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ABSTRACT
Many online news agencies utilize the paywall mechanism to in-

crease reader subscriptions. This method offers a non-subscribed

reader a fixed number of free articles in a period of time (e.g., a

month), and then directs the user to the subscription page for fur-

ther reading. We argue that there is no direct relationship between

the number of paywalls presented to readers and the number of

subscriptions, and that this artificial barrier, if not used well, may

disengage potential subscribers and thus may not well serve its

purpose of increasing revenue. Moreover, the current paywall mech-

anism neither considers the user browsing history nor the potential

articles which the user may visit in the future. Thus, it treats all

readers equally and does not consider the potential of a reader

in becoming a subscriber. In this paper, we propose an adaptive

paywall mechanism to balance the benefit of showing an article

against that of displaying the paywall (i.e., terminating the session).

We first define the notion of cost and utility that are used to define

an objective function for optimal paywall decision making. Then,

we model the problem as a stochastic sequential decision process.

Finally, we propose an efficient policy function for paywall decision

making. The experimental results on a real dataset from a major

newspaper in Canada show that the proposed model outperforms

the traditional paywall mechanism as well as the other baselines.
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Figure 1: The number of subscriptions vs. the number of pay-
walls in TheGlobe andMail dataset for the period 2014-01 to
2014-07. There is a weak correlation (i.e., ρ = 0.59) between
the two numbers.

1 INTRODUCTION
Most online newspapers across the world generate revenue by dis-

playing advertisements or/and using a pay model that restricts the

reader access to articles via a paid subscription. In the former one,

news agencies (e.g., USA Today) operate based on an ad-supported

free content model, in which the articles are accessible for free and

the revenue is derived from displaying advertisements. However,

advertisement revenues may not be sufficient to sustain existing

forms of news production as they do not create long term relation-

ships with customers [2, 9]. Therefore, pay models, also known as

paywall mechanisms, were developed by digital media to increase

revenues through subscription. In such models, news agencies (e.g.,

The New York Times, and The Globe and Mail) offer a certain num-

ber of free articles in a period of time (e.g., a month) and then

redirect visitors to the subscription page (i.e., paywall) to continue

reading articles. The ultimate goal of a paywall mechanism is to

persuade users to subscribe and as a result boost the profit. How-

ever, user persuasion for subscription (i.e., user acquisition) is not

an easy task in news domain since users usually have many choices

in selecting news sources. Moreover, in most cases there is no direct

relationship between the number of paywalls presented to readers

and the number of subscriptions. That is, by increasing the number

of times that paywalls presented to readers, we may not necessarily

raise the number of subscriptions (see Figure 1). Therefore, the tra-

ditional paywall mechanism based on the total number of articles

read in a period may not serve its purpose of increasing revenue. It

may actually turn away many potential subscribers.

Due to the increase of technological obstacles for ad-supported

free content revenue models (e.g., ad blockers) and the number of

online news providers seeking for sustainable relationship with
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Figure 2: Incorporating utility and cost in paywall mecha-
nisms.

customers (78 % of U.S. newspapers with circulations over 50,000

are using a digital subscription model [18]), the need to generate

revenue by developing effective paywall mechanisms is demanding.

This is due to the fact that blocking a user from reading articles

at a wrong time may disengage the user too early or allow a non-

potential subscriber to read too much content for free. Therefore,

developing a smart paywall policy is of paramount importance

to the prosperity and profitability of an online newspaper. The

availability of users’ interaction data and advances in machine

learning techniques raise an interesting question: Can we estimate
how many and what articles a particular user should be allowed to
read before a paywall? It is unrealistic to expect the same answer for

all users. Moreover, the answer should consider business objectives

even if they could be in conflict with one another. For example,

allowing readers to read more articles leads to more display of ads,

increasing the ad-based revenue. However, from the subscription

point of view, this is not desirable as offering too much free content

makes subscription unnecessary from the reader’s point of view.

Finding the optimal paywall time is a sequential decision-making

process (or a sequential decision problem), in which a decision

whether to show a paywall needs to be made at each time point

during a reading session and once the paywall is presented, the

session terminates. To define an objective function for this problem,

we introduce the notion of utility and cost. The utility of an article

measures the effectiveness/usefulness of the article in achieving a

business objective (e.g., user engagement which can increase the

subscription possibility). The cost of an article measures the amount

of resources consumed to prepare it (e.g., the amount of money paid

to the author). Traditional paywall models (called fixed paywall or
metered paywall) block users from reading articles after visiting a

certain number of articles (e.g., two articles) without considering

the above two or any other factors. Figure 2 shows a toy example

demonstrating how the utility and cost of an article can be used to

make smarter decisions. Assume thatuser1 anduser2 both visit two

low-utility articles a1 and a2 (e.g., ones that can be found in many

other news sources). If the fixed paywall policy with the limit of

two articles is used, both of them would be directed to the paywall.

