
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 1422

Deep Parallelization of Parallel FP-Growth Using Parent-Child MapReduce

Adetokunbo Makanju, Zahra Farzanyar, Aijun An, Nick Cercone
EECS Department

York University
Toronto, Canada

Email: tokunbo,zfarzan,aan,nick@cse.yorku.ca

Zane Zhenhua Hu, Yonggang Hu
lBM Canada

Markham, Canada
Email: zane, yhu@ca.ibm.com

Abstract—MapReduce is an important programming model
for processing in distributed environments. Compared to other
distributed programming models, MapReduce reduces com-
munication overheads between computers and improves fault
tolerance. However, the MapReduce model does not allow for
automatic synchronization between jobs. A large number of
data analytics algorithms use a recursive divide-and-conquer
approach, which inherently allows for parallelism at each
level of recursion. However, it is often difficult to parallelize
such algorithms using the traditional MapReduce model if the
process requires synchronization.

In this paper we introduce Parent-Child MapReduce, a
version of the MapReduce programming model that allows for
MapReduce tasks to be created dynamically and synchronized
in a hierarchical parent-child fashion. Using the Parallel FP-
Growth (PFP) algorithm for mining frequent patterns as a
reference, we show that Parent-Child MapReduce can be used
to parallelize recursive divide-and-conquer algorithms using
the MapReduce model and that this can lead to significant
speed ups in the computational speed of such algorithms.
Our evaluation shows that we can achieve 68% (or 3 times)
performance gain when used with PFP.

Keywords-MapReduce; Frequent Pattern Mining; PFP; FP-
Growth; Recursive Divide and Conquer

I. INTRODUCTION

Frequent Pattern Mining (FPM) is a fundamental prob-
lem in big data analytics. FPM works on a database of
transactions (events). Each transaction has a number of
non-repeated items i.e. discrete entities, associated with it.
The goal is to find the co-occurrence relationships between
these items across the transactions in the database. FPM has
broad applications in data analytics for the retail, finance,
health-care, telecommunications and transport industries.
Information about frequent patterns can be used as the
basis for activities such as promotional pricing or product
recommendations.

A large number of algorithms have been proposed for the
FPM problem [1] but by far the most popular algorithms are
Apriori [2], Eclat[3] and FP-Growth[4]. One of the major
problems in FPM is the potentially large size of the transac-
tion database. The entire transaction database usually needs
to fit into memory. In this wise, FP-Growth performs better
due to its use of the FP-Tree data structure that compresses
the transaction database [4]. Parallel FP-Growth (PFP) is
a MapReduce-based extension of FP-Growth that achieves

faster computation times in distributed environments and
provides as output the Top-K frequent patterns for each of
the items in the database[5].

PFP uses the MapReduce model, while FP-Growth is a
recursive divide-and-conquer algorithm. This means that FP-
Growth inherently allows parallelism in each level of recur-
sion. Despite this fact, PFP avoids parallelizing the recursive
function calls of FP-Growth. It achieves its parallelization
by partitioning the database into independent shards that
can be processed as single-node instances of FP-Growth.
This was probably done as it is difficult (or impossible)
to parallelize the recursive sub-tasks using the MapReduce
framework. This is due, primarily, to the lack of automatic
synchronization mechanism for the parallel sub-tasks in the
MapReduce framework, which is needed for aggregating the
results from all subtasks.

This limits the level of parallelization that can be achieved
by PFP. This limitation in PFP’s ability to parallelize be-
comes evident in cases when the amount of computation is
driven not by the size of the dataset but the characteristics of
the data. A significant combinatorial explosion in the number
of recursive function calls is experienced when FP-Growth is
run using low support values on datasets that are sparse, i.e.
containing a large number of items relative to the number of
transactions, and containing very long transactions. For any
item-set of length 𝑥 in a transaction database , the number
of possible frequent patterns that it posses is bounded by
2𝑥, in the worst case. Partitioning the database does not
remove the characteristics of the data because at least one
partition of the dataset will retain these characteristics and
slow down the computation. Low support frequent patterns
are important in certain applications e.g. web search [5].
Data collected from the web can at times be sparse and
contain long transactions, as the datasets used in our work
show. It is therefore desirable to remove this limitation of
PFP.

In this paper, we attack this problem by extending the
level of parallelization that can be achieved by PFP, using
the Parent-Child MapReduce feature of IBM Platform Sym-
phony [6]. Parent-Child MapReduce is a feature of IBM
Platform Symphony that allows for MapReduce tasks to be
created dynamically and synchronized in a hierarchical fash-

1423

ion. Parent-Child MapReduce allows the processing of the
shards of the database to be parallelized by FP-Growth when
necessary. The implementations of MapReduce in platforms
like Apache Hadoop and Apache Spark cannot do this as
they are based on the traditional method [7], [8]. We refer to
our proposed algorithm as Recursive-PFP (R-PFP). We also
tackle some of the challenges that can be encountered when
attempting to parallelize the recursive calls of FP-Growth
using MapReduce. These challenges include predicting the
processing loads of FP-Trees, limiting the amount of data
that is written to file for the MapReduce tasks to process and
achieving a balance between the number of parallel tasks
generated without creating a new computational challenge.

Our initial evaluations on two publicly available datasets
indicate that R-PFP, in the right conditions, can provide
significant speed-ups over PFP.

The contributions of the this paper are as follows:
First, we introduce Parent-Child MapReduce, a version of

the MapReduce programming model that allows MapReduce
tasks to be created dynamically and recursively. The tasks
are created with a hierarchical parent-child relationship
between them. Second, we show that Parent-Child MapRe-
duce can be used to parallelize recursive divide-and-conquer
algorithms using the MapReduce model. Third, using PFP
as reference, we improve the level of parallelization and
create a new version of PFP, which we call R-PFP that uses
Parent-Child MapReduce. R-PFP is able to reduce the com-
putational time by approximately 68% (or 3 times) over PFP
in situations where significant increase in processing time
occurs and the parallelization (depth-threshold) parameter is
set appropriately.

II. RELATED WORK

In this section we describe some related work involving
balancing the load of processing transaction databases in
PFP and parallelizing FP-Growth. We note that PFP has
three phases, which we will describe in detail in Section.
III-B. The Reduce phase of the second step is responsible
for mining frequent patterns and is equivalent to single
node instance of the FP-Growth algorithm. So an attempt
to increase the parallelization of PFP is similar to the goal
of parallelizing FP-Growth.

In [9], the authors propose BPFP (Balanced Parallel FP-
Growth). This work extends PFP by including a mechanism
to ensure that work load assignment in the Reduce phase
of PFP’s second step is balanced among the reducers. This
approach however cannot solve the problem of having a
single FP-Tree with a huge load factor, caused by the dataset
characteristics, as the processing of that single FP-Tree
cannot be distributed and the problem persists irrespective
of what group the FP-Tree is assigned to.

In [10] the authors introduce a new algorithm called
MLFPT (Multiple Local Frequent Pattern Tree). Much like
FP-Growth the algorithm works in two steps, except that

it constructs multiple FP-Trees in its first phase. However,
these trees cannot be produced independently, so shared
global counters are needed to ensure that only globally fre-
quent patterns are mined from each tree. This is a drawback
of this approach.

