
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 853

Distributed and Parallel High Utility Sequential Pattern Mining

Morteza Zihayat†, Zane Zhenhua Hu‡, Aijun An† and Yonggang Hu‡
†Department of Electrical Engineering and Computer Science, York University, Toronto, Canada

‡Platform Computing, IBM, Toronto, Canada
zihayatm@cse.yorku.ca, zanezhenhuahu@gmail.com, aan@cse.yorku.ca, yhu@ca.ibm.com

Abstract—The problem of mining high utility sequential
patterns (HUSP) has been studied recently. Existing solutions
are mostly memory-based, which assume that data can fit
into the main memory of a computer. However, with advent
of big data, such an assumption does not hold any longer.
Hence, existing algorithms are not applicable to the big data
environments, where data are often distributed and too large
to be dealt with by a single machine. In this paper, we
propose a new framework for mining HUSPs in big data. A
distributed and parallel algorithm called BigHUSP is proposed
to discover HUSPs efficiently. At its heart, BigHUSP uses
multiple MapReduce-like steps to process data in parallel.
We also propose a number of pruning strategies to minimize
search space in a distributed environment, and thus decrease
computational and communication costs, while still maintaining
correctness. Our experiments with real life and large synthetic
datasets validate the effectiveness of BigHUSP for mining
HUSPs from large sequence datasets.

Keywords-High Utility Sequential Pattern Mining, Dis-
tributed Algorithms, Big Data

I. INTRODUCTION

Nowadays, huge volumes of data are produced in the

form of sequences [1]. Frequent sequential pattern mining
is an important task in data mining to discover sequences of

itemsets that frequently appear in a dataset of sequences [2].

In [3], the authors showed that such approaches may not be

sufficiently practical for industrial needs. This is due to the

fact that many patterns returned by sequential pattern mining

are not particularly related to a business need so that business

people do not know which patterns are truly interesting and

actionable for their business. In view of this, high utility
sequential pattern (HUSP) mining was introduced [4] to

extract valuable and useful sequential patterns from data

by considering a business objective such as profit, user’s
interest, cost, etc. A sequence is a high utility sequential

pattern (HUSP) if its utility, defined based on the business

objective (e.g., profit), in a dataset is no less than a minimum
utility threshold.

Although a few preliminary works have been conducted

on HUSP mining, the existing studies (e.g., [5], [4]) are

memory-based, which assume that data can fit in main

memory of a single machine and do not consider the real-life

applications that involve big data. Below are three examples

drawn from retail business, news portal and bioinformatics,

where data are too huge to fit into the main memory of

a single machine and mining HUSPs from such big data

can play an important role in business. 1) Mining profitable
shopping behaviour in retail business: In 2012 Walmart

generated more than 2.5 petabytes of data relating to more

than 1 million customer transactions every hour [6]. From

such a huge dataset, finding the most profitable shopping

behaviour is a critical business need. Such patterns are

important in making business decisions for maximizing

revenue or minimizing marketing or inventory costs. These

patterns may not be discovered by traditional approaches

since they discover patterns based on frequency than the

profit of a pattern. 2) Mining user reading behaviour in a
news portal: In January 2015, the total number of news

portal visitors in top-10 news portals varies from 130 million

to 50 million [7]. From such big datasets, modeling users’

reading behavior is a major way to obtain a deep insight

into the users. Reading behaviour patterns can be used to

build a news recommendation and can also improve the

portal design and e-business strategies. However, traditional

frequency-based approaches may not discover such patterns

since they do not take the user’s interest into account.

3) Mining disease-related gene sequences in biosequence
datasets: The size of a single sequenced human genome is

approximately 200 gigabytes [8]. Identifying potential gene

regulations that occur in a period of time with respect to

a disease is important for biologists. Such patterns provide

important information on the relative levels of expression of

thousands of genes among samples. However, the frequency

alone may not be informative enough to discover such

sequences. For example, some genes are more important

than others in causing a particular disease and some genes

are more effective than others in fighting diseases.

While much work has been conducted on big data an-

alytics [9], mining high utility sequential patterns from

big data has received little attention. When dealing with

a considerably large number of sequences (e.g., the above

examples) whose information may not be entirely loaded

into main memory, most existing HUSP mining algorithms

cannot efficiently complete the mining process. Thus, exist-

ing algorithms are not suitable for handling big data.

Mining HUSPs from big data is not an easy task due

to the following challenges. First, with the exponential

growth of data in different domains, it is impossible or

prohibitively costly to execute HUSP mining algorithms

854

on a single machine. Developing a parallel and distributed

algorithm is the key to solving the problem. However, in

order to implement a parallel algorithm, we need to address

several issues such as how to decompose the search space,

how to minimize communication overhead and how to deal

with scalability problems. Second, a HUSP mining method

needs to compute the utility of a candidate pattern over the

entire set of input sequences in a sequence database. In a

distributed platform, if the input sequences are distributed

over various worker nodes, the local utility of a sequence

in the partition at a worker node is not much useful for

deciding whether the given pattern is a HUSP or not. Hence,

we need to design a mechanism to aggregate the local utility

of a pattern in various nodes into a global value so that

we can calculate the utility of a pattern efficiently. Third,

high utility sequential pattern analysis in big data faces the

critical combinatorial explosion of search space caused by

sequencing among sequence elements. Thus, pruning search

space without losing HUSPs is critical for efficient mining of

HUSPs. However, pruning search space in HUSP mining is

more difficult than that in frequent sequential pattern mining

because the downward closure property does not hold for

the utility of sequences. That is, the utility of a sequence

may be higher than, equal to, or lower than its super-

sequences and sub-sequences [5], [4]. Thus, many search

space pruning techniques that rely on the downward closure

property cannot be directly used for mining HUSPs.

Motivated by the above challenges, we propose a parallel

and distributed high utility sequential pattern mining algo-

rithm called BigHUSP to mine HUSPs from big data. To the

best of our knowledge, this topic has not been addressed so

far. At a high-level, BigHUSP is designed and developed

based on the Apache Spark [10] platform and takes advan-

tage of several merit properties of Spark such as distributed

in-memory processing, fault recovery and high scalability.