Assume we do not use the fixed paywall but consider what they

would like to read next. Suppose user1 clicks on a8. Since a8 has a
low cost, we can show it to the user and take advantage of other

benefits (e.g., displaying ads when showing a8). However, user1
might not be a good target for subscription as all the articles she

has read have a low utility (e.g., can be found somewhere else),

so once she clicks on the next article (i.e., a4), which has a high

cost, the paywall is presented. On the other hand, user2 can see

the article a3 as its high cost can be justified by its high utility, and

then receives the paywall after visiting a9, where the next article
the user selects has low utility and high cost (i.e., a11). Moreover,

a user (e.g., user3 in Figure 2) who visits high utility articles (i.e.,

a5, a7), which may be articles visited by subscribers before their

subscription, is more likely to become a subscriber. Therefore, we

show the paywall (after a7) since the next article (e.g., a8 ) has

a high cost and low utility. Note that this user is more likely to

become a subscriber and presenting the paywall at the right time

might persuade her to subscribe. This example shows that different

reading behaviors may require different paywall strategies, and

making decisions based on the utility and cost model can serve as

an effective approach to make a smart decision per user visit.

However, finding the optimal paywall time for a user is a chal-

lenging problem. First, while the concepts of utility and cost provide

insights into the paywall decision problem, incorporating them into

the optimal decision making process in a disciplined way is not a

trivial task. Second, when making a decision at a time point (i.e.,

when the user clicks on an article), we only know the articles that

the user has visited and the next article she is trying to read. The

articles beyond the next one are unknown. Thus, when making an

optimal decision at an early point, we need to consider the uncer-

tainty as to what would happen later. Third, a proposed model is

better to be flexible so that any objective can be plugged in as de-

sired. Last but not least, the proposed approach should be efficient

to work in an online setting.

To address these challenges, we formulate the problem in a uni-

fied stochastic decision making framework by considering the util-

ity and cost of articles. We define the main components of the

model, propose an effective approach to solving the problem, and

provide theoretical supports for the proposed approach accordingly.

The main idea is that at each stage the paywall will be presented to

a user if the prospective articles (which are likely to be visited by

the user) are not promising in terms of the utility and cost.

Our main contributions are as follows:

• We define the new problem of adaptive paywall mechanism

in digital news media. While this problem is a major issue

in subscription-based online news agencies, to best of our

knowledge, it has not been studied before.

• We cast the problem into a sequential stochastic optimization

problem in a disciplined way, and propose an effective data-

driven solution accordingly. In particular, we provide the

theoretical analysis and design an effective policy for the

problem. The proposed framework is general in that it can

be applied with any given business objective.

• We apply the proposed framework to a real dataset obtained

from a major Canadian newspaper and show that it out-

performs some baseline approaches in terms of different

business objectives.

The rest of the paper is organized as follows. Section 2 discusses

the related work. The problem and framework components are

defined in Section 3. We describe the proposed model in Section 4.
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Section 5 presents an application of the proposed method and its

empirical evaluation, and finally Section 6 concludes the paper.

2 RELATEDWORK
The founding of journalism has been a major issue for the news

industry over the past decade [10]. While diminishing income due

to decline in the advertisement revenue makes newspapers to start

implementing paywall mechanisms, there are few studies on the

analytical side to make this mechanism more effective. Most studies

in the journalism community focus on the qualitative and quantita-

tive investigation of features (e.g., age) influencing people to pay

for subscription [4, 5, 7, 8].

The sequential decision making over time has been studied in

many disciplines with different names such as: reinforcement learn-
ing in machine learning, and approximate dynamic programming
in operation research. In reinforcement learning, Markov Decision

Process (MDP) is widely used to model the dynamics of an environ-

ment under different actions (i.e., decisions).When the environment

model is available, dynamic programming methods such as value it-
eration or policy iteration can be used to find the optimal policy [14].

For example, Cai et. al [3] considered the biding problem where

the main goal of the advertiser is to bid for every ad impression in

an auction. Given a bid request, in each timestamp the advertiser

should make a decision based on the ad request contexts and its cur-

rent state (e.g., amount of budget). They designed a method based

on Markov Decision Process (MDP) to learn the optimal decision

policy. However, the environment model is often not available. In

such cases, Temporal Difference learning [13] techniques such as Q-

learning [17] or SARSA [14] can be utilized to learn the policy from

the environment. However, model free approaches need a lot of

interactions (i.e., exploration) with the environment before the con-

vergence and suffer from transition dynamics of an enormous state

space and the sparsity of reward signals in the highly stochastic

environment. Shani et. al [12] considered the recommendation (in

the bookstore domain) as a decision problem compared to the tradi-

tional prediction perspective. They designed a framework based on

MDP and utilized the value iteration to make an optimal decision

(i.e., whether to recommend an item to a user or not). However, due

to the limitation on exploration they finally used some heuristic

techniques to learn the policy.

Approximate dynamic programming studies the sequential de-

cision problem in a more general setting and with broader policy

classes such as myopic policy (i.e., decision is based on the current

state) or lookahead policies (i.e., decision is based on the predicted

decision in the future) [11]. One related problem in this area is

American price optioning [1], which has been studied extensively.

American option allows option holders to exercise the option before

the maturity date. This problem has been studied in the the stock

dynamics in the risk neutral world (i.e., a stochastic differential

equation). Despite some similarities between this problem and the

paywall problem, in the paywall problem we do not have such a

dynamic instead we need to build the solution in a data-driven

fashion.