In [11], the authors also parallelize FP-Growth in a PC
cluster environment. It achieves this by independently pro-
cessing the recursive function calls used by FP-Growth.This
work does not partition the database but improves on the
work done in [10], as it is a Shared-Nothing algorithm.
Their approach does not use MapReduce. MapReduce based
approach reduces communication overheads between com-
puters and enables the process recover more easily when
node failures occur. For the same reason it also cannot be
used in conjunction with PFP, which is MapReduce based.

III. PROBLEM AND ALGORITHM DESCRIPTIONS

In this section we describe both the FP-Growth and PFP
algorithms in detail. We start by giving a proper definition
of the FPM problem.

Let 𝐼 = {𝑖1, 𝑖2, 𝑖3, ..., 𝑖𝑛} be a set of items. We define
a transaction 𝑇 as any subset of 𝐼 and a transaction
database 𝐷 = ⟨𝑇1, 𝑇2, 𝑇3, ..., 𝑇𝑛⟩ , where 𝑇𝑖 is a trans-
action, as a collection of transactions. Let us also define a
pattern 𝑃 as a subset of 𝐼 , the support of 𝑃 in 𝐷 is the
percentage of the transactions in 𝐷 for which 𝑃 is a subset.
A frequent pattern is a pattern whose support is no less
than a user-specified threshold value called the minimum
support threshold, 𝜖.

With the definitions above the FPM problem can be
defined as follows: Given a database of transactions D and
a user provided minimum support threshold 𝜖, find the set
of frequent patterns in D.

A. FP-Growth

The FP-Growth algorithm has two phases.These are

1) Construction of the FP-Tree
2) Discovery of frequent patterns in the FP-Tree

A complete discussion of how to build an FP-Tree is
beyond the scope of this paper. However, given the example
transaction database in Table I, the resulting FP-tree will
look like the diagram in Fig.1. In the third column of Table
I, the items are ordered in decreasing order of their support.
The FP-Tree is made of two parts, the Header table and a
prefix tree. Each node in the prefix tree except the root can
have three items. These are (1) an item name, (2) an item
count that represents the number of transactions that contain
the item in that path of the tree and (3) a link to the next
node in the tree with the same item name, if such a node
exists. The entries in the header table are sorted in the order
of decreasing support and each one consists of an item name
and link to the first occurrence of the item in the prefix tree.

Once the initial FP-Tree is constructed the frequent pat-
terns can be extracted using Algorithm 1 (FP-Growth). A

1424

Table I: An example transaction database with ordered frequent
items. assuming the support threshold is 60%

TID Items Ordered Frequent Items
1 f,a,c,d,,g,i,m,p f,c,a,m,p
2 a,b,c,f,l,m,o f,c,a,b,m
3 b,f,h,j,o f,b
4 b,c,k,s,p c,b,p
5 a,f,c,e,l,pm,n f,c,a,m,p

Figure 1: A sample FP-Tree built using the transaction database
in Table I and a support threshold of 60% [4].

complete discussion of the FP-Growth algorithm is beyond
the scope of this paper. The reader can find more details
on FP-Growth in the original paper by Han et. al. [4]. The
algorithm uses a recursive divide-and-conquer strategy to
explore the entire space of frequent patterns. For instance,
if the FP-Tree example in Fig. 1 were to be processed using
Algorithm 1, then the first recursive call to FPGrowth() on
line 12 within the for-loop starting on line 7 would partition
the search space as follows: (1) Patterns containing 𝑝, (2)
Patterns containing 𝑚, but no 𝑝, (3) Patterns containing 𝑏,
but neither 𝑝 nor 𝑚, (4) Patterns containing 𝑎, but neither
𝑝,𝑚 nor 𝑏, (5) Patterns containing 𝑐, but neither 𝑝,𝑚,𝑏 nor
𝑎, and (6) Patterns containing 𝑓 , but neither 𝑝,𝑚,𝑏,𝑎 nor 𝑐.

Each call to FPGrowth() is independent of the other
as the area of the search space that each call deals with
do not overlap. This fact allows for each of these calls
to FPGrowth() to be parallelized. With each subsequent
recursive call to FPGrowth(), each of these search spaces
would also be partitioned. For instance, the first call to
grow patterns containing 𝑝 will be further partitioned within
the for loop on line 7. This process continues until the
conditional tree is empty, which indicates that there are no
more partitions of the search space.

B. PFP: Parallel FP-Growth

PFP uses three MapReduce steps to parallelize FP-
Growth. These steps are summarized below.

Step 1 - Parallel Counting: Using MapReduce, these
steps generates what is called an F-List. The F-List is a list
of all the frequent items in the transaction database. All of
the items are then divided into 𝑄 groups. This list of 𝑄
groups is called a G-List.

Step 2 - Parallel FP-Growth: This step of PFP is the
most time consuming. The Map and Reduce phases of this
step carry out different functions, so each one is described

Algorithm 1 FP-Growth Algorithm

1: Input: FP Tree 𝑇𝑟𝑒𝑒, Support threshold 𝜖
2: Output:Set of frequent patterns
3: Procedure: 𝐹𝑃𝐺𝑟𝑜𝑤𝑡ℎ(𝑇𝑟𝑒𝑒, 𝜖, 𝛼) [𝛼 is a frequent pattern and its intial

value is nul]
4: if 𝑇𝑟𝑒𝑒 contains a single path then
5: Generate all possible combinations of the path
6: else
7: for all items 𝑖𝑛 in the headerTable of 𝑇𝑟𝑒𝑒 do
8: Create pattern 𝛽 = 𝑖𝑛 ∪ 𝛼
9: Construct 𝛽 conditional pattern base [The conditional pattern base is a

projection of the transactions in 𝑇𝑟𝑒𝑒 that contains only paths the preceed nodes
with item name 𝑖𝑛]

10: Construct conditional tree 𝑇𝑟𝑒𝑒𝛽 from the conditional pattern base
11: if 𝑇𝛽 ∕= 𝑛𝑢𝑙𝑙 then
12: Call 𝐹𝑃𝐺𝑟𝑜𝑤𝑡ℎ(𝑇𝑟𝑒𝑒𝛽 , 𝜖, 𝛽)
13: end if
14: end for
15: end if

below.
Mapper - At this step each mapper is assigned a shard of the
original database. The mapper determines to what group(s)
each transaction in the shard is relevant. They then generate
key/value pairs, where each key is a group-id and the value is
the relevant transaction. One or more key/value pairs maybe
generated per transaction, as the transaction maybe relevant
to multiple groups.
Reducer - The MapReduce infrastructure automatically
groups the output from the map phase based on their
key values. A group of output values with the same key
constitutes a shard of the original database that contains
all transactions that are relevant to the items in that group.
These are called group-dependent shards. Each reducer is
assigned a number of group dependent shards to process. For
each shard, an independent local FP-Tree is constructed and
mined for only the frequent patterns containing the items in
the group, by a single node call to Algorithm 1, the original
sequential FPGrowth() algorithm. The processing of each
shard is equivalent to a single node run of FP-Growth as
described in Section III-A. No parallelism is taking place in
the reducer.