We also propose a number of novel strategies to effectively

prune the search space and unnecessary intermediate patterns

in a distributed manner, which reduce computational and

communication costs drastically. We prove that the proposed

pruning strategies do not miss any HUSPs. Moreover, we

conduct extensive experiments to evaluate the performance

of the proposed algorithm. Experimental results verify that

BigHUSP significantly outperforms baseline methods and

efficiently mines HUSPs from big data.

The rest of the paper is organized as follows. Section II

summarizes the related work. Section III presents prelimi-

naries and the problem statement. The propose framework is

discussed in Section IV. We report our experimental results

in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

High utility pattern mining has been studied recently [5],

[4], [11]. The concept of HUSP mining was first proposed

by Ahmed et al [5]. They proposed two algorithms, called

UL and US, for mining HUSPs. UL is a level-wise candidate

generation-and-testing algorithm and US is a pattern growth

method. Shie et al. [12] proposed a framework for mining

HUSPs in a mobile environment. The framework can only

handle sequences with a single item in each sequence

element. Ahmed et al. proposed efficient algorithms for

mining high utility access sequences from web log data [13],

which also only considered single-item sequences. Yin et al.

[4] proposed the USpan algorithm for mining HUSPs. In this

study, a lexicographic tree was used to extract the complete

set of high utility sequential patterns and designed mech-

anisms for expanding the tree with two pruning strategies.

Most recently, Alkan et al [14] proposed a tighter upper

bound called Cumulated Rest of Match (CRoM) to prune

search space before candidate pattern generation. They also

proposed an algorithm called HuspExt to find HUSP by

calculating the utilities of the child patterns based on that of

parents. Although these algorithms are efficient for mining

HUSPs from a centralized database using a single machine,

they have not been parallelized for handling big data and

also their proposed pruning strategies are not applicable

to a distributed environment. Lin et al [15] proposed a

method to mine high utility itemsets in big data, where

the sequential ordering of itemsets is not considered. The

addition of ordering information makes the pattern mining

problem fundamentally different and much more challenging

than mining high utility itemsets.

Many distributed algorithms have been proposed to mine

frequent sequential patterns. Most of these approaches par-

tition data into many small batches and mine the patterns in

parallel with multiple machines [16], [17], [18]. Although

these algorithms work in a distributed manner, each machine

has to share data through communication with one another,

thus suffering from a high mining overhead. On the other

hand, some researchers designed algorithms on the cloud

computing environment [19], [20]. However, most of the

existing methods require numerous rounds of MapReduces

jobs, thus cause the load unbalancing problem and suffer

from high cost of MapReduce initialization. In addition, all

these methods are for finding frequent sequential patterns

and do not consider a business objective to discover patterns.

Hence, some useful infrequent patterns with high utility may

be missed.

To the best of our knowledge, existing methods for mining

HUSPs do not address the issues of mining HUSPs in

big data, and previous methods in big data do not find

high utility sequential patterns. So far, no study has been

conducted to learn high utility sequential patterns in big data,

which is more challenging than finding frequent sequences

due to the fact that the sequence utility does not satisfy the

downward closure property.

855

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Distributed Platform

Apache Spark was proposed as a framework to support

iterative algorithms efficiently [10]. The Spark engine runs

in a variety of environments like Hadoop1, Mesos clusters2

and IBM Platform Conductor for Spark3 and it has been

used in a wide range of data processing applications. The

main key concept in Spark is the resilient distributed dataset
(RDD). RDD enables us to save great efforts for fitting into

the MapReduce framework and also improves the process-

ing performance. In this paper, we use Spark on top of

IBM Platform Conductor that is an enterprise-grade, multi-

tenant resource manager. IBM Platform Conductor allows

organizations to run multiple instances of Spark frameworks

simultaneously on a shared infrastructure for the best time to

results and resource utilization through its efficient resource

scheduling.

B. Problem Statement

Let I∗ = {I1, I2, · · · , IN} be a set of items. A sequence

S is an ordered list of itemsets 〈X1, X2, · · · , XZ〉, where Z
is the size of S. The length of S is defined as

∑Z
i=1 |Xi|. An

L-sequence is a sequence of length L. A sequence database
D consists of a set of sequences {S1, S2, ..., SK}, in which

each sequence Sr has a unique sequence identifier r and

consists of an ordered list of itemsets 〈ISd1 , ISd2 , ..., ISdn〉,
where each itemset ISdi

has a unique global identifier di.
An itemset ISd in the sequence Sr is also denoted as Sd

r .

Definition 1: (Super-sequence and sub-sequence) Se-

quence α = 〈X1, X2, ..., Xi〉 is a sub-sequence of sequence

β = 〈X ′
1, X

′
2, ..., X

′
j〉 (i ≤ j) or equivalently β is a super-

sequence of α if there exist integers 1 ≤ e1 < e2 < ...ei ≤ j
such that X1 ⊆ X

′
e1 , X2 ⊆ X

′
e2 , ..., Xi ⊆ X

′
ei (denoted as

α � β).

Definition 2: (External utility and internal utility) Each

item I ∈ I∗ is associated with a positive number p(I), called

the external utility (e.g., price/unit profit). In addition, each

item I in itemset Xd of sequence Sr (i.e., Sd
r) has a positive

number q(I, Sd
r), called its internal utility (e.g., quantity) of

I in Xd or Sd
r .

Definition 3: (Utility of an item in an itemset of a
sequence Sr) The utility of an item I in an itemset Xd of a

sequence Sr is defined as u(I, Sd
r) = fu(p(I), q(I, S

d
r)),

where fu is the function for calculating utility of item

I based on internal and external utilities. For simplicity,

without loss of generality, we define the utility function as

fu(p(I), q(I, S
d
r)) = p(I) · q(I, Sd

r).
Definition 4: (Utility of an itemset in an itemset of

a sequence Sr) Given itemset X , the utility of X in the

1http://wiki.apache.org/hadoop
2http://mesos.apache.org
3https://www.ibm.com/developerworks/servicemanagement

/tc/pcs/index.html

itemset Xd of the sequence Sr where X ⊆ Xd, is defined

as u(X,Sd
r) =

∑
I∈X

u(I, Sd
r).

