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Abstract

Given an expert network, we tackle the problem of finding a
team of experts that covers a set of required skills and also
minimizes the communication cost as well as the personnel
cost of the team. Since two costs need to be minimized, this
is a bicriteria optimization problem. We show that the prob-
lem of minimizing these objectives is NP-hard. We use two
approaches to solve this bicriteria optimization problem. In
the first approach, we propose several (α, β)-approximation
algorithms that receive a budget on one objective and mini-
mizes the other objective within the budget with guaranteed
performance bounds. In the second approach, an approxi-
mation algorithm is proposed to find a set of Pareto-optimal
teams, in which each team is not dominated by other feasible
teams in terms of the personnel and communication costs.
The proposed approximation algorithms have provable per-
formance bounds. Extensive experiments on real datasets
demonstrate the effectiveness and scalability of the proposed
algorithms.
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1 Introduction

An expert network contains a group of professionals who
can provide specialized information and service. With the
widespread use of the Internet, online expert networks have
become popular where more and more businesses seek sub-
ject matter experts to complete a task or project. There are
many expert network providers, such as Gerson Lehrman
Group 1 and the Network of Experts 2. In such networks,
an expert is described by their areas of expertise, education
background, location, etc. In addition, an expert can specify
his/her consulting rate.

We consider the problem of finding a team of experts
from such a network to complete a project. A team must
possess a set of required skills in order to complete the tasks
of the project. In addition, a project is usually constrained
by the budgeted amount of money available for the project.

1http://www.glgresearch.com/
2http://www.networkofexperts.com/
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Figure 1: An example of all feasible teams.

Different experts may incur different fees for conducting
the activities of the project. It is desirable to find a team
of experts whose total cost is minimized. Furthermore,
the success of a project greatly depends on how well the
team members of the project communicate and collaborate
with each other. Experts located in different countries may
not communicate as easily as the ones living in the same
city when face-to-face meetings are required. Thus, it is
important to minimize the communication cost among the
experts. This turns the problem into a bicriteria optimization
problem.

The problem of finding a team of experts from a network
which minimizes the communication cost has been tackled
in [13, 10]. However, previous works in this domain did
not consider the budget of the project nor the fees that may
be associated with the experts. In the real world, an expert
needs to be paid for his/her service, and it is preferred that the
personnel cost of a project is minimized or under a budget.
Only minimizing the communication cost may result in a
team with high personnel cost. For example, assume that
all the feasible teams of experts for a project are shown in
Figure 1. Each team has three experts that together cover all
of the required skills. Assume that the communication cost
of a team is calculated using the sum of distances between
experts in the team. The communication costs of teams A,
B, C, D, E, F , G and H are 5, 180, 27, 62, 40, 81, 57
and 78, respectively. The personnel costs of these teams are
$255, $18, $87, $43, $202, $152, $90 and $62, respectively.
Figure 2 shows these eight teams on a diagram. If one wants
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Figure 2: Feasible and Pareto optimal solutions.

to minimize only the communication cost, team A is the best.
However, its personnel cost is the highest. On the other hand,
if one wants to minimize the personnel cost, team B is the
best choice but has the highest communication cost. If one
wants to have a team in which the members collaborate most
effectively and at the same time the personnel cost is the
lowest or reasonable, there is not an obvious best choice.

Clearly, there is a trade-off between the personnel cost
and the communication cost. A good method should either
allow the user to provide a tolerance limit on one of the ob-
jectives and produce the best answer on the other objective,
or provide a set of best trade-off solutions for the user to
choose from. For example, in the above example, if a bud-
get is given on the personnel cost as $300, the best team is A.
However, for budgets of $100 or $50, the best team is C or D
respectively. Alternatively, if the budget is not available, we
can provide users with a set of solutions that are not worse
than any other solutions on both objectives. These solutions
are called Pareto-optimal solutions [9]. Teams A, B, C and
D in Figures 1 and 2 are Pareto-optimal solutions since none
of them is worse than other teams on both costs. However,
the remaining teams (E, F , G and H) are worse than at least
one Pareto solution.

The contributions of this paper are summarized as fol-
lows. (1) We define the problem of finding an affordable and
collaborative team in an expert network. We use two func-
tions to measure the communication cost and one function to
measure the personnel cost of a team. (2) We show the prob-
lem we tackle is NP-hard and propose a series of new (α, β)-
approximation algorithms (to be defined later) to solve the
bi-objective team formation problem, which optimizes one
objective given a budget on the other objective with proved
performance bounds. (3) For finding a set of Pareto-optimal
solutions, a new approximation algorithm is proposed that
can find solutions with guaranteed performance bounds. (4)
The effectiveness and efficiency of the proposed algorithms
are evaluated extensively on two large real datasets.