Step 3 - Aggregation: Using MapReduce this step of the
algorithm takes the output of the previous phase and puts
them together as the final output of the process. The output
is the Top-K frequent patterns for each item in the F-List.

The algorithm for the reduce phase of Step-2 is given
in Algorithm 2. In this algorithm the G-List is the same
as that created in Step-1 of the algorithm. The keys in
the ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ pairs processed by the reducer are unique
ids that identify each group of items, while the values are
the transactions that are relevant to the group. The reducer
users generates a 𝑙𝑜𝑐𝑎𝑙𝐹 𝑙𝑖𝑠𝑡 and a 𝐿𝑜𝑐𝑎𝑙𝐹𝑃𝑇𝑟𝑒𝑒 for the
group. The 𝑙𝑜𝑐𝑎𝑙𝐹 𝑙𝑖𝑠𝑡 is a list of all the items in the
group. It then proceeds to generate the frequent patterns
that are relevant to each item in the 𝑙𝑜𝑐𝑎𝑙𝐹 𝑙𝑖𝑠𝑡 with a call
to FPGrowth (Algorithm 1). Since PFP only outputs the
Top-K frequent patterns for each item in the group, a max
heap is used to store the frequent patterns. The key in the

1425

output ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ pairs of the reducer is an item from the
𝑙𝑜𝑐𝑎𝑙𝐹 𝑙𝑖𝑠𝑡 and a max heap of all the frequent patterns that
contain the item.

The Reduce phase of Step-2 can constitute a bottleneck
for PFP in some cases. If PFP is run with a low support
threshold, a Parallel FP-Growth Reduce task that is assigned
a database shard with long transactions will take consider-
able amount of time to complete. In its current form PFP
offers no way to distribute the processing of such reducers.
Indeed, our experiments showed that increasing the number
of reducers or the number of groups 𝑄 can not fix the
problem because the reducer that was assigned the shard
containing long transactions always lagged behind. For more
details on PFP, please see [5].

Algorithm 2 Parallel FP-Growth Reducer Algorithm

1: Input: Support threshold 𝜖, HeapSize 𝑘
2: Procedure: Reducer(𝜖,𝑘)
3: Load G-List
4: for all 𝑘𝑒𝑦 = 𝑔𝑖𝑑, 𝑣𝑎𝑙𝑢𝑒 = 𝐷𝐵𝑔𝑖𝑑 pairs do
5: localFlist ← G-List𝑔𝑖𝑑
6: LocalFPTree ← BuildFPTree(𝐷𝐵𝑔𝑖𝑑)
7: for all items 𝑓 in localFlist do
8: Create 𝑀𝑎𝑥𝐻𝑒𝑎𝑝 of size 𝑘
9: 𝑀𝑎𝑥ℎ𝑒𝑎𝑝.𝑎𝑑𝑑(𝐹𝑃𝐺𝑟𝑜𝑤𝑡ℎ(𝐿𝑜𝑐𝑎𝑙𝐹𝑃𝑇𝑟𝑒𝑒, 𝜖, 𝑓))

10: Call Output(⟨𝑓,𝑀𝑎𝑥𝐻𝑒𝑎𝑝⟩)
11: end for
12: end for

C. Mahout Implementation of PFP

Apache Mahout [12] is an open-source code repository
of scalable implementations of machine learning and data
mining algorithms. The implementations in the repository
run on such platforms as Apache Hadoop[7], Apache Spark
[8] and Apache Flink [13]. Mahout has an implementation of
PFP built to run on the Hadoop platform in its 0.9 release.
We used and modified this implementation of PFP in our
work.

It should be noted that Mahout’s implementation of PFP
includes FP-Bonsai tree pruning [14]. FP-Bonsai integrates
the Ex-Ante data reduction technique into FP-Growth [15].
This technique can help to mitigate the problem of fitting
large transaction databases into memory by pruning condi-
tional FP-Trees for redundant information.

Aside from the difference noted above Mahout’s im-
plementation of PFP is based on the description of PFP
described in the preceding paragraph. So it inherits the same
limitations.

IV. IMPROVEMENTS TO PFP

In this section we describe our algorithm for parallelizing
the reduce phase of Step 2 of PFP (Section III-B) using
the Parent-Child MapReduce feature of IBM Platform Sym-
phony. Our algorithm is called Recursive-PFP or R-PFP in
brief. R-PFP retains the Step-1, Step-3 and the map phase of
Step 2 of the original PFP algorithm. The only change is in
the reduce phase of Step-2. We provide a side-by-side com-
parison of how the reduce phase of Step 2 works for original

(a) PFP Pattern Growth (b) R-PFP Pattern Growth

Figure 2: Comparing the architectures of Parallel FP-Growth(a)
and Recursive-PFP (b).

PFP and our proposed method for growing frequent patterns
in Fig. 2. In PFP each FP-Growth reducer in Step 2 grows
its frequent patterns using non-parallelized Algorithm 2 and
passes its output to a Aggregation mapper, which collates
the results from all of the Parallel FP-Growth reducer tasks.
However, for R-PFP, we replace Apache Hadoop with IBM
Platform Symphony and add a new process, which we call
𝐺𝑟𝑜𝑤𝑡ℎ𝑀𝑎𝑝𝑝𝑒𝑟 in Step 2. The 𝐺𝑟𝑜𝑤𝑡ℎ𝑀𝑎𝑝𝑝𝑒𝑟 enables
us to use MapReduce to parallelize the recursive calls to
FPGrowth() (Algorithm 1), which takes place in the Reduce
phase of Step 2.

Each of the Growth Mappers is a task in a MapReduce
job that has no Reduce phase. It takes as input ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩
pairs of the form ⟨𝑓,𝑂𝑏𝑗⟩, where 𝑓 is the item from the
G-List whose frequent patterns are being mined and 𝑂𝑏𝑗
is an object containing all the parameters required for the
FPGrowth() call like the minimum support threshold etc.
With this input each mapper finds all the frequent patterns
containing item 𝑓 but not other items, depending on the
search space it takes care of.

A. IBM Platform Symphony and Parent-Child MapReduce

IBM Platform Symphony is a software product that
provides parallel computing and application grid manage-
ment for compute-intensive and data-intensive applications
across heterogeneous IT resources. It automatically op-
timizes multi-user and multi-tenant resource sharing and
workload scheduling for various applications including SOA
(Service-Oriented Applications), High Performance Com-
puting (HPC), batch, Apache Hadoop MapReduce, Apache
Spark, Web and database applications.

It supports parent-child workloads in SOA, which allows
an application program to submit parent-child jobs and tasks
to a scheduler in the system. A job can have one or more
tasks that can be scheduled by the scheduler to run on
resource slots in parallel, one task per slot. This feature is
adapted for Apache Hadoop MapReduce jobs in this work,
hence the term parent-child Mapreduce.