Definition 5: (Occurrence of a sequence α in a se-
quence Sr) Given a sequence Sr = 〈S1

r , S
2
r , ..., S

n
r 〉 and a

sequence α = 〈X1, X2, ..., XZ〉 where Si
r and Xi are item-

sets, α occurs in Sr iff there exist integers 1 ≤ e1 < e2 <
... < eZ ≤ n such that X1 ⊆ Se1

r , X2 ⊆ Se2
r , ..., XZ ⊆ SeZ

r .

The ordered list of itemsets 〈Se1
r , Se2

r , ..., SeZ
r 〉 is called an

occurrence of α in Sr. The set of all occurrences of α in

Sr is denoted as OccSet(α, Sr).

Definition 6: (Utility of a sequence α in a sequence
Sr) Let õ = 〈Se1

r , Se2
r , ..., SeZ

r 〉 be an occurrence of α =
〈X1, X2, ..., XZ〉 in the sequence Sr. The utility of α w.r.t.

õ is defined as su(α, õ) =
Z∑

i=1

u(Xi, S
ei
r). The utility of

α in Sr is defined as su(α, Sr) = max{su(α, õ) | õ ∈
OccSet(α, Sr)}.

Figure 1(a) shows a sequence database with five se-

quences. The utility of itemset {ac} in S2
2 is u({ac}, S2

2) =
u(a, S2

2) + u(c, S2
2) = 4 × 2 + 1 × 1 = 9. Given

α = {a}{c}, the set of all occurrences of the sequence

α in S1 is OccSet(α, S1) = {õ1 : 〈S1
1 , S

2
1〉, õ2 :

〈S1
1 , S

3
1〉}, hence the utility of α in S1 is su(α, S1) =

max{su(α, õ1), su(α, õ2)} = {5, 7} = 7.

Let D be a sequence database and D1, D2, ..., Dm are

partitions of D such that D = {D1 ∪ D2 ∪ ... ∪ Dm} and

∀{Di, Dj} ∈ D,Di ∩ Dj = ∅. We have the following

definitions:

Definition 7: (Local utility of a sequence α in a parti-
tion Di) The local utility of a sequence α in the partition

Di is defined as suL(α,Di) =
∑

Sr∈Di

su(α, Sr).

Definition 8: (Global utility of a sequence α in a se-
quence database D) The global utility of a sequence α in D
is defined and denoted as suG(α,D) =

∑
Di⊆D

suL(α,Di).

Accordingly, the total utility of a partition Di is defined

as UDi
=

∑
Sr∈Di

su(Sr, Sr). The total utility of a sequence

database D is defined as UD =
∑

Di⊆D

UDi
.

Definition 9: (Local High Utility Sequential Pattern
(L-HUSP)) Given a utility threshold δ in percentage, a

sequence α is a local high utility sequential pattern in the

partition Di, iff suL(α,Di) ≥ δ · UDi .

Definition 10: (Global High Utility Sequential Pattern
(G-HUSP)) Given a utility threshold δ in percentage, a

sequence α is a global high utility sequential pattern in

sequence database D, iff suG(α,D) ≥ δ · UD.

Problem Statement. Given a minimum utility threshold δ
(in percentage) and a sequence database D, our problem of

distributed and parallel high utility sequential pattern mining

from big data D is to discover the complete set of sub-

sequences of itemsets whose global utility in D is no less

than δ · UD by parallel mining of partitions of D over a

856

PID SID Sequence Data

D1
S1 ଵܵଵ:{(a,2)(b,3)(c,2)}; ଵܵଶ:{(b,1)(c,1)(d,1)}; ଵܵଷ:{(c,3)(d,1)}
S2 ܵଶଵ:{(b,4)}; ܵଶଶ:{(a,4)(b,5)(c,1)}

D2 S3 ܵଷଵ:{(b,3)(d,1)}; ܵଷଶ:{(a,4)(b,5)(c,1)}; ܵଷଷ:{(a,2)(c,3)}
D3

S4 ܵସଵ:{(a,2)(b,5)(e,2)}
S5 ܵହଵ:{(c,4)}

Items ૜૚ࡿ ૜૛ࡿ ૜૜ࡿ
a 〈0,44〉 〈8,23〉 〈4,3〉
b 〈9,38〉 〈15,8〉 〈0,3〉
c 〈0,35〉 〈1,7〉 〈3,0〉
d 〈4,34〉 〈0,7〉 〈0,0〉

(a) (b)

Item a b c d e

Profit 2 3 1 4 3

Figure 1. (a) An example of sequence database, (b) Utility Matrix (UM) of S3

cluster of computers.

C. Global Sequence-Weighted Utility

It has been proved that the utility of a sequence does

not have the downward closure property [5], [4]. Thus, the

search space for HUSP mining cannot be pruned as it is

done in the frequent sequential pattern mining framework.

Inspired by the proposed overestimate utility model in

[21], we first propose an overestimate utility model, called

GSWU , to identify and filter out items that cannot be part

of a HUSP. Then, we prove that GSWU has the downward

closure property. Eventually, we propose our first pruning

strategy used in our method using GSWU .

Definition 11: Given a partition of sequences Di, the
Local Sequence-Weighted Utility (LSWU) of a sequence α
in Di, denoted as LSWU(α,Di), is defined as the sum

of the utilities of all the sequences containing α in Di:

LSWU(α,Di) =
∑

Sr∈Di∧α�Sr

su(Sr, Sr) where α � S

means α is a subsequence of S.

Accordingly, the Global Sequence-Weighted Utility
(GSWU) of a sequence α in database D is defined as:

GSWU(α,D) =
∑

Di⊆D

LSWU(α,Di).

Definition 12: (High GSWU Sequence). Given a min-

imum utility threshold δ and sequence database D,

a sequence α is called high GSWU sequence iff

GSWU(α,D) ≥ δ · UD.

Below we prove that the maximum utility of any sequence

containing α will be no more than GSWU(α,D).
Lemma 1: Given a sequence database D and two se-

quences α and β such that α � β, GSWU(α,D) ≥
GSWU(β,D).

Proof: Given D as set of partitions D1, D2, ..., Dm, we

prove that LSWU(α,Di) ≥ LSWU(β,Di) where Di ⊆
D. The proof can be easily extended to sequence database

D. Let Dα
i be the set of sequences containing α in Di and

Dβ
i be the set of sequences containing β in Di. Since α � β,

β cannot be presented in any sequence where α does not

exist. Consequently, Dβ
i ⊆ Dα

i . Based on Definition 11,

LSWU(α,Di) ≥ LSWU(β,Di).