2 Problem Statement

Let C = {c1, c2, . . . , cm} denote a set of m experts, and
S = {s1, s2, . . . , sr} denote a set of r skills. Each expert
ci has a set of skills, denoted as Q(ci), and Q(ci) ⊆ S. If

sj ∈ Q(ci), expert ci has skill sj . In addition, a subset of
experts C ′ ⊆ C have skill sj if at least one of them has
sj . For each skill sj , the set of all experts having skill sj

is denoted as C(sj) = {ci|sj ∈ Q(ci)}. A project P ⊆ S
is defined as a set of skills required to complete the project.
A subset of experts C ′ ⊆ C is said to cover a project P if
∀sj ∈ P ∃ ci ∈ C ′, sj ∈ Q(ci).

The experts are connected together in a network, mod-
eled as an undirected and weighted graph (G). Each node in
G represents an expert in C. Below, terms node and expert
are used interchangeably. Each node in the graph is asso-
ciated with a cost representing the amount of money he/she
is paid for completing a project. The cost of an expert ci

is denoted as t(ci). Two experts may be connected by an
edge in the graph. The weight on an edge represents the
communication cost between the two experts. The lower
the weight, the more easily the two experts can collaborate
or communicate, and the lower the communication cost be-
tween them. The communication cost between two experts
can be defined according to the application need. For ex-
ample, it can be defined as the geometric distance between
two experts, which is a good communication cost measure
when face-to-face meetings are needed in the project. The
communication cost can also be defined by the collaboration
ability or familiarity between the two experts. In this case,
two nodes are connected by an edge if the experts have com-
municated or collaborated before, and the weight of the edge
represents the strength of the relationships between the two
experts. Such relationships can be obtained from social net-
works (such as LinkedIn), scientific collaboration networks
(such as DBLP), or other sources.

DEFINITION 2.1. (Team of Experts [10]) Given a set C of
experts and a project P that requires skills s1, s2, . . . , and
sn, a team of experts for P is a set of n skill-expert pairs:
{〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sn, csn

〉}, where csj
is an expert

in C having skill sj for j = 1, . . . , n. A skill-expert pair
〈si, csi

〉 means that expert csi
is responsible for skill si in

the project.

Note that an expert in a team may be responsible for
more than one required skill, that is, csi

can be the same as
csj

for i �= j. To evaluate the communication cost of a
team, we define the sum of distances or diameter of a team,
which has been used in [10] and [13] respectively.

DEFINITION 2.2. (Sum of Distances) Given a team T of ex-
perts from a graph G for a project: {〈s1, cs1〉, 〈s2, cs2〉, . . . ,
〈sn, csn

〉}, the sum of distances of T is defined as

sumDistance =
n∑

i=1

n∑

j=i+1

d(csi
, csj

)

where d(csi
, csj

) is the sum of weights on the shortest path



between csi
and csj

in G, i.e., the shortest distance between
csi

and csj
.

The use of the shortest distance in the above definition
implies that the communication cost between two experts
can be estimated by using their communication costs with a
third expert, especially when the two experts are not directly
connected. This can be easily justified when, say, travel
distances are used as edge weights in the graph. In case
familiarity is used to weigh an edge, the use of the shortest
distance implies that two people who have not collaborated
before can collaborate if they have collaborated with a third
person. This can be justified by Newman’s finding on
scientific networks [17]: two people are much more likely
to collaborate if they have both worked with a third person.

DEFINITION 2.3. (Diameter) Given a graph G and a team
of experts T consisting of some experts in G, the diameter
of team T is the largest shortest distance between any two
experts of T in G.

DEFINITION 2.4. (Personnel Cost) Let the set of experts in
a team T be {c1, c2, . . . , cq}. The personnel cost of T is
defined as:

PCost(T ) =
q∑

i=1

t(ci)

PROBLEM 2.1. (Affordable and Collaborative Team For-
mation) Given a project P and a graph G representing a
network of experts, the problem of affordable and collabora-
tive team formation is to find a team of experts T for P from
G so that the communication cost of T , defined as either the
sum of distances or diameter of T , and the personnel cost of
T , defined as PCost, are minimized.

Clearly, Problem 2.1 is a bi-criteria optimization prob-
lem. It has been proved that finding a team T of experts in
a graph while minimizing the sum of distances or diameter
of T is an NP-hard problem [10, 13]. Below we show that
minimizing PCost is also NP-hard.

THEOREM 2.1. Finding a team of experts in a graph G to
cover a set of skills while minimizing PCost is NP-hard.

Proof. Provided in [12].