If a running task in a job finds it has much more to do
than expected, the task can split its work, and submit one or
more child jobs, each child job can contain one or more child
tasks. Symphony will track the dependencies of parent-child
jobs and tasks, schedule the child tasks in child jobs to run

1426

on multiple resource slots to speed up the computation, and
manage the life cycle of a parent job so that the parent job
can be finished only if its own tasks and all its child jobs
and tasks are finished.

This allows a parent job to know when its child jobs finish
and signal the next MapReduce step (e.g. Step-3 in the PFP
algorithm) to start. This achieves the synchronization needed
for the final aggregation step of PFP. Details of how the
parent-child feature is realized in IBM Platform Symphony
MapReduce is beyond the scope of this paper. We focus on
how to use this feature to parallelize recursive divide-and-
conquer tasks that need synchronization.

B. Recursive-PFP (R-PFP)

Parallelizing the Reduce phase of the Parallel FP-Growth
step of PFP comes with unique challenges. The first chal-
lenge is the fact that the recursive process of FP-Growth
proceeds in a depth-first search (DFS) fashion. A DFS is
an inherently sequential process [16], therefore any attempt
to parallelize can only be done dynamically during the DFS
traversal. This creates a problem for MapReduce paralleliza-
tion, which requires that all tasks be defined at the start
of processing. In this regard, the Parent-Child MapReduce
framework overcomes this limitation as it allows MapRe-
duce tasks to be created dynamically.

The second challenge is the need to create a delicate
balance between speed and the number of tasks created.
Technically, a single task can be created to process any call
to FPGrowth(). This approach ensures that no time is wasted
before processing. However, just as is the case with writing
data, this approach can lead to the creation of billions of
tasks. On the other hand, collecting all calls and processing
all in a single task will require waiting until the completion
of the FP-Growth Reduce task before the child task can
be created. Therefore, a balance must be created between
both extremes. This issue is addressed in our solution by
allowing only the top-level reduce tasks to create as many
child tasks as needed. Subsequent child reduce tasks are
limited to creating only a single child.

The third challenge is the amount of data that needs to
be written. Each record of the child MapReduce task is a
FPGrowth() function call (see Algorithm 5). Therefore all of
the parameters of the function call need to be written to disk.
In the worst case, the number of function calls required to
process an FP-Tree is a combinatorial factor of the number
of items in the header table. We could therefore be dealing
with billions of records when dealing with an FP-Tree with a
header table size greater than 13. The conditional FP-Tree is
one of the parameters required during a call to FPGrowth().
Writing a billion conditional FP-Trees to disk will be counter
productive. This issue is addressed in our solution by not
serializing conditional FP-Trees and providing a mechanism
for conditional FP-Trees to be generated dynamically when
required.

The last challenge is the need to synchronize tasks. PFP’s
three phases are sequential, so the MapReduce tasks for
each of these phases need to be synchronized to start one
after another. Traditionally, MapReduce tasks are not meant
to communicate with each other, any synchronization that
occurs must be hard-coded by the programmer. This is
another case where Parent-Child MapReduce helps. Since
we can create tasks that are tied to a parent job, we can
ensure that the parent job does not complete until all of its
children have finished.

The algorithm for the Reduce phase of the Parallel FP-
Growth step of R-PFP can be found in Algorithm 3. It
works in fashion similar to Algorithm 2 but takes a new
input parameter, depth threshold 𝛿. We use this parameter
to determine which FP-Trees will be processed in parallel.
We include a discussion on how and why we use this
parameter as load predictor in Section IV-C. The main idea
of Algorithm 3 is that in the recursive FP-Growth process,
if the depth of a local (conditional) FP-tree is greater than 𝛿,
it creates a child job by calling GrowthMapper (Algorithm
5) to process the FP-tree in parallel. Any FP-Tree that
does not meet this criterion is processed sequentially to
completion. Algorithm 3 does not write a single key/value
pair to the input file for the child job. It writes as many
as ∣𝑙𝑜𝑐𝑎𝑙𝐹𝐿𝑖𝑠𝑡∣ ×𝐻𝑒𝑎𝑑𝑒𝑟𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒 key/value pairs to the
file. These records represent all the independent top-level
function calls that would have been made sequentially if
the tree had been processed directly. These calls can now
be processed in parallel by the 𝐺𝑟𝑜𝑤𝑡ℎ𝑀𝑎𝑝𝑝𝑒𝑟 tasks in
the child job. The second challenge mentioned above is
addressed inAlgorithm 3, which creates child tasks for top-
level FP-Trees and in Algorithm 5, which creates child tasks
for conditional FP-Trees.

Algorithm 3 Parent-Child FP-Growth Reducer Algorithm
1: Input:Depth threshold 𝛿, Support threshold 𝜖,
2: HeapSize 𝑘
3: Procedure: Reducer(𝛿,𝜖,𝑘)
4: Load G-List
5: for all 𝑘𝑒𝑦 = 𝑔𝑖𝑑, 𝑣𝑎𝑙𝑢𝑒 = 𝐷𝐵𝑔𝑖𝑑 pairs do
6: localFlist ← G-List𝑔𝑖𝑑
7: LocalFPTree ← BuildFPTree(𝐷𝐵𝑔𝑖𝑑)
8: if LocalFPTree.depth ≥ 𝛿 then
9: LocalFPTree.Write() [Write FP-Tree to disk]

10: for all items 𝑓 in localFlist do
11: for all items 𝑙 in the headerTable of LocalFPTree do
12: itemlist ← newList()
13: itemlist.add(𝑙)
14: Obj ← newGrowthObject(itemlist)
15: Call WriteChildRecords(𝑓, 𝑂𝑏𝑗)
16: end for
17: end for
18: Call GrowthMapper(𝛿,𝜖,𝑘)
19: else
20: for all items 𝑓 in localFlist do
21: Create 𝑀𝑎𝑥𝐻𝑒𝑎𝑝 of size 𝑘
22: 𝑀𝑎𝑥ℎ𝑒𝑎𝑝.𝑎𝑑𝑑(𝐹𝑃𝐺𝑟𝑜𝑤𝑡ℎ(𝐿𝑜𝑐𝑎𝑙𝐹𝑃𝑇𝑟𝑒𝑒, 𝜖, 𝑓))
23: Call Output(⟨𝑓,𝑀𝑎𝑥𝐻𝑒𝑎𝑝⟩)
24: end for
25: end if
26: end for

The parameters that will be grouped into 𝑂𝑏𝑗 (Line 14 of

1427

Algorithm 3) would differ between actual implementations.
However, we note that one of the object member is a
list of items, 𝑖𝑡𝑒𝑚𝑙𝑖𝑠𝑡. This list of items will contain a
sequential list of the all items that need to be used to
generate the conditional tree required for the call. In order
to save time required to write conditional FP-Trees for each
record, we write the Top-Level tree only once, so that each
𝐺𝑟𝑜𝑤𝑡ℎ𝑀𝑎𝑝𝑝𝑒𝑟 task can read this FP-Tree into memory
once and then subsequently generate the conditional tree
required for the call using the items in the list in sequence
(Algorithm 4). As the 𝐺𝑟𝑜𝑤𝑡ℎ𝑀𝑎𝑝𝑝𝑒𝑟 (Algorithm 5) is
able to generate its own children, any 𝑂𝑏𝑗 instance created
will just need to add the new item to the end of the previous
list of items, for its child job to use to generate its own
conditional trees using the same FP-Tree that was written to
the disk by the Parent task. This design addresses the third
challenge raised previously.