According to Lemma 1 if α is not a high GSWU, there

will be no HUSP containing α. For example in Figure 1,

given pattern α = 〈{b}{a}〉 and minUtil = 90, according

to Definition 11, GSWU(α,D) = 36 + 44 + 0 = 80.

According to the above lemma, since GSWU(α) < 90,

hence su(α,D) ≤ GSWU(α,D) < 90, α is not a HUSP.

Moreover, all of its super sequences such as β = {b}{a}{a},

are not HUSPs. Because, su(β,D) ≤ GSWU(β,D) and

GSWU(β,D) = 44 < GSWU(α) < 90.

IV. MINING HIGH UTILITY SEQUENTIAL PATTERNS

FROM BIG DATA

In this section, we propose an efficient algorithm called

BigHUSP for discovering HUSPs in big data. BigHUSP

takes a sequence database D and a minimum utility thresh-

old δ as inputs and outputs the complete set of G-HUSPs in

D. Figure 2 shows an overview of BigHUSP. In the initial-
ization phase, BigHUSP uses a MapReduce step to compute

the GSWU value for each item and identify unpromising
items, that is, items whose GSWU is less than the minimum

utility threshold (which cannot form a HUSP). By pruning

the unpromising items from the matrices, the search space

becomes significantly smaller. In the L-HUSP mining phase,

BigHUSP employs an existing HUSP mining algorithm on

each partition of data to mine local HUSPs. Later, G-HUSPs

can be found by calculating the utility of each L-HUSP

over all the partitions. Since the number of L-HUSPs can

be large, before calculating the utility of each L-HUSP,

in the PG-HUSP (potential G-HUSP) generation phase, L-

HUSPs which cannot become a G-HUSP are pruned using

a novel overestimate utility model and the rest of them are

considered as potential G-HUSPs. Finally, the global utility

of each PG-HUSP is calculated and all the G-HUSPs are

returned in the G-HUSP mining phase.

A. Initialization

In this phase, the input sequence database is split into

several partitions and each mapper is fed with a partition. A

mapper converts a sequence into an efficient data structure

called utility matrix to maintain some utility information

857

Figure 2. Overview of BigHUSP

so that BigHUSP can fast retrieve the utility values in

later phases and does not need to process the original data

anymore. In this phase, we also find items which cannot

form a HUSP (i.e., unpromising items). Later, BigHUSP

prunes these items to reduce the search space efficiently.

This phase contains two main stages:

1) Map stage: given a partition, each mapper constructs

a utility matrix (UM) for each input sequence in the

partition. UM is an efficient data structure to keep the

required information to mine L-HUSP from the partition.

This representation makes the mining process faster since

the utility values can be calculated more efficiently. Each

element in the matrix consists of an item and a few tuples,

one per itemset in the sequence where a tuple contains

two values: (1) the utility of item in the itemset, and (2)

the remaining utility of the rest of items in the sequence

w.r.t the item. The remaining utility values are used in L-

HUSP mining phase to prune the search space. Figure 1(b)

shows the utility matrix of sequence S3 in the partition

D2 presented in Figure 1(a). For example, given item b in

the second itemset of S3, u(b, S2
3) = 5 × 3 = 15 and its

remaining utility is {u(c, S2
3) + u(a, S3

3) + u(c, S3
3)} = 8.

Once the UMs are constructed, they are maintained in RDD

for later use.

Not every item in the database can form a HUSP. Hence,

we use LSWU and GSWU to find items which cannot form

a HUSP (i.e., unpromising items). Each mapper calculates

LSWU value of each item in a partition and outputs a key-

value pair 〈 item, LSWU (item,Di)〉, where the value is the

LSWU of item in partition Di.

2) Reduce stage: the output with the same key (i.e., item)

is sent to the same reducer. A reducer calculates GSWU of

each item by summing up the LSWU values of the same item.

After GSWU values are calculated, each reducer returns the

items whose GSWU value is less than the minimum utility

threshold as unpromising items. The results of reducers are

collected and maintained in RDD to update UMs in the next

phase.

B. L-HUSP Mining

In this phase, all the unpromising items are pruned from

the matrices in each partition to reduce the search space.

Then, since it is not possible to build the search space over

the entire data to find G-HUSPs, this phase builds the local

search spaces and finds local HUSPs. Later G-HUSPs are

discovered from the L-HUSPs found in this phase. It consists

of two consecutive map transformations as follows.

Map transformation 1: given the original UMs and the

set of unpromising items obtained from the initialization

phase, each mapper prunes the unpromising items from each

UM. The updated UMs are output by the mappers and stored

in RDD.

Given set of updated UMs, there are two general ap-

proaches to mine local HUSPs. The first approach is to dis-

cover L-HUSPs by iteratively executing MapReduce rounds

as follows. Initially, a variable k is set to zero. In the k-

th iteration, all the L-HUSPs of length k are discovered by

performing a MapReduce pass. In the map task, the candi-

dates with length (k + 1) are generated using the k-sequence

obtained from the previous MapReduce iteration, and in

the reducer, the true utility of generated candidates are cal-

culated and (k+1)-sequences are discovered. However, this

approach suffers from excessive communications overheads

during the mining phase between MapReduce tasks. The

most challenging problem to mine G-HUSPs in a distributed

environment is how to avoid the excessive communication

overheads among nodes and yet discover the complete set of

G-HUSPs. The second approach is to find all patterns in a

partition that has a non-zero utility value in the map phase of

the mining, and then in the reduce phase, it decides whether

858

a pattern is a G-HUSP by aggregating its utility computed

in all partitions from different computing nodes. However,

due to the combinatorial number of possible sequences, this

is an infeasible approach especially for big data. Instead, we

design the second map transformation to find only L-HUSPs

in each partition.

Map transformation 2: given a minimum utility thresh-

old δ, a partition Di as a set of updated UMs and total utility

UDi
, BigHUSP applies USpan [4] to find a set of L-HUSPs

whose utility is no less than δ × UDi .