Since minimizing the sum of distances, diameter or
personnel cost is NP-hard, solving Problem 2.1 is NP-
hard. Thus, we have to rely on approximation algorithms
for solving this problem. Many (if not most) methods
for solving bi-criteria optimization problems combine two
objectives into a single one by using a weighted sum of two
functions [11]. If the weight value is not chosen correctly,
the result may not be reliable. Also, such methods are

usually very sensitive to small changes in weight values
[8]. In this paper we use two other approaches to solve
this bicriteria problem. In the first approach, a budget value
(bound) is specified on one objective and the other objective
is optimized under this budget. In the second approach,
the set of Pareto optimal answers [19] are found, which
represent optimal trade-offs between the two objectives.
Below in Section 3 we propose several (α, β)-approximation
algorithms for our problem, which take the first approach,
and then in Section 4 we propose an algorithm for finding a
set of Pareto-optimal solutions.

3 Finding a Team of Experts with Bounded Budget

We first define the concept of (α, β)-approximation algo-
rithm, and then propose a few (α, β)-approximation algo-
rithms for solving our problem.

DEFINITION 3.1. An (α, β)-approximation algorithm for
an (A,B)-bicriteria problem is defined as a polynomial time
algorithm that produces an answer in which the value of the
first objective (A) is at most α times a budget, and the value
of the second objective (B), is at most β times the minimum
for any answer that is within the budget on A.

3.1 Finding a Team of Experts with a Budget on the
Communication Cost In this subsection, we propose two
algorithms for solving Problem 2.1. Both algorithms receive
a budget on the communication cost of the team and mini-
mize the personnel cost. The first algorithm uses the diame-
ter and the second algorithm uses the sum of distances as the
communication cost function.

3.1.1 Budget on the Diameter The algorithm takes a
budget on the diameter and minimizes the PCost function.
It is a (2, log n)-approximation algorithm where n is the
number of required skills of the project. The diameter budget
is specified as D. The (2, log n)-approximation means that
the answer produced by the algorithm has a diameter at most
twice the budget (D) and its PCost value is at most log n
times the cost of the minimum PCost for any answer within
the D diameter.

The idea of the first algorithm is as follows. It first
collects the experts with the rarest required skill srare (i.e.,
the required skill with the least number of experts). Then, for
each expert cri that possesses srare, all of the experts having
other required skills than srare and within D distance from
cri are collected into a set V . A candidate team based on cri

is then formed by including cri and selecting experts from
V to cover all the required skills. The expert selection is
a greedy procedure that iteratively selects an expert cv

k that
maximizes the ratio of the number of currently uncovered
required skills covered by cv

k to the cost of cv
k until all the

required skills are covered by the team. That is, the quality of



Algorithm 1 (2, log n)-approximation algorithm for solving
(diameter, PCost) problem
Input: graph G, project P = {s1, s2, . . . , sn}, and budget D on the diameter.
Output: the best team and its personnel cost

1: for i ← 1 to n do
2: C(si) ← the set of experts with si

3: srare ← arg min |C(si)|, 1 ≤ i ≤ n
4: C ← ⋃n

i=1&i�=rare C(si)

5: bestTeam ← ∅
6: leastCost ← ∞
7: for each expert cri in C(srare) do
8: requiredSkill ← P − Q(cri)
9: V ← ∅

10: for each expert cj in C do
11: if 〈d(cri, cj) ≤ D〉 & 〈Q(cj) ∩ requiredSkill 
= ∅〉 then
12: add cj to V
13: {cv

1 , . . . , cv
q} ← V

14: skillV ← ⋃q
i=1 Q(cv

i )
15: if requiredSkill ⊆ skillV then
16: team ← {〈q1, cri〉, 〈q2, cri〉, ..., 〈qk, cri〉} where q1, q2, . . . qk

are the required skills that cri has, i.e., {q1, q2, . . . qk} = P ∩Q(cri)
17: cost ← t(cri)
18: while requiredSkill 
= ∅ do

19: Select k s.t.
|requiredSkill∩Q(cv

k)|
t(cv

k
) is maximized

20: team ← team ∪ {〈q1, cv
k〉, 〈q2, cv

k〉, ..., 〈qk, cv
k〉} where

{q1, q2, . . . qk} = requiredSkill ∩ Q(cv
k)

21: cost ← cost + t(cv
k)

22: requiredSkill ← requiredSkill − Q(cv
k)

23: if cost < leastCost then
24: bestTeam ← team
25: leastCost ← cost
26: else
27: if cost = leastCost and team.diameter <

bestTeam.diameter then
28: bestTeam ← team
29: return bestTeam, leastCost

an expert is evaluated using the number of uncovered skills
per unit cost. The algorithm outputs the team that has the
smallest personnel cost among all the candidate teams built
around the experts with srare. If more than one team has the
least cost, the one with the lowest diameter is chosen. The
reason for starting a team with an expert with srare is to keep
the number of candidate teams as small as possible.