Algorithm 4 Build Conditional Tree Using a List

1: Procedure: buildWithList(𝑇𝑟𝑒𝑒, 𝑖𝑡𝑒𝑚𝐿𝑖𝑠𝑡, 𝜖)
2: conditionalTree = newFPTree()
3: a ← itemList.getFirst()
4: buildCondTree(𝑇𝑟𝑒𝑒, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑇𝑟𝑒𝑒, 𝑎, 𝜖)
5: for i = 1, to i= len(itemList) do
6: [First item in itemList is at index 0]
7: tempTree ← conditionalTree
8: conditionalTree = newFPTree()
9: buildCondTree(𝑡𝑒𝑚𝑝𝑇𝑟𝑒𝑒, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑇𝑟𝑒𝑒, 𝑖𝑡𝑒𝑚𝐿𝑖𝑠𝑡(𝑖),𝜖)

10: end for
11: return conditionalTree

Algorithm 5 Growth Mapper Algorithm

1: Input:Depth threshold 𝛿, Support threshold 𝜖,
2: HeapSize 𝑘
3: Procedure: GrowthMapper(𝛿,𝜖,𝑘)
4: Load FP-Tree 𝑇𝑟𝑒𝑒 from file
5: for all 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 = 𝑂𝑏𝑗 pairs do
6: if This is the first record then
7: Create 𝑀𝑎𝑥𝐻𝑒𝑎𝑝 of size 𝑘
8: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑘𝑒𝑦
9: else

10: if 𝑘𝑒𝑦 ∕= 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 then
11: Call Output(⟨𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒,𝑀𝑎𝑥𝐻𝑒𝑎𝑝⟩)
12: end if
13: end if
14: 𝑐𝑜𝑛𝑑𝑇𝑟𝑒𝑒 = 𝑏𝑢𝑖𝑙𝑑𝑊𝑖𝑡ℎ𝐿𝑖𝑠𝑡(𝑇𝑟𝑒𝑒, 𝑂𝑏𝑗.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐿𝑖𝑠𝑡, 𝜖)
15: if 𝑐𝑜𝑛𝑑𝑇𝑟𝑒𝑒.𝑑𝑒𝑝𝑡ℎ ≥ 𝛿∣∣𝑐𝑜𝑛𝑑𝑇𝑟𝑒𝑒.ℎ𝑒𝑎𝑑𝑒𝑟𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒 ≥ 𝛿 then
16: for all items 𝑙 in the headerTable of condTree do
17: Obj.itemlist.add(𝑙)
18: 𝑛𝑒𝑤𝑂𝑏𝑗 ← 𝑛𝑒𝑤𝐺𝑟𝑜𝑤𝑡ℎ𝑂𝑏𝑗𝑒𝑐𝑡(𝑂𝑏𝑗.𝑖𝑡𝑒𝑚𝑙𝑖𝑠𝑡)
19: Obj.itemlist.pop()
20: Call WriteChildRecords(𝑘𝑒𝑦, 𝑛𝑒𝑤𝑂𝑏𝑗)
21: end for
22: else
23: 𝑀𝑎𝑥𝐻𝑒𝑎𝑝.𝑎𝑑𝑑(𝐹𝑃𝐺𝑟𝑜𝑤𝑡ℎ(𝑐𝑜𝑛𝑑𝑇𝑟𝑒𝑒, 𝜖, 𝑘𝑒𝑦))
24: end if
25: end for
26: if childTaskRecordsWereWritten then
27: Call GrowthMapper(𝛿,𝜖,𝑘)
28: end if

The 𝐺𝑟𝑜𝑤𝑡ℎ𝑀𝑎𝑝𝑝𝑒𝑟 algorithm proceeds in a similar
manner as the Reduce phase of the Parallel FP-Growth step
of R-PFP. As it processes its records, it writes records to disk
for any conditional FP-Tree that has a depth or header table
size that is greater than or equal to 𝛿. Any other conditional
trees are processed to completion. Unlike in theReduce phase

of the PFP, 𝐺𝑟𝑜𝑤𝑡ℎ𝑀𝑎𝑝𝑝𝑒𝑟 tasks can only generate a
single child job. This prevents the number of child jobs from
exploding. As the child job can have multiple child tasks
that can process in parallel what would have been processed
sequentially by the parent, this approach leads to a reduction
in processing time. There is no limit to the depth of the child
job generations of 𝐺𝑟𝑜𝑤𝑡ℎ𝑀𝑎𝑝𝑝𝑒𝑟 child tasks.

Each child task writes its output to file separately, they
do not return any information to the parent. The final
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 job will combine all of the outputs. Since
IBM Platform Symphony manages the life cycle of parent-
child jobs, the top-level parent job will not end until all of
its children are done. Since the 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 job is hard-
coded to start when Parallel FP-Growth job ends, there is no
possibility of the 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 job missing part of the final
result due to unfinished child tasks before the Aggregation
job was started. Details of the framework can be found in
Fig. 2b.

C. Predicting FP-Tree Load

During the mining of an FP-Tree, the number of recur-
sive calls to FPGrowth(), is proportional to the number
of frequent patterns. This can number in the billions if a
low support threshold is used with a database with long
transactions. So we choose to only parallelize the calls with
the heaviest load.

Predicting the processing load of an FP-Tree is a very
difficult problem. Indeed no single factor can be used to
effectively predict the load of an FP-Tree [17]. However,
there are a few properties of an FP-Tree that can give an
indication on the possible amount of computation that the
tree will require, which include:

Depth: This is the longest path from any leaf node to
the root of the tree. The depth of the tree is influenced
by the length of transactions in the database. The depth
of the tree should be the most effective means of load
prediction because the number of item-sets is exponentially
proportional to the depth of the tree in the worst case.
However, this is not always the case, as the depth of the
conditional trees generated in progressive recursive calls can
reduce significantly between calls.

Path Depth: This is the longest path from a node whose
count satisfies minimum support to the root node [11]. The
path depth of tree is affected by the support value and the
length of transactions in the database. In typical cases the
path depth should be a better load indicator as it is likely
that the conditional trees generated recursively will not have
a depth that is less than the path depth of its parent [11].

#Nodes: This is the number of nodes in the FP-Tree. If
a tree has a large number of nodes then it will take longer
to traverse it.

HeaderTable Size: This is the number of items in the
header table list. This number has a direct impact on the
number of iterations that will need to be completed to

1428

Predicting Load Using FP Tree Properties

Top K FP Trees(%)

%
 o

f T
ot

al
 T

im
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0 Time
Depth
Nodes
Headers
Path.Depth

Figure 3: ROC Curve: Predicting the load of an FP-Tree using its
properties. This plot was created using the Top-Level FP-Trees of
the Kosarak dataset at a support count of 50. The ”𝑇 𝑖𝑚𝑒” curve
indicates the best possible performance.

process the FP-Tree. The header list size is influenced by
the number of unique items in the transaction database.

