–349, 2021.

[14] Y. Shan, Y. Ren, Z. Guo-yong, and K. Wang, “An enhanced run-
length encoding compression method for telemetry data,” Metrology and
Measurement Systems, vol. 24, pp. 551–562, 2017.

[15] P. Wu, S. Zhou, B. wan, F. Fang, and S. Zhou, “An improved two-
dimensional run-length encoding scheme and its application,” Inter-
national Journal of Signal Processing, Image Processing and Pattern
Recognition, vol. 9, pp. 339–346, 2016.

[16] M. Alsenwi, M. Saeed, T. Ismail, H. Mostafa, and S. Gabran, “Hybrid
compression technique with data segmentation for electroencephalogra-
phy data,” in 2017 29th International Conference on Microelectronics
(ICM). IEEE, 2017, pp. 1–4.

[17] M. Weinberger, G. Seroussi, and G. Sapiro, “The loco-i lossless image
compression algorithm: principles and standardization into jpeg-ls,”
IEEE Transactions on Image Processing, vol. 9, pp. 1309–1324, 2000.

[18] A. S. Shah and M. A. J. Sethi, “The improvised gzip, a technique for real
time lossless data compression,” EAI Endorsed Transactions on Context-
aware Systems and Applications, vol. 6, no. 17, pp. e5–e5, 2019.

[19] M. Kerbiriou and R. Chikhi, “Parallel decompression of gzip-
compressed files and random access to dna sequences,” in 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2019, pp. 209–217.

[20] M. Pöss and D. Potapov, “Data compression in oracle,” in Proceedings
2003 VLDB Conference. Elsevier, 2003, pp. 937–947.

[21] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil et al., “C-store:
a column-oriented dbms,” in Making Databases Work: the Pragmatic
Wisdom of Michael Stonebraker, 2018, pp. 491–518.

[22] J. Pan, Y. Peng, K. Li, A. An, X. Yu, and D. Jania, “Optimizing
data migration using online clustering,” in Proceedings of the 33rd
Annual International Conference on Computer Science and Software
Engineering, ser. CASCON ’23, 2023, p. 173–178.

[23] O. Jafari, P. Maurya, P. Nagarkar, K. M. Islam, and C. Crushev, “A
survey on locality sensitive hashing algorithms and their applications,”
arXiv preprint arXiv:2102.08942, 2021.

[24] W. Wu, B. Li, L. Chen, J. Gao, and C. Zhang, “A review for weighted
minhash algorithms,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 34, no. 6, pp. 2553–2573, 2020.

[25] M. Goyal and S. Aggarwal, “A review on k-mode clustering algorithm.”
International Journal of Advanced Research in Computer Science, vol. 8,
no. 7, 2017.

[26] A. Chaturvedi, P. E. Green, and J. D. Caroll, “K-modes clustering,”
Journal of classification, vol. 18, pp. 35–55, 2001.

[27] M. H. Rashid and M. A. Mosteiro, “A greedy-genetic local-search
heuristic for the traveling salesman problem,” in 2017 IEEE Interna-
tional Symposium on Parallel and Distributed Processing with Applica-
tions and 2017 IEEE International Conference on Ubiquitous Computing
and Communications (ISPA/IUCC), 2017, pp. 868–872.

[28] M.-U.-S. Shameem and R. Ferdous, “An efficient k-means algorithm
integrated with jaccard distance measure for document clustering,” in
2009 First Asian Himalayas International Conference on Internet, 2009,
pp. 1–6.

[29] S. Deb, S. Fong, Z. Tian, R. K. Wong, S. Mohammed, and J. Fiaidhi,
“Finding approximate solutions of np-hard optimization and tsp prob-
lems using elephant search algorithm,” The Journal of Supercomputing,
vol. 72, pp. 3960–3992, 2016.

[30] “Tpc-h benchmark,” http://www.tpc.org/tpch/, accessed: May 2nd, 2022.
[31] S. Moro, P. Rita, and P. Cortez, “Bank marketing,” UCI Machine

Learning Repository, 2012, dOI: https://doi.org/10.24432/C5K306.
[32] B. Becker and R. Kohavi, “Adult,” UCI Machine Learning Repository,

1996, DOI: https://doi.org/10.24432/C5XW20.
[33] N. V. Nehal Birla and N. Kushwaha, “Vehicle dataset,”

Kaggle, 2023, dOI: https://www.kaggle.com/datasets/nehalbirla/
vehicle-dataset-from-cardekho.

10