The pseudo code of this approximation algorithm for
solving the (diameter, PCost) problem is presented in
Algorithm 1. The algorithm first obtains the set C(si) of
experts having required skill si for each i. This can be done
quickly by using a pre-built inverted index that maps a skill
to its experts. In the code, d(cri, cj) is the shortest distance
between experts cri and cj , which can be efficiently obtained
by consulting a pre-built index. Using a pre-built index to
obtain the shortest distance between nodes has been used in
other graph search methods such as the ones in [15, 20, 10].
The time complexity of Algorithm 1 is O(|C(srare)|×(|C|+
|V | × n)) where |C(srare)| is the number of experts with
the rarest required skill, |C| is the number of experts with
other required skills, |V | is the number of experts within D
distance to a member of C(srare) and n is the number of
required skills. Since the number of experts with the required
skills is at most the number of all experts in G, i.e. m, the
run time of the algorithm in the worst case is O(m2 × n).

However, in practice, |C(srare)|, |C| and |V | are much less
than m.

THEOREM 3.1. Algorithm 1 is a (2, log n) approximation
algorithm for solving (diameter, PCost) problem where n
is the number of required skills.

Proof. Provided in [12].

3.1.2 Budget on the Sum of Distances The algorithm
for finding a team of experts with a budget on the sum of
distances has a similar structure to Algorithm 1 with two
major differences. First, instead of using only the rarest skill
holders, this algorithm uses all the required skill holders as
the seed of a candidate team. Second, for each seed (cri),
this algorithm only considers adding its neighbors within the
radius of SD

n−1 into the team, where SD is the sumDistance
budget. The pseudocode of the algorithm and the proof of its
approximation ratios are provided in [12].

3.2 Finding a Team of Experts with a Budget on the
Personnel Cost In practice, there is often a budget on
the personnel cost and the goal is to minimize the com-
munication cost within the personnel budget. Below we
propose approximation algorithms that minimize the com-
munication cost under a personnel budget for solving the
(PCost, diameter) and (PCost, sumDistance) prob-
lems.

According to [16], bicriteria problems are generally
hard when the two criteria are hostile with respect to each
other, meaning that the optimization of one criterion conflicts
with the optimization of the other criterion. Two minimiza-
tion objectives in our problem are hostile because the mini-
mum value of one objective is monotonically non-decreasing
as the bound (budget) on the value of the other objective is
decreased. This can be proved as follows. By decreasing the
budget on the communication cost, the set of possible teams
under the new budget becomes a subset of possible teams
before the budget is decreased. Since the optimal team in a
subset cannot be better than the optimal team in the super-
set, the personnel cost of the optimal team with the lower
budget on the communication cost cannot be lower than the
personnel cost of the optimal team with a higher budget on
the communication cost.

In [16], a generic procedure was proposed that uses
an (α, β)-approximation algorithm for the (A, B) prob-
lem to solve the (B, A) problem in polynomial time and
with the approximation ratio of (β, α). The procedure
applies to only hostile bicriteria problems. Since the
two criteria in our problem are hostile and the algorithms
we proposed in the last subsection for the (diameter,
PCost) and (sumDistance, PCost) problems are (α, β)-
approximation algorithms, we can adapt the generic proce-
dure in [16] to derive (β, α)-approximation algorithms to



Algorithm 2 (log n, 2)-approximation algorithm for solving
(PCost, diameter) problem
Input: graph G, project P = {s1, s2, . . . , sn}, budget B on PCost, and
precision threshold ε.
Output: the best team and its diameter

1: MaxDiameter ← max dist(ci, cj), 1 ≤ i, j ≤ m and m is the number
of nodes in G

2: Dprev ← MaxDiameter
3: 〈teamprev, PCostprev〉 ←Algorithm1(G, P , Dprev)
4: if PCostprev > B then
5: return ∅, ∞
6: Dlower ← 0
7: while (Dprev − Dlower) > ε do

8: Dnew ← Dprev+Dlower
2

9: 〈teamnew, PCostnew〉 ←Algorithm1(G, P , Dnew)
10: if teamnew 
= ∅ and PCostnew ≤ B then
11: Dprev ← Dnew

12: 〈teamprev, PCostprev〉 ← 〈teamnew, PCostnew〉
13: else
14: Dlower ← Dnew

15: return teamprev , Dprev

solve the (PCost, diameter) and (PCost, sumDistance),
respectively. Note that this is the first time that this generic
procedure is adapted to find teams of experts.