The graph in Fig. 3 shows the effectiveness of using
#Nodes, Header table size, Path Depth and Depth in pre-
dicting the load of an FP-Tree. We produced the graph
using the Kosarak dataset (see Table II). We ran Mahout’s
implementation of PFP against the Kosarak dataset, while
collecting statistics about the top-level FP-Trees and the time
it took for them to be processed. We also measured the total
time it took for the run to complete. In the graph, the 𝑇 𝑖𝑚𝑒
line is generated by sorting in decreasing order the list of FP-
Trees by the time it took to process them and then summing
the processing time of the top 10%, 20%, 30%, ..., 100% of
FP-Trees, which is the value plotted on the x-axis. We then
calculate the percentage of the total processing time each of
these sums represent, which is the value on the y-axis.

With this we can deduce that 10% of the FP-Trees
contribute about 30% of the total processing time. This
Time line is characteristic of what we should see if we
had a ‘perfect’ load predictor. The other lines are produced
in a similar manner except that the trees are sorted in
decreasing order of the statistic that they represent rather
than processing time.

The graphs show that none of the factors were able to
predict the load perfectly. The graphs also show that Header
table size and Depth consistently beating PathDepth and
Node count. Apart from the PathDepth, these results are
not surprising. Contrary to what should be expected the
PathDepth performs worse than Depth as a load predictor.
We found out that due to the sparseness of the dataset
majority i.e > 95% of the trees had a path depth of 0. This
made PathDepth ineffective as a load predictor. Please note
that path depth is different from depth, please see earlier
definitions.

Also, Header table size was a more effective predictor
than Depth. Again, this was due to the sparseness of the
dataset. The Header table size represents an upper-bound on
the depth of any FP-Tree. For any FP-Tree 𝑡, 𝑑𝑒𝑝𝑡ℎ(𝑡) ≤
ℎ𝑒𝑎𝑑𝑒𝑟𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒(𝑡). This is true because each element in
the header table appears at least once in the FP-Tree and
cannot appear more than once in a given path of the FP-Tree.

On the other hand, for a sparse dataset the relationship is
likely 𝑑𝑒𝑝𝑡ℎ(𝑡) ≪ ℎ𝑒𝑎𝑑𝑒𝑟𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒(𝑡), as most items are
not likely to occur on the similar paths of the FP-Tree. So
its more than likely that the header table size will have a
greater impact on the number of iterations than the depth.

We are of the opinion that more work needs to be done to
properly predict the load of FP-Trees. However, based on the
observations above we decided to use both the header table
size and depth as load predictors for our implementation.

V. EVALUATIONS

In this section we describe our evaluations of our proposed
algorithm. We provide the technical specifications of the
cluster environment, the nature of the datasets and the
methodology of the experiments we carried out.

A. Datasets

We refer to the datasets used in our evaluation as the
𝐾𝑜𝑠𝑎𝑟𝑎𝑘 and 𝑇𝑤𝑖𝑡𝑡𝑒𝑟 datasets. The Kosarak is a dataset
available from the Frequent Itemset Mining Dataset Repos-
itory [18]. It contains anonymized click-stream data from a
Hungarian on-line news portal. Each user visit is considered
a transaction and the web-pages visited are the items. The
Twitter dataset was prepared using a collection of records
extracted from tweets for the month of November 2012
containing both #hashtags and URLs as part of the tweet.
The data contains approximately 27.8M tweets [19], [20].
Each record in the data contains a timestamp, a user id, a
list of hashtags used and a list of URLs used. We created
the dataset by extracting the hashtags. The list of hashtags
in a tweet are treated as a transaction and each hashtag is
an item

A summary of the statistics of each of these datasets
can be found in Table II. These datasets meet the criteria
required for our evaluations as they are both sparse, with the
Twitter dataset being extremely sparse. They both also con-
tain long transactions, with the Kosarak dataset containing
very long transactions. These characteristics are sufficiently
representative of the types of datasets that might experience
combinatorial explosion in frequent itemset counting.

We would like to note that the statistics of these datasets
alone cannot be used to judge the scale of the task. Our goal
is to parallelize the FPGrowth() calls of FP-Growth using
a MapReduce framework. So the scale can only be truly
measured by the number of FPGrowth() calls that are made.
The number of FPGrowth() calls is directly proportional to
the number of frequent patterns in the data. This number can
be very large at low support rates. For any item-set of length
𝑥, the maximum number of frequent patterns is proportional
to 2𝑥. This number starts to be measured in the millions for
an item-set where𝑙 = 20 and there can be several item-sets
of this length in any dataset.

1429

Table II: Dataset Statistics

Kosarak Twitter
Records 990,002 22,524,846
Unique Items 41,270 3,380,085
Avg. Transaction Length 8 1
Max. Transaction Length 2,498 30

Table III: Comparison of FP-Tree Depth

Kosarak Twitter
Min 7 1
Mean 627 7.5
Median 610 7
Max 1,461 18

B. Methodology

The aim of our experiments was to measure the improve-
ments in computational speed that R-PFP provides over
PFP. Our implementation of R-PFP was built by modifying
version 0.9 of Apache Mahout’s implementation of PFP.
In our experiment we compared our implementation of R-
PFP against PFP, while varying the minimum support count
threshold parameter (−𝑠) of the Mahout implementation
from 50 to 140 in steps of 10. The Mahout parameters that
were set are -k (Maximum Heap Size): 50, -g (Number of
Groups): 1,000 and -method (Processing Method): mapre-
duce. These parameters always had the same value. Any
parameter whose value is not mentioned here was set to its
default value.

We used the median value of the depth of FP-Trees to
select a depth threshold for our evaluations using R-PFP.
The depth of FP-Trees and conditional FP-Trees will differ
greatly between datasets and depending on the parameters
used. The values in Table III, show the range of values
for the depth of the top-level FP-Trees built using the
datasets at a minimum support threshold of 50. There is
a marked difference between the datasets, however this is
not surprising as the FP-Tree depth is closely related to the
length of the transactions in the database, see Table II. The
combinatorial explosion of frequent patterns can get really
bad for any FP-Tree or conditional FP-Tree with a depth
>= 20. However this value is too low for the Kosarak
dataset, while it is too high for Twitter. Using the median
value of the length of transactions (depth of FP-Trees) in
the database is a satisfactory method for selecting the depth
threshold. It ensures that a representative value is set for the
dataset concerned and ensures that it will not be set too high
or too low.

The cluster on which our experiments were run had a total
of 6 nodes, one master node and 5 compute/data nodes. Each
node in the cluster is a IBM System x3650 M4 server with
Intel(R) Xeon(R) CPU E5-2670 at 2.60GHz, 32 vcores (2
CPU, 8 physical cores per CPU, 2 hyperthreads per core)
and 64GB of RAM. Each node has a total of 7 local disks.
One local disk for OS and software installs and 6 local disks
for data. The operating system on all nodes is RHEL 6.3.
All nodes are connected using a 1GbE network.