Each mapper outputs the local HUSPs as a pair of

〈Pat, 〈Di, utility〉〉 where Di is the partition id and utility
is the utility of pattern Pat in Di. The pairs are stored in

RDD for later use.

Below we first prove that, given a non-zero minimum

utility threshold, if a pattern is not an L-HUSP in any of

the partitions, it will not be a G-HUSP.

Lemma 2: Given a sequence database D and m non-

overlapped partitions {D1, D2, ..., Dm} and the minimum

utility threshold δ, a sequence pattern α is not a G-HUSP,

if ∀Di ⊆ D, suL(α,Di) < δ · UDi .

Proof: We prove the lemma by contradiction. Assume

that α is not an L-HUSP, but it is a G-HUSP.

According to Definition 9, we have, ∀Di, suL(α,Di) ≤
δ × UDi

. Consequently,∑
Di⊆D

suL(α,Di) ≤ δ × ∑
Di⊆D

UDi
(1)

On the other hand, based on Definition 10, α is G-HUSP

iff su(α,D) ≥ δ ·UD. Since we divide D into m partitions

D1, D2, ..., Dm so that ∀Di, Dj ∈ D,Di ∩ Dj = ∅, we

have:
∑

Di⊆D

suL(α,D) ≥ δ × ∑
Di⊆D

UDi
.

Hence it is a contradiction with equation 1.

According to this lemma, by mining L-HUSPs, we do not

miss any G-HUSPs.

C. PG-HUSP Generation

In order to find G-HUSPs, we need to calculate the global

utility of each L-HUSP found in the previous phase. Since

the number of L-HUSP can be large, we first define potential

G-HUSP (i.e., PG-HUSP) and prune all L-HUSPs which are

not PG-HUSPs.

Definition 13: (Maximum utility of a sequence α in a
partition Di) Given a minimum utility threshold δ and the

partition Di, the maximum utility of α in Di is defined as

follows:

MAS(α,Di) =

{
suL(α,Di), if suL(α,Di) ≥ δ · UDi

δ · UDi
, otherwise

Definition 14: Maximum utility of a sequence α in a
sequence database D is defined as follows: MAS(α,D) =∑
Di⊆D

MAS(α,Di)

Algorithm 1 Utility Calculation
Input: curNode, UMSetDi , α, idx, CType
Output: 〈α, su(α,Di)〉

1: if α is the pattern presented by curNode then
2: return 〈α, curNode.utility〉
3: end if
4: Create node N as a child of curNode
5: if CType[idx] = ’I’ then
6: N.Pattern← curNode.Pattern⊕ α[idx]
7: N.Utility ← Call I-Step using curNode.Pattern, α[idx]

and UMSetDi

8: else if CType[idx] = ’S’ then
9: N.Pattern← curNode.Pattern⊗ α[idx]

10: N.Utility ← Call I-Step using curNode.Pattern, α[idx]
and UMSetDi

11: end if
12: return Algorithm 1 (N, UMSetDi , α, idx + 1, CType)

Lemma 3: The maximum utility of sequence α in a

sequence database D is an upper bound of the true utility

of α in D.

Proof: According to Definition 9, if α is not a L-HUSP

in a partition Di, suL(α,Di) < δ · UDi
.

Let D1 be the set of partitions in D where α is an L-

HUSP and D2 be the set of partitions in D where α is not

an L-HUSP. Considering Definition 13 and Definition 14:

suG(α,D) =
∑
D

suL(α,Di) =
∑

Di∈D1

suL(α,Di) +∑
Di∈D2

suL(α,Di) ≤
∑

Di⊆D1

suL(α,Di) +
∑

Di⊆D2

δ · UDi

= MAS(α,D)
Hence MAS(α,D) is an upper bound of the true utility

of α in D.

Definition 15: (Potential Global High Utility Sequen-
tial Pattern (PG-HUSP)) Given a minimum utility thresh-

old δ and a sequence database D, α is called PG-HUSP iff:

MAS(α,D) ≥ α · UD.

Given set of L-HUSPs, the PG-HUSP generation phase finds

all PG-HUSPs in one reduce stage.

Reduce stage: the L-HUSPs having the same key (i.e.,

pattern) are collected into the same reducer. Let α be an

L-HUSP in reducer R. If the pair 〈α, 〈Di, utility〉〉 exists,

then MAS(α,D) is increased by utility value. Otherwise,

it adds δ · UDi
as the maximum utility of α in Di. All the

patterns whose MAS value is no less than the threshold are

returned as PG-HUSPs.

D. G-HUSP Mining

Given the set of PG-HUSPs (i.e., PG-Set), the G-HUSP

mining phase calculates the global utility of each pattern in

PG-Set and discovers G-HUSPs.

Map stage: each mapper calculates the local utility of

all patterns in PG-Set as follows. If a pattern α ∈ PG-Set

is an L-HUSP in partition Di, then its utility has already

been calculated in the L-HUSP mining phase and the mapper

859

returns the pair 〈α, 〈Di, utility〉〉. Otherwise, the mapper

calculates α’s utility. We design a pattern-growth algorithm

that traverses the minimum search space to calculate the

utility of α in a partition. Below we first provide some

definitions and then describe the proposed algorithm to

calculate the utility of α.

Similar to the other pattern-growth approaches [4], the

search space is a lexical sequence tree, where each non-root

node represents a sequence of itemsets. Each node at the

first level under the root is a sequence of length 1, a node

on the second level represents a 2-sequence and so on. Each

non-root node of the tree has two fields: (1) Pattern: the

pattern presented by the node, and (2) Utility: the utility of

the pattern for all the sequences in the database. There are

two types of patterns presented by nodes in the tree:

Definition 16: (I-concatenate Sequence) Given a se-

quence pattern α, an I-concatenate pattern β represents a

sequence generated by adding an item I into the last itemset

of α (denoted as α⊕ I).

Definition 17: (S-concatenate Sequence) Given a se-

quence α, an S-concatenate pattern β represents a sequence

generated by adding a 1-Itemset {I} after the last itemset

of α (denoted as α⊗ I).