The (log n, 2)-algorithm for solving the
(PCost, diameter) problem is presented in Algorithm
2. The basic idea of the algorithm is to conduct a binary
search over the range of diameter values for a diameter value
that is as small as possible and at the same time the PCost
value of the team is not over the budget B. The algorithm
starts with the diameter of the input graph G, and stores it
in Dprev . It calls Algorithm 1 with Dprev as the diameter
budget to find the best (approximate) team that minimizes
PCost. If the PCost value of the found team is greater than
the input budget B on PCost, no solution exists because
if the diameter is lowered, the minimal PCost value will
not decrease (due to the hostile relationship between the two
objectives). But if the PCost value of the team found by
Algorithm 1 is less than B, then there may exist teams with
lower diameters and also under the PCost budget. Thus,
the algorithm continues and checks the diameter which is
half of the previous value in Dprev by calling Algorithm
1 with this new diameter value (stored in Dnew) as the
diameter budget. If the PCost value of the answer returned
by Algorithm 1 is more than B, there is no solution that
has a diameter under or equal to Dnew (due to the hostile
relationship between diameter and PCost). The algorithm
then increases the value in Dnew to (Dprev + Dnew)/2
and calls Algorithm 1 again with the new value in Dnew

to continue the search. However, if the PCost value of
the answer returned by Algorithm 1 is less than B, there
may exist solutions with lower diameter values and thus the
algorithm decreases the value in Dnew by half and continues
the binary search. In each iteration, the optimal diameter lies
between Dprev and Dlower, which are the upper and lower
boundaries of the current search range, and Dnew is the
middle value between Dprev and Dlower. The boundaries

are adjusted according to whether the PCost value of the
team returned by Algorithm 1 is greater than B or not. Thus,
when the search range gets smaller, we get closer to the
team with the minimum diameter under the PCost budget.
The process stops when the difference between Dprev and
Dlower is smaller than an input precision threshold, and it
outputs the last valid team returned by Algorithm 1, stored
in teamprev .

The maximum number of iterations of Algorithm 2 is
log2

MaxDiameter
ε + 1. Thus, the time complexity of Algo-

rithm 2 in the worst case is O(m2×n×(log2
MaxDiameter

ε +
1)), where O(m2 × n) is the worst case complexity of Al-
gorithm 1. Since MaxDiameter is the largest shortest dis-
tance between any two nodes in the input graph G, which is
at most m times the maximum edge weight on the shortest
path (where m is the number of nodes in G), the algorithm
is polynomial in terms of input data.

THEOREM 3.2. Algorithm 2 is a (log n, 2)-approximation
algorithm for solving the (PCost, diameter) problem
where n is the number of required skills in the project.

Proof. Provided in [12].

Since the general structure of Algorithm 2 is generic, it
can be changed to solve (PCost, sumDistance) problem
by calling the appropriate algorithm at the places where
Algorithm 1 is called.

4 Finding Pareto-optimal Teams

The algorithms above allow the user to provide a budget
on one objective and finds the best solution on the other
objective under the budget. Sometimes, the user may not
want to specify budgets, but prefer to see all the optimal
choices in the two-objective space so that he/she can select
a solution that best fits his/her preferences. To this end, in
this section we propose an algorithm that produces a set of
optimal solutions that are not dominated by others. Below
we define the relevant concepts , present the algorithm and
prove the bounds of the solutions produced by the algorithm.

DEFINITION 4.1. (Dominance) A team T dominates a team
T ′ (denoted by T ≺ T ′) with respect to the communication
and personnel costs if T is better than T ′ in one objective
and not worse than T ′ in the other objective.

DEFINITION 4.2. (Pareto-optimal team) Given a project P ,
a team T is a Pareto-optimal team for project P if there does
not exist a team T ′ that contains all the skills required by P
such that T ′ ≺ T .

The set of all Pareto-optimal teams for project P is
called the Pareto set of P . The teams in a Pareto set usually
forms a convex curve (called Pareto curve) in the two-
objective space.



Algorithm 3 An approximation algorithm for finding Pareto
Set of Team of Experts minimizing diameter and PCost.
Input: graph G, project P = {s1, s2, . . . , sn}, and precision threshold ε.
Output: ParetoSet

1: MaxDiameter ← max dist(ci, cj), 1 ≤ i, j ≤ m and m is the number
of nodes in G

2: PT = ∅ /* for storing generated teams */
3: Diameter ← MaxDiameter
4: while Diameter ≥ 0 do
5: 〈team, cost〉 ←Algorithm1(G, P , Diameter)
6: flag = 0 /* for indicating whether t is dominated */
7: if team 
= ∅ then
8: if Algorithm 1 is an approximation algorithm then
9: for each t in PT do

10: if t ≺ team then
11: flag = 1
12: break the for loop
13: else
14: if team ≺ t then
15: remove t from PT
16: if flag = 0 then
17: insert team into PT
18: else
19: return PT
20: Diameter ← Diameter − ε
21: return PT

A popular approach for finding Pareto-optimal solutions
for multi-objective problems in the literature is to use an evo-
lutionary algorithm, which is a heuristic method that mim-
ics the process of natural evolution. A problem with such a
method is that there is no provable bound for the approxi-
mation ratio. Here we propose a new general procedure that
makes use of the (α, β) approximation algorithms that we
proposed in the last section to find a set of (approximate)
Pareto-optimal solutions with performance bounds.