VI. RESULTS

The results of our evaluations are presented in Fig. 4. The
results show that using Parent-Child MapReduce to improve
the parallelization of PFP has immense benefits. It is able to
reduce the time for processing data by up to approximately
68% (or 3 times) over PFP with the same parameter values.
We also note that the results confirm that the computational
load is affected more by the characteristics of the data than
by the size of the data. It takes about 20 - 30 times more
time to process the Kosarak dataset than the twitter dataset,
even though the latter contains about 22 times the number
of transactions of the former (see Table II).

In Fig. 4a and Fig. 4b, we see the processing times of
running PFP and R-PFP against the Kosarak and Twitter
datasets respectively. Each plot point on these graphs is
an average over 5 runs. Fig. 4c and Fig. 4d are stacked
bar graphs that show the number of child jobs that were
spawned at each support count value for the Kosarak and
Twitter datasets respectively. The categories on each bar are
the generations at which the task was spawned in respect
to the first parent job. While, Fig. 4e and Fig. 4f are box
plots that show the distribution of processing times for child
jobs that were spawned for the Kosarak and Twitter datasets
respectively. The y-axis on both graphs uses a log-scale.

R-PFP was able to reduce the processing time on the
Kosarak dataset from about 6000𝑠𝑒𝑐𝑠 to about 2000𝑠𝑒𝑐𝑠 at a
support count of 50 (see Fig. 4a). This performance however
decreases as the minimum support count is increased to 140.
We note that this decrease in performance is a result of less
parallelization. The range of depth values for the FP-Trees
change as the support rate is varied. Specifically the size of
the trees reduces as the minimum support count increases.
Since we keep the depth threshold constant fewer FP-Trees
will be selected for deep-parallelization. This fact is attested
to by Fig. 4c. This implies that similar time reductions could
have been achieved by reducing the depth threshold in line
with the support count increases. It also implies that the 68%
reduction achieved is not an upper-bound on performance.
More significant time reduction is possible with lower depth
thresholds.

Except with a minor decrease at support count value
of 50, R-PFP did not reduce the processing time on the
Twitter dataset. However, we note that even with the extra
overheads involved in writing data to disk and managing
the child tasks R-PFP did not increase the processing time
significantly. The FP-Trees in the Twitter dataset are not
very deep when compared to those in the Kosarak dataset
(see Table. III). This influenced our choice for the depth
threshold and led to only a few trees been selected for deep
parallelization (see Fig. 4d). Just as in the case of Kosarak
dataset we could improve on this result by decreasing the
depth threshold. However, we are of the opinion that we
have already set it low enough. PFP can process FP-Trees

1430

at such depths without experiencing exponential increases
in computational time. The low depth threshold chosen may
also be responsible for a significant number of child tasks
being spawned after the first generation for the Twitter
dataset when compared to Kosarak dataset (see Fig. 4d and
Fig. 4c).

The box-plots in Fig. 4e show that a significant number
child jobs have processing times that are outliers in respect
to other child jobs. It would seem that this indicates that we
could still maintain our current performance in reducing the
processing time while spawning fewer child jobs because
these jobs contains significantly more processing load. This
would require devising a better method for choosing which
FP-Trees whose processing will be parallelized. Such a
method would theoretically only parallelize the outliers,
leading to fewer child jobs and similar reduction in pro-
cessing time.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented Parent-Child MapReduce. A
MapReduce technique that allows the dynamic creation
and synchronization of MapReduce jobs in a hierarchical
parent-child fashion. Using PFP we show the capability
of Parent-Child MapReduce for parallelizing the frequent
pattern growth recursive calls that are carried out during
the Reduce phase of the parallel FP-Growth step of PFP.
We note that it would have been impossible to parallelize
this portion of the algorithm using MapReduce without the
Parent-Child MapReduce feature.

Our evaluations show that incorporating Parent-Child
MapReduce into PFP can significantly reduce the processing
time by as much as 68% (or 3 times) on the Kosarak
dataset. The algorithm did not fail with the Twitter dataset
as the runtime had not started to explode exponentially in
our experiments. An exponential increase in runtime would
have been noticed with the Twitter dataset by reducing
the minimum support threshold further, in which case the
runtime reduction would be noticed. This result also shows
that transaction length is a more important factor than
data sparseness in determining what type of datasets might
experience an exponential increase in runtime at low support
thresholds.

Some improvements are needed in respect to deep paral-
lelization of PFP. The number of child tasks spawned needs
to be reduced. One possible way to control the number of
child tasks created is to reduce the number of FP-Trees and
conditional FP-Trees that are processed in parallel. In order
to do this, we will need to be able to predict the load of
the trees more effectively. As we stated previously not all
trees with significant depth have a high computational load.
In our future work we intend to find more effective ways of
predicting the computational load of conditional FP-Trees
and FP-Trees without using the depth threshold parameter.

A significant number of data mining algorithms use a
recursive divide-and-conquer approach. Hitherto, it would
have been difficult to parallelize such algorithms using
regular MapReduce. In the future we plan to apply the
Parent-Child MapReduce feature to parallelize other such
algorithms.

VIII. ACKNOWLEDGMENTS

This work is funded in part by Natual Sciences and
Engineering Research Council of Canada (NSERC), and
the Big Data Research, Analytics, and Information Network
(BRAIN) Alliance established by the Ontario Research
Fund.

REFERENCES

[1] B. Goethals, “Survey on Frequent Pattern Mining,” Tech.
Rep., 2002.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules in large databases,” in Proceedings of the
20th International Conference on Very Large Data Bases, ser.
VLDB ’94. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1994, pp. 487–499. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645920.672836

[3] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New
algorithms for fast discovery of association rules,” Rochester,
NY, USA, Tech. Rep., 1997.

[4] J. Han, J. Pei, and Y. Yin, “Mining frequent
patterns without candidate generation,” in Proceedings
of the 2000 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’00. New York,
NY, USA: ACM, 2000, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/342009.335372

[5] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y.
Chang, “Pfp: Parallel fp-growth for query recommendation,”
in Proceedings of the 2008 ACM Conference on
Recommender Systems, ser. RecSys ’08. New York,
NY, USA: ACM, 2008, pp. 107–114. [Online]. Available:
http://doi.acm.org/10.1145/1454008.1454027

[6] I. Corporation, “IBM Platform Computing,” http://www-
03.ibm.com/systems/platformcomputing/products/symphony/,
accessed: 2016-02-04.

[7] A. S. Foundation, “Welcome to Apache Hadoop,”
http://hadoop.apache.org/, accessed: 2016-01-21.

[8] ——, “Apache Spark: Lightning-fastCluster Computing,”
http://spark.apache.org/, accessed: 2016-01-21.

[9] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng,
“Balanced parallel fp-growth with mapreduce,” in Information
Computing and Telecommunications (YC-ICT), 2010 IEEE
Youth Conference on, Nov 2010, pp. 243–246.

[10] O. Zaiane, M. El-Hajj, and P. Lu, “Fast parallel association
rule mining without candidacy generation,” in Data Mining,
2001. ICDM 2001, Proceedings IEEE International Confer-
ence on, 2001, pp. 665–668.