I-concatenate and S-concatenate sequences are generated

using sequence-extension step (S-step) and itemset-extension
step (I-step) respectively. We demonstrate I-step and S-step
procedures of pattern α = {a} with sequence S3 in Figure

1 (b). We start from the I-Step. Given the pattern α and

item I = b, in order to form β = {ab} and calculate its

utility, USpan applies I-step as follows. According to Figure

1 (b), only itemset S2
3 has b which is 〈15, 8〉 can be used to

form sequence β. The utility of β is the utility of su(α, S3)
plus the newly added item’s utilities su(b, S2

3). Therefore,

su(β, S3) = {23}. Given pattern α = {ab} and I = c, to

construct pattern β = {ab}{c} and calculate its utility, S-

step works as follows. Since itemset {c} must occur in any

itemset after α occurs, the only case for itemset {c} is in

S3
3 . Hence, su(β, S3) = {23 + 3} = 26.

A mapper calculates α’s utility by calling Algorithm 1.

Given partition Di, Algorithm 1 is designed such that a

minimum required search space is traversed to calculate

utility of a pattern in Di. Algorithm 1 takes the following

parameters as inputs: (1) curNode: the current node in the

search space. The initial value is root node which is an empty

node. (2) UMSetDi is the set of UMs in Di. (3) α is a PG-

HUSP and presented as a list of items. (4) idx: is an index

pointing at the current item in α and its initial value is zero.

(5) CType is an array representing the types of concatenation

in the sequence α. Each element value is either I for I-

concatenate pattern or S for S-concatenate pattern.

Figure 3 shows how BigHUSP calculates the local utility

of pattern α = {b}{ac} in D2 in Figure 1. It starts by an

empty sequence (e.g., β) and the utility value equals zero.

Since the first item in α is b, β is extended by the itemset

{b} to form S-concatenate pattern β = {b}. Iteratively, β is

extended by items in α until all the items in α are added

to β. In each iteration, the utility of the extended sequence

is calculated using UMs in the partition. For example, the

utility of β = {b} ⊗ {a} in D2 is calculated as follows.

According to Figure 1(b), OccSet({b}, S3) = {S1
3 , S

2
3}

and OccSet({a}, S3) = {S2
3 , S

3
3}. Since itemset {a} must

occur in any itemset after {b} occurs, the utility of β is:

su(β, S3) = max({u({b}, S1
3)+u({a}, S2

3)}, {u({b}, S1
3)+

u({a}, S3
3)}, {u({b}, S2

3) + u({a}, S3
3)}) = max({9 +

8}, {9 + 4}, {15 + 4}) = 19.
Reduce stage: Given a set of PG-HUSPs and their utility

values, the pairs with same pattern (which is the key) will

be sent to the same reducer. The input is in the form

of 〈pattern, utility〉 where the utility is the local utility

generated by mappers. After all PG-HUSPs are read, the

reducer sums up the utility of each pattern. All the patterns

whose total utility is no less than the threshold are returned

as G-HUSPs.
Theorem 1: Given a sequence database D, if a pattern

α is among the global high utility sequential patterns, it is

returned by BigHUSP.
Proof: We prove the theorem by showing that the

proposed pruning strategies in BigHUSP never miss a global

high utility sequential pattern.

1) Pruning unpromising items: unpromising items are

found using the proposed overestimate utility model

(i.e., GSWU). According to Lemma 1, GSWU has

the downward closure property. That is, if the GSWU

value of an item is less than the threshold, not only the

utility of the item but also the utility of all sequences

contain the item is less than the threshold and they are

not G-HUSP. Hence, we do not miss any G-HUSP by

pruning such items.

2) L-HUSP mining: Instead of finding all patterns in a

partition that has a non-zero utility value, we discover

local high utility sequential patterns. According to

Lemma 1, pruning local low utility sequential patterns

will not cause missing any global high utility sequen-

tial patterns. Hence, no G-HUSP will be missed during

L-HUSP mining.

3) PG-HUSP discovery: In the third phase of BigHUSP,

the patterns whose maximum utility value (i.e., MAS)

is less than the threshold will be pruned. Since the

maximum utility value of a pattern is an upper bound

of the true utility of the pattern, if its MAS value is less

than the threshold, its utility will be certainly less than

the threshold (See Lemma 3). Consequently, pruning

the pattens whose MAS value is less than the threshold

will not miss any G-HUSP.

Since USpan is an exact method to find all true HUSPs

in a single node [4] and the proposed pruning strategies do

not miss any G-HUSP, if α is among the global high utility

sequential patterns, it will be returned by BigHUSP.

860

{},0

{b},15 {b}{a},19 {b}{ac},22
 ሼܾሽ ⊗ ሼܽሽ ሼܾሽ ሼܽሽ ⊕ ሼܿሽ

Items ૜૚ࡿ ૜૛ࡿ ૜૜ࡿ
b 〈9,38〉 〈15,8〉 〈0,3〉 Items ૜૚ࡿ ૜૛ࡿ ૜૜ࡿ

a 〈0,44〉 〈8,23〉 〈4,3〉
b 〈9,38〉 〈15,8〉 〈0,3〉

Items ૜૚ࡿ ૜૛ࡿ ૜૜ࡿ
a 〈0,44〉 〈8,23〉 〈4,3〉
b 〈9,38〉 〈15,8〉 〈0,3〉
c 〈0,35〉 〈1,7〉 〈3,0〉

maxሼ 9 ൅ 8 , 9 ൅ 4 , ሺ15 ൅ 4ሻሽ maxሼ 9 ൅ 8 ൅ 1 , 9 ൅ 4 ൅ 3 , ሺ15 ൅ 4 ൅ 3ሻሽmaxሼ 9 , 15 ሽ

࢔࢕࢏࢚ࢇ࢘ࢋ࢚ࡵ ࢚࢙࢘࢏ࡲ ࢔࢕࢏࢚ࢇ࢘ࢋ࢚ࡵ ࢊ࢔࢕ࢉࢋࡿ ࢔࢕࢏࢚ࢇ࢘ࢋ࢚ࡵ ࢊ࢘࢏ࢎࢀ

′࢈′ ݉݁ݐ݅ ݋ݐ ݀݁ݐ݈ܽ݁ݎ ܯܷ ݄݁ݐ ݊݅ ݐ݈݊݁݉݁݁ ݄݁ݐ
ݏ݉݁ݐ݅ ݋ݐ ݀݁ݐ݈ܽ݁ݎ ܯܷ ݄݁ݐ ݊݅ ݏݐ݈݊݁݉݁݁ ݄݁ݐ′ࢇ′ ݀݊ܽ ′࢈′ ݏ݉݁ݐ݅ ݋ݐ ݀݁ݐ݈ܽ݁ݎ ܯܷ ݄݁ݐ ݊݅ ݏݐ݈݊݁݉݁݁ ݄݁ݐ ᇱ࢈ ᇱܽ݊݀ ᇱࢇ ᇱܽ݊݀ ′ࢉ′