The algorithm for producing (approximate) Pareto-
optimal answers based on diameter and PCost is presented
in Algorithm 3. It repeatedly calls Algorithm 1 with a set of
diameter budgets, starting from the diameter value of the in-
put graph and decrementally changing the budget value by
ε, which is an input precision threshold. In this way, a set
of teams is generated each of which minimizes the person-
nel cost (PCost) under a diameter budget. If Algorithm 1 is
an exact algorithm, the generated teams are guaranteed to be
Pareto-optimal (See the proof of Theorem 4.1 below). If Al-
gorithm 1 is an approximation algorithm (such as the Algo-
rithm 1 proposed in Section 3), Algorithm 3 checks whether
a newly-generated team is dominated by (or dominates) a
previously-generated team . If it is dominated by a gener-
ated team, it is ignored. If it dominates a generated team, the
generated team is removed and the new team is added to the
set of Pareto teams. The worst case time complexity of Al-
gorithm 3 is O(MaxDiameter

ε × (m2 × n + MaxDiameter
ε ))

where m2 × n is the worst time taken by Algorithm 1.

THEOREM 4.1. Algorithm 3 produces Pareto-optimal teams
if Algorithm 1 in line 5 returns an exact answer.

Proof. Provided in [12].

The following theorem states how close a team gener-
ated by Algorithm 3 is to a Pareto-optimal team in the worse
case if Algorithm 1 is the approximation algorithm as pre-
sented in Section 3.

THEOREM 4.2. For each team s′ produced by Algorithm
3, there exists a team s in the Pareto set such that
diameter(s′) ≤ 2×diameter(s) and PCost(s′) ≤ log n×
PCost(s).

Proof. This can be easily derived from Theorems 3.1 and
4.1.

The following theorem states how well the teams in
the Pareto Set are represented by the teams produced by
Algorithm 3.

THEOREM 4.3. For each team s in the Pareto set, there
exists a team s′ produced by Algorithm 3 such that
diameter(s′) ≤ 2 × (ε + diameter(s)) and PCost(s′) ≤
log n × PCost(s), where ε is the input precision threshold
of Algorithm 3.

Proof. Provided in [12].

To find the Pareto optimal solutions for minimizing
sumDistance and PCost, the appropriate algorithms can
be used in Algorithm 3 at the places where Algorithm 1
is called. The corresponding approximation bounds can be
derived similarly.

5 Experimental Evaluation

We evaluate the proposed algorithms on the DBLP and
IMDb data sets. For both datasets, the set of experts, their
skills and communication costs are generated in the same
way as in [13, 10]. The cost of an expert in DBLP is set to the
number of publications of the expert, assuming that the more
publications an expert has, the more expensive he/she is. The
expert cost in IMDb is defined as the number of movies the
actor plays in. The DBLP graph has 6,229 nodes and 9,400
edges. The IMDb graph has 6,784 nodes and 35,875 edges.
Detailed descriptions of the data sets and the experimental
setup can be found in [10] and are also given in [12]. All the
algorithms are implemented in Java. The experiments are
conducted on an Intel(R) Core(TM) i7 2.80 GHz computer
with 4 GB of RAM.

5.1 Results of Algorithms with Given Budget

5.1.1 Hostility between two objectives Figure 3 shows
the PCost values of the teams produced by our algorithms
that receives budget on the communication cost for different
budgets on diameter or sumDistance. Since the two ob-
jectives are hostile, by increasing the communication budget,
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Figure 3: The personnel cost (shown in logarithmic scale)
produced by our algorithms that receive a budget on the
communication cost on DBLP and IMDb datasets. For some
budget values, no team exists in the graph.

the personnel cost decreases. For teams with the same bud-
get, the more the required skills, the higher personnel costs.
The results also show that our algorithms are able to find
teams with both small personnel cost and small communica-
tion cost. For example, for 4 required skills, our Algorithm
1 is able to find a team with a PCost value of 16 and within
a diameter budget of 4. Such a team cannot be found by the
single objective methods that minimize either communica-
tion cost or personnel cost