1431

Processing Time: Kosarak

Minimum Support Count

To
ta

l T
im

e
(S

ec
s)

50 60 70 80 90 100 110 120 130 140

1000

2000

3000

4000

5000

6000

7000 PFP
R.PFP

(a) Processing times for the Kosarak dataset using vary-
ing support threshold counts for PFP and R-PFP, and a
constant depth threshold for R-PFP. Each measurement is
an average over 5 runs.

Processing Time: Twitter

Minimum Support Count

To
ta

l T
im

e
(S

ec
s)

50 60 70 80 90 100 110 120 130 140

100

200

300

400

500 PFP
R.PFP

(b) Processing times for the Twitter dataset using varying
support threshold counts for PFP and R-PFP, and a
constant depth threshold for R-PFP. Each measurement
is an average over 5 runs.

50 60 70 80 90 100 110 120 130 140

No. of Child Jobs & Generations: Kosarak

Minimum Support Count

#C
hi

ld
Jo

bs

0

100

200

300

400

500

600
1st
2nd
>=3rd

(c) Stacked Bar Graph of the number of child jobs
spawned by R-PFP on the Kosarak dataset. The categories
represent the generation in which the task was spawned.

50 60 70 80 90 100 110 120 130 140

No. of Child Jobs & Generations: Twitter

Minimum Support Count

#C
hi

ld
Jo

bs

0

20

40

60

80
1st
2nd
>=3rd

(d) Stacked Bar Graph of the number of child jobs
spawned by R-PFP on the Twitter dataset. The categories
represent the generation in which the task was spawned.

●

●

●●

●
●●●
●●
●

●

●●
●
●
●
●
●●
●

●

●

●●●●●●
●
●
●
●
●
●
●●

●●
●●
●
●

●

●
●
●●●
●●●●●●

●

●
●

●●●
●●●●
●●
●●
●
●●
●
●

●

●

●
●
●
●
●
●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●
●
●●
●●●●
●●
●●●●●●●●●●●
●●●●●●●●

●

●

●●●●
●
●

●

●●

●●●
●
●●●●●

●

●

●●●●
●●
●
●
●
●●●

●●●
●●●●●

●

●

●●

●●●●

●●
●●●●
●

●●●

●
●
●
●
●●●

●

●

●●●●
●●
●
●
●

●●●●●●
●●
●●●●●●

●

●●●

●
●

●●●
●●

●
●

●●●
●●●
●
●●●●●

●

●

●●●
●
●●●

●

●
●●
●
●●●●
●
●
●●
●

●

●

●●

●

●●
●●
●

●

●

●
●●
●●●●
●

●

●●

●
●
●●●●
●

●
●

●
●●
●●
●
●

●●●●
●
●

●

●

●

●●
●
●

●

●●

●●

●
●

●

●
●
●●

●●

●

●

●
●●
●

●

●●

●●
●●

●

●
●●●●●

●
●

●

●

●
●
●●
●

●●

●
●

●●

●

●
●●●●

●
●

●

●

●●●●

●

●●

●
●

●
●

●

●●
●●

●

●

●

●

●

●

●

●●●
●●●
●
●●

●

●●●●●●●●

●

●

●

●

●

●

●
●

●●
●●●
●
●●

●

●●●●●●

●

●

●

●

●

●

●●●
●●●
●
●

●

●●●●●●

●

●

●

●

●

●
●●●●●●

●

●●●●●

●

●
●
●
●●●●●●

●

●●●●●●●●●●●●●●

●

●
●
●
●●
●●●
●●
●
●●●●
●●
●

●●●●●

●

●●●
●●●●●
●●●●●●●●

●

●●
●●●●●●●●●●
●●●●●
●
●●●
●

●

●
●●●●●
●●●●●
●
●●●●●●
●

●

●●
●
●●
●●●
●●●●●●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●
●
●●

●●
●●
●
●●
●●
●
●
●●
●
●●●●
●●
●●●●●
●●●
●●
●●●●
●
●●●●
●●●●●
●●●●●●●●●●

●●

●●
●●
●●●●●
●
●
●
●
●●●
●
●●●●
●

50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

5
10
20

50
100
200

500
1000

Child Job Processing Times: Kosarak

Minimum Support Count

Ti
m

e(
se

cs
):

Lo
g

S
ca

le

(e) Boxplots showing the distribution of processing times
for all the child jobs at different support count values for
R-PFP on the Kosarak dataset. The y-axis (Time) is on a
log-scale.

●
●

●● ●
●●
●

●

50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

1

2

5

10

20

50

100
Child Job Processing Times: Twitter

Minimum Support Count

Ti
m

e(
se

cs
):

Lo
g

S
ca

le

(f) Boxplots showing the distribution of processing times
for all the child jobs at different support count values for
R-PFP on the Twitter dataset. The y-axis (Time) is on a
log-scale.

Figure 4: Evaluation Results: Figures (a), (c) and (e) are for the Kosarak dataset, while Figures (b), (d) and (f) are for the Twitter dataset.

[11] P. Iko and M. Kitsuregawa, “Shared nothing parallel
execution of fp-growth,” DBSJ Letters, vol. 2, no. 1, pp.
43–46, 2003. [Online]. Available: www.scopus.com

[12] A. S. Foundation, “Apache Mahout: Scalable Machine Learn-
ing and Data Mining,” http://mahout.apache.org/, accessed:
2016-01-21.

[13] ——, “Apache Flink: Scalable Batch and Stream Data Pro-
cessing,” https://flink.apache.org/, accessed: 2016-01-21.

[14] F. Bonchi, B. Goethals, F. Bonchi, and B. Goethals, “Fp-
bonsai: the art of growing and pruning small fp-trees,” in In
Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD 2004). Springer-Verlag, 2004, pp. 155–160.

[15] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi,
“Exante: Anticipated data reduction in constrained pattern
mining,” in In Proc. of PKDD03. Springer-Verlag, 2003,
pp. 59–70.

[16] J. H. Reif, “Depth-First Search is Inherently Sequential,”
Information Processing Letters, vol. 20, no. 5, pp. 229–234,
1985.

[17] I. Pramudiono, K. Takahashi, A. KH Tung, and M. Kitsure-
gawa, “Procssing Load Prediction for Parallel FP-Growth,” in
Proc. 16th Institute of Electronics, Information and Communi-
cation Engineers Data Engineering Workshop (DEWS2005),
2005.

[18] B. Goethals, “Frequent Itemset Mining Dataset Repository,”
http://fimi.ua.ac.be/data/, accessed: 2016-01-20.

[19] K. McKelvey and F. Menczer, “Truthy: Enabling the Study
of Online Social Networks,” in Proc. 16th ACM Conference
on Computer Supported Cooperative Work and Social
Computing Companion (CSCW), 2013. [Online]. Available:
http://arxiv.org/abs/1212.4565

[20] L. Weng, “Web-accesible Data Repository for NaN Group,”
http://carl.cs.indiana.edu/data/, accessed: 2016-01-15.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