Figure 3. The utility of α = {b}{ac} in D2 in Figure 1

Figure 4. Number of candidates produced by the algorithms

V. EXPERIMENTAL RESULTS

The experimental environment contains one master node

and six worker nodes. Each node is equipped with Intel Xeon

2.6 Ghz (each 12 core) and 128 GB main memory and the

Spark 1.6.0 is used with IBM Platform Conductor for Spark.

We evaluate our algorithms on two real datasets: Globe
and Chainstore. The Globe dataset was obtained from a

Canadian news agency (The Globe and Mail 4), which is

a web clickstream dataset and contains 600K sequences and

24770 distinct articles. The dataset was created based on a

random sample of users visiting The Globe and Mail during

a six months period in 2014. Given a news article nw and

a user usr, the internal utility of nw with respect to usr is

defined as the browsing time (in seconds) that usr spent on

4http://www.theglobeandmail.com/

nw5. In addition, the external utility of nw is defined as:

p(nw) =
1

accessDate(nw)− releasedDate(nw) + 1
,

where accessDate is the date that usr clicks on nw and

releasedDate is the released date of nw. Note that 1
in the denominator is added to avoid zero division. The

ChainStore dataset consists of 3000K customer buying

sequences and 46086 distinct items which already con-

tains internal and external utilities6. We also evaluate our

algorithm on synthetic datasets. Two synthetic datasets

synthDS1:D2000K-C10-T3-S4-I3-N10K and synthDS2:DB-
D4000KC15T2.5S4I2.25N10K are generated by the IBM

data generator [22]. The number of sequences in synthDS1

(synthDS2) is 2000K(4000K), the average number of trans-

actions in a sequence is 10(15), the average number of

items in a transaction is 3(2.5), the average length of a

maximal pattern consists of 4(4) itemsets and each itemset

is composed of 3(2.25) items average. The number of items

in the dataset is 10k(10k). We follow previous studies [5],

[23] to generate internal and external utilities of items in

the synthetic datasets. The external utility of each item

is generated between 1 and 100 by using a log-normal

distribution and the internal utilities of items in a transaction

are randomly generated between 1 and 100.

In the experiments, we use the following performance

measures: (1) Run time: the total execution time of a method

to find HUSPs in big data, and (2) Number of Candidates:

the number of intermediate candidates produced by the

algorithms.

5We consider the time interval between two consecutive visited news
articles as time spent of the former article. The last visited news article is
removed from the sequence since we cannot calculate its time spent. We
also consider the maximum time spent 15 minutes for news articles whose
time spent is more than 15 minutes.

6The original dataset contains 1000K transactions. We grouped trans-
actions in different sizes so that each group represents a sequence of
transactions. We duplicated each sequence in the dataset five times.

861

Table I
EXECUTION TIME ON THE DIFFERENT DATASETS

To the best of our knowledge, no method was proposed

to mine HUSPs in big data. Our preliminary experiment

showed that the existing methods (e.g., USpan) which were

inherently designed for running on a single machine were

not able to handle the above 4 datasets due to the out-of-

memory problem and very long processing time. Therefore,

we implemented two versions of BigHUSP as baseline meth-

ods: (1) a basic version of BigHUSP, called BigHUSPBasic,

which does not apply the proposed pruning strategy to

prune unpromising items and also L-HUSPs in the PG-

HUSP generation phase, and (2) a stand alone version, called

BigHUSPSA, which runs BigHUSP on a single node of the

cluster and does not have the inter-node communication cost.

A. Number of Candidates

Figure 4 shows the results in terms of the number of

generated intermediate candidates under different utility

thresholds. In this figure, HUSPs presents the number of

HUSPs found in the datasets for different minimum utility

threshold values. As shown in Figure 4, BigHUSP pro-

duces much fewer candidates than BigHUSPBasic. On the

larger datasets, i.e., synthDS1, ChainStore and synthDS2,

the number of candidates grows quickly when the threshold

decreases. The main reason why BigHUSP produces much

fewer candidates is that it applies the proposed pruning

strategies which avoid generating a large number of inter-

mediate candidates during the mining process.

B. Time Efficiency of BigHUSP

Table I shows the execution time of the algorithms on

each of the four datasets with different minimum utility

thresholds. As it is shown in the Table I, BigHUSP is much

faster than BigHUSPSA. For example, BigHUSP runs 25

times faster on the ChainStore dataset and more than 40

times faster than BigHUSPSA on synthDS2. The average

execution time of BigHUSP on Globe is 4 minutes, while

that of BigHUSPSA on the same dataset is close to 2 hours.

Figure 5. Scalability of BigHUSP on different datasets

Figure 6. Scalability of BigHUSP on different datasets with different size

Besides, it can be observed that BigHUSP runs faster than

BigHUSPBasic as well. This performance asserts that the

proposed pruning strategies to reduce the search space and

communication costs are effective.

C. Scalability

In this section, we investigate the scalability of BigHUSP.

To evaluate scalability, we first run BigHUSP on a fixed

dataset using 2, 4, and 6 worker nodes. The results are shown

in 5. In this experiment, the threshold values for Globe, syn-

thDS1, ChainStore and synthDS2 datasets are set to 0.06%,

0.03%, 0.07% and 0.07% respectively. BigHUSP showed

linear scalability as the number of available machines is

increased, meaning equally to decrease the run time for the

mining task. The ability of BigHUSP to scale up can be

related to efficiency of the proposed pruning strategies and

the large number of partitions that can processed and mined

independently with limited number of MapReduce jobs.