5.1.2 Quality of Approximation Algorithms We com-
pare our approximation algorithms with the exact algorithms
in terms of the quality of the answers. The answers of the
exact algorithms are obtained using exhaustive search. Fig-
ure 4 shows the communication and personnel costs of the
teams produced by the exact algorithms and the approxima-
tion algorithms that receive the budget on the communication
cost for different budget values on diameter or sum of dis-
tances for projects with four skills. Due to the poor perfor-
mance and long run time of the exhaustive search, the results
of higher number of skills and higher communication cost
budgets are not presented. The results show that the costs
of the teams produced by our approximation algorithms are
very close to those produced by the exact algorithms. The
ratio of approximation algorithms for the diameter or sum
of distances to the one from the exact algorithm is at most
1.29 or 1.68 respectively, although the theoretical bound for
the approximation ratio is 2 (as shown in Theorem 3.1) or
4 (which is the number of required skills as shown in [12]).
This means that our approximation algorithms perform very
well in practice, much better than the worse case scenario.
The results also show that the PCost values of the teams
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Figure 4: The costs of the teams from exact algorithms and
the approximation algorithms that receive the budget on the
communication cost on DBLP for projects with 4 skills.
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Figure 5: The run time of Algorithm 2 for different values of
ε on DBLP dataset.

produced by the approximation algorithms are sometimes
slightly smaller than the ones from the exact algorithm. This
seems a surprise. However, the reason is that some of the
teams returned by the approximation algorithms have larger
diameter/sum of distances than the budget. These teams are
not considered by the exact algorithm. Therefore, they might
have smaller personnel cost than the teams that actually lie
within the communication budget. Note that these results do
not violate the (2, log n) approximation ratio of Algorithm 1.
The personnel cost of the approximation algorithm is at most
log n times of the personnel cost of the exact answer. In this
case, it is even smaller than the cost of the exact answer. Due
to the space limit, only the results of the approximation al-
gorithms that receive the budget on the communication cost
are presented. Other approximation algorithms have similar
performance.

5.1.3 Precision vs. Run Time As discussed before, the
value of ε in Algorithm 2 determines the precision of the
output teams. However, by increasing the precision (i.e.,
decreasing the value of ε), the run time increases. Figure
5 shows how the run time of Algorithm 2 changes with the
ε value for different numbers of required skills on the DBLP
dataset. As expected, by decreasing the value of ε, the run



time increases close to linearly. It is because the run time
is logarithmically related to the ratio of the diameter of the
graph G to ε.

5.2 Results of the Pareto Set Algorithm In this section
the effectiveness and efficiency of the proposed method for
finding Pareto solutions are evaluated. The proposed method
(Algorithm 3) is referred to as Approx-Pareto. To the best of
our knowledge, there does not exist a Pareto optimization
method for team formation. However, we implemented
the following methods to compare with Approx-Pareto: (1)
Exact-Pareto: The exact Pareto set is found using exhaustive
search. (2) Random-Pareto: This method randomly selects a
set of connected teams (1% of total teams), and then removes
the teams that dominated by other generated teams. (3) GA-
Pareto [8]: We apply a genetic algorithm for finding Pareto
solutions proposed in [8] to our team formation problem. All
the parameters are set in the same way as in [8].

We use the following performance measures: (1) Hy-
pervolume (HV ) [21]: It measures (in percentage) the
volume of the dominated space by a generated Pareto
set within search space composed by bounds of objec-
tive values. The higher the value, the better the Pareto
set. (2) Average Distance (Davg) and Maximal Distance
(Dmax) [4]: Given a true Pareto set R and a set S of
approximate Pareto teams, Davg is the average distance
from each y ∈ R to the closest team in S and Dmax

is the maximum distance between them. For both mea-
sures, lower values are preferred. (3) Precision and Re-
call: Precision = |True ParetoSet

⋂
Retrieved ParetoSet|

|Retrieved ParetoSet| ,

Recall = |True ParetoSet
⋂

Retrieved ParetoSet|
|True ParetoSet| , where | · |

denotes set cardinality. (4) Run time. The result of the
Exact-Pareto method is used as the true Pareto set for cal-
culating H , Davg and Dmax indicators.

Table 1 shows the results of the algorithms for different
numbers of required skills. The overall best results and
best results among non-exact methods are highlighted in
bold. Not surprisingly, Exact-Pareto gives the best or perfect
results on all the quality measures (HV , Davg , Dmax.
Precision and Recall). However, its run time is orders of
magnitude longer than those of the three non-exact methods.
This indicates the need for non-exact algorithms. The results
also indicate that Approx-Pareto significantly outperforms
the other non-exact methods in terms of all the quality
measures (HV , Davg , Dmax. Precision and Recall).
Its HV values are close to those of the exact method. In
run time, the random method is the fastest as expected.
Compared to the GA method, Approx-Pareto is slower than
GA-Pareto when the number of required skills is 3, but is
much faster than GA when the number of skills becomes a
bit bigger. It is because by increasing the number of required
skills from 3 to 4 or 5, the search space expansion of GA-

Pareto is much more than Approx-Pareto.

6 Related Work

Discovering a team of experts in a social network is intro-
duced in [13], in which two communication cost functions
are proposed. Authors of [14] generalize this problem by
associating each required skill with a specific number of ex-
perts, but no approximation ratio is provided for the algo-
rithms. The authors of [10] propose the sum of distances
communication function and a 2-approximation algorithm
for minimizing the sum of distances. They also introduce
the problem of finding a team of experts with a leader. The
authors of [6] propose another communication cost function
based on the density of the induced subgraph on selected
nodes. They also reported improvements over [13]. Authors
of [1] minimize the maximum load of the experts in the pres-
ence of several tasks. They do not consider finding teams
with low communication cost. Recently, the problem of on-
line team formation is studied in [2], which creates teams of
experts with minimized work load and communication cost.
Balancing the work load while minimizing the communica-
tion cost is also studied in [5]. The personnel cost of the ex-
perts is not considered in [2, 5]. In [11], the authors propose
to find a team of experts while minimizing both communi-
cation and personnel cost. They merged the two objective
functions into one function using an input threshold from the
user. In this work, we solve the problem using two funda-
mentally different approaches, finding the solutions within
the given budget and finding the Pareto front.

Another line of research in the database community
related to finding Pareto sets is the skyline computation
[3, 18]. A skyline of a set of objects (i.e. records) contains all
the records that are not dominated by any other record, which
is the same as a Pareto set. However, in skyline computation,
the set of records from which a skyline is found is given
in the database. Assuming n is the number of records, a
naive algorithm is able to compute the skyline in O(n2) [3].
The main purpose of the skyline algorithms is to reduce this
complexity. In contrast, the possible teams in our work is not
given and our algorithms have to walk through a search space
to find the (approximate) best or Pareto-optimal teams. The
number of possible teams is exponential with respect to the
number of required skills. Thus, it is not feasible to produce
all of the teams and then find the Pareto set from it (i.e. run
a skyline algorithm on all of the teams).

The mechanisms for creating the structure of the collab-
oration networks in the self assemble teams are studied in
[7]. The proposed model of the self assembly teams is based
on the following three parameters: the size of the team, the
fraction of the newcomers and the rate of repeating previ-
ous collaboration. The authors suggest that team assembly
mechanisms determine collaboration network structure and
team performance.



Table 1: Results of algorithms for finding Pareto set (For Approx-Pareto, ε is set to 0.1).
# Skill Method HV(%) Dmax Davg Precision(%) Recall (%) Time (ms)

3 Exact-Pareto 47.6 0 0 100 100 10,563
3 Approx-Pareto 42.6 4.31 0.89 64 34.5 498
3 GA-Pareto 29.8 150.81 39.60 3 1.1 353
3 Random-Pareto 30 102.83 18.23 7.1 3.6 104
4 Exact-Pareto 45.8 0 0 100 100 42,376
4 Approx-Pareto 40.2 12.5 1.44 70.4 28.23 647
4 GA-Pareto 34 58 10.06 4.4 2.9 921
4 Random-Pareto 37 90.8 15.87 2 0.87 242
5 Exact-Pareto 55.3 0 0 100 100 92,235
5 Approx-Pareto 50.87 17 3.47 21.43 13.64 968
5 GA-Pareto 50.14 28.01 8.37 0 0 2030
5 Random-Pareto 49.35 140 13.22 6.67 4.55 496

7 Conclusion

We studied the problem of finding an affordable and collab-
orative team from an expert network that minimizes two ob-
jectives: the communication cost among team members and
the personnel cost. We proved that the problem we tackle
is NP-hard. Two functions are used to measure the commu-
nication cost of a team and another function is proposed to
evaluate the personnel cost of the team. A suite of algorithms
classified into two approaches are proposed to solve this bi-
criteria problem. In the first approach, a budget is given
on one objective and the purpose is to minimize the other
objective under the budget. The budget could be either on
the communication cost or the personnel cost. In the second
approach, a set of approximate Pareto-optimal solutions are
generated in which there exists no other team that dominates
the solution in both of the costs. All of the proposed algo-
rithms have provable approximation bounds. We evaluated
the proposed algorithms on the DBLP and IMDb datasets
and showed that our proposed algorithms are effective and
efficient.
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