To further evaluate the scalability of BigHUSP, we also

perform a weak scalability experiment for BigHUSP, in

which we increased the number of available worker nodes

(2, 4, 6) and the size of the sequence database (25%, 50%,

100% sequences of the dataset) simultaneously. Ideally, we

expect the total run time remains constant as we increase the

number of nodes and the size of the dataset simultaneously.

As Figure 6 shows, the rune time is almost constant. In this

figure, an increase in run time is observed when the number

of machines is 6. This is due to the fact that when the size

of the input sequences is doubled, the number of output

sequences increases more than twice.

862

VI. CONCLUSIONS

In this paper, we proposed a novel algorithm called

BigHUSP for parallel and distributed mining of high utility

sequential patterns from big data. BigHUSP uses multiple

MapReduce-like steps to process the input data in parallel.

It divides the input sequences into several partitions and

processes each partition of the input sequence database inde-

pendently. Two novel and distributed strategies are proposed

to effectively prune the search space and greatly improve

the performance of BigHUSP. Our experiments suggest

that BigHUSP is orders of magnitudes more efficient and

scalable than baseline algorithms for high utility sequential

pattern mining. For example, in our experiments, BigHUSP

mined 4 million input sequences in less than half an hour on

seven machines, while the baseline approaches took around

20 hours to return the results.

VII. ACKNOWLEDGMENT

This work is funded in part by Natural Sciences and

Engineering Research Council of Canada (NSERC), and

the Big Data Research, Analytics, and Information Network

(BRAIN) Alliance established by the Ontario Research Fund

- Research Excellence Program (ORF-RE).

REFERENCES

[1] N. R. Mabroukeh and C. I. Ezeife, “A taxonomy of sequential
pattern mining algorithms,” ACM Comput. Surv., vol. 43,
no. 1, pp. 3:1–3:41, 2010.

[2] C. H. Mooney and J. F. Roddick, “Sequential pattern mining
approaches and algorithms,” ACM Comput. Surv., vol. 45,
no. 2, pp. 19:1–19:39, 2013.

[3] L. Cao, Y. Zhao, H. Zhang, D. Luo, C. Zhang, and E. Park,
“Flexible frameworks for actionable knowledge discovery,”
Knowledge and Data Engineering, IEEE Transactions on,
vol. 22, no. 9, pp. 1299–1312, 2010.

[4] J. Yin, Z. Zheng, and L. Cao, “Uspan: An efficient algorithm
for mining high utility sequential patterns,” in In Proc. of
ACM SIGKDD, 2012, pp. 660–668.

[5] C. F. Ahmed, S. K. Tanbeer, and B. Jeong, “A novel ap-
proach for mining high-utility sequential patterns in sequence
databases,” In ETRI Journal, vol. 32, pp. 676–686, 2010.

[6] R. Kitchin, Big Data. John Wiley
and Sons, Ltd, 2016. [Online]. Available:
http://dx.doi.org/10.1002/9781118786352.wbieg0145

[7] A. Mitchell and D. Page, “State of the news media 2015,”
Pew Research Journalism Project 2015, 2015. [Online].
Available: http://www.journalism.org/files/2015/04/FINAL-
STATE-OF-THE-NEWS-MEDIA1.pdf

[8] H. Kashyap, H. A. Ahmed, N. Hoque, S. Roy, and D. K.
Bhattacharyya, “Big data analytics in bioinformatics: A
machine learning perspective,” CoRR, vol. abs/1506.05101,
2015. [Online]. Available: http://arxiv.org/abs/1506.05101

[9] W. Fan and A. Bifet, “Mining big data: Current status, and
forecast to the future,” SIGKDD Explor. Newsl., vol. 14, no. 2,
pp. 1–5, 2013.

[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets.”
HotCloud, vol. 10, pp. 10–10, 2010.

[11] M. Zihayat and A. A. Mining, “top-k high utility patterns
over data streams,” In Information Sciences, Available Online,
2014.

[12] B. Shie, H. Hsiao, and V. S. Tseng, “Efficient algorithms
for discovering high utility user behavior patterns in mobile
commerce environments,” In KAIS journal, vol. 37, 2013.

[13] C. F. Ahmed, S. Tanbeer, and B. Jeong, “A framework for
mining high utility web access sequences,” In IETE Journal,
vol. 28, pp. 3–16, 2011.

[14] O. K. Alkan and P. Karagoz, “Crom and huspext: Improving
efficiency of high utility sequential pattern extraction,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27,
no. 10, pp. 2645–2657, Oct 2015.

[15] Y. C. Lin, C.-W. Wu, and V. S. Tseng, Mining High Utility
Itemsets in Big Data. Cham: Springer International Publish-
ing, 2015, pp. 649–661.

[16] V. Guralnik and G. Karypis, “Parallel tree-projection-based
sequence mining algorithms,” Parallel Comput., vol. 30,
no. 4, pp. 443–472, Apr. 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2004.03.003

[17] M. J. Zaki, “Parallel sequence mining on shared-
memory machines,” J. Parallel Distrib. Comput., vol. 61,
no. 3, pp. 401–426, Mar. 2001. [Online]. Available:
http://dx.doi.org/10.1006/jpdc.2000.1695

[18] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo,
“Frequent itemset mining on graphics processors,” in
Proceedings of the Fifth International Workshop on Data
Management on New Hardware, ser. DaMoN ’09. New
York, NY, USA: ACM, 2009, pp. 34–42. [Online]. Available:
http://doi.acm.org/10.1145/1565694.1565702

[19] D. Yu, W. Wu, S. Zheng, and Z. Zhu, BIDE-Based Paral-
lel Mining of Frequent Closed Sequences with MapReduce.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
177–186.

[20] J.-W. Huang, S.-C. Lin, and M.-S. Chen, DPSP: Distributed
Progressive Sequential Pattern Mining on the Cloud. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 27–34.

[21] C. F. Ahmed, S. K. Tanbeer, and B. Jeong, “A framework for
mining high utility web access sequences,” In IETE Journal,
vol. 28, pp. 3–16, 2011.

[22] R. Agrawal and R. Srikant, “Mining sequential patterns,” in
ICDE, 1995, pp. 3–14.

[23] M. Zihayat, C.-W. Wu, A. An, and V. S. Tseng, “Mining high
utility sequential patterns from evolving data streams,” in ASE
BD&SI ’15, 2015, pp. 52:1–52:6.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