3 PROBLEM DEFINITION
We describe the main components of the proposed model and define

the problem accordingly. Figure 3 shows the proposed framework

Figure 3: The proposed adaptive paywall framework.

for adaptive paywall. The main components of the framework are:

utility, cost and the navigational graph as well as the paywall model.
The paywall model receives an article request, makes the decision,

and changes the current state of the user session accordingly.

Definition 3.1. (Utility of article): The utility of article ai , de-
noted as ϕ (ai ), measures the effectiveness/usefulness of the article

in achieving a business objective (e.g., user engagement which can

increase the subscription possibility).

The utility of an article can be determined by domain experts

or learned from historical navigational patterns in a data-driven

fashion. For example, if a high percentage of the non-subscribed

users reading an article subscribed to the newspaper later, the article

has a high utility.

Definition 3.2. (Cost of article): The cost of article ai , denoted
as ψ (ai ), specifies the amount of resources (e.g., time, monetary

cost) allocated to produce it.

The cost can be specified in different ways. For example, the

amount of money which the newspaper has to pay to the author,

number of pages, etc.

Definition 3.3. (Navigational graph): Navigational graph G =
(V, E,W ) is a directed graph, where V is a set of vertices rep-

resenting articles, E is a set of directed edges where an edge ei j
from article ai to aj indicates aj has been viewed right after ai
by at least one user, and weight wi j ∈ W on ei j represents the
number/percentage of the users that read aj right after reading ai .

The navigational graph encodes historical user navigation be-

haviours and is used in our model to estimate what article(s) a user

is likely to visit next. Although the graph can be built based on

all reading sessions that have occurred, we build the navigational

graph based on the sessions made by subscribed users since they

do not receive paywalls, and thus less bias is introduced.

A session is a group of activities (e.g., requesting and reading an

article) that a user spends during one visit to the online newspaper.

Traditional paywall mechanisms may consider the information in

one or more sessions of an unsubscribed user in making a paywall

decision (e.g., presenting the paywall if the total number of articles

read by a user exceed a limit for a month). Since an unsubscribed

user does not have an ID, user identification for each session (e.g.,

based on IP addresses or cookies) is necessary in order to consider

multiple sessions of a user. However, since different users may use
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the same IP address and cookies can be blocked, tracking users

across multiple sessions may be problematic. Thus, we focus on

session-based paywall, although the proposed model can be applied

to multiple sessions of a user.

Definition 3.4. (Session-based Paywall): In this model, the pay-

wall decision (i.e., whether to present the paywall at a time point

in a session) is made based on the information that the user pro-

vides in the session without considering historical records of this

particular user beyond the session. Once the paywall is presented,

the session terminates.

An example of session-based paywall is the traditional fixed/metered

paywall that allows a user to read a fixed maximum number of arti-

cles (e.g., 2 articles) in a session. In this work, we propose an adap-

tive session-based paywall model in which the number of articles

that a user can read depends on what the user has read/requested

in the session and estimations of what the user might read in the

future. Our adaptive paywall problem is defined as followed.

Problem Statement (Adaptive paywall): Given a navigational
graph of subscribed users and a session that an unsubscribed user

started, the goal is to determine at what time point during the

session the paywall is presented so that the following objective

function is maximized: ∑k
i=0 ϕ (ai )∑k
i=0ψ (ai )

, (1)

where ϕ (ai ) andψ (ai ) are the utility and cost of the ith article that

the user reads and k + 1 is the total number of articles the user

reads in the session before the paywall is presented. Although we

define the objective function using the utility-to-cost ratio, it can

be defined in different ways based on business objectives.

4 PROPOSED METHOD
The adaptive paywall problem is a sequential decision problem,

that is, at each time step when the user requests an article in a

session, a decision needs to be made regarding whether to allow

the user to read the requested article or to present the paywall.

Formulating and solving such a problem in a disciplined way is

not a trivial task. The major challenge is the huge search space

due to the high dimensionality of the problem. At each time step

when the user requests a new article, in order to find an optimal

solution, we need to look at not only what the user has read and

requested, but also what the user would request or read in the

future if the paywall is not presented at the current time, in order

to compare with the values of the objective function at future time

steps. However, what the user will request or read is uncertain at the

current time. Considering all possibilities at each time step to find

exact solutions is prohibitable due to the large number of articles

and combinations of them over multiple time steps. Thus, we resort

to approximate solutions. Below we formulate the adaptive paywall

problem using the approximate dynamic programming paradigm
[11] and design a data-driven lookahead policy that makes decisions

based on predicted behaviour of the user in the future to solve the

problem.

4.1 Proposed Paywall Model
One of the most important tasks in approximate dynamic pro-

gramming (and in particular, in sequential decision making) is to

design a model of the problem, that is, to design the components of

the problem. However, despite the importance of this step, there

is no standard approach to modeling the problem [11]. A good

model can facilitate the design of policy for solving the problem

and may also allow the change of the assumptions (e.g., how to

combine utility and cost) based on business objectives and provid-

ing alternative solutions accordingly. The major components of a

sequential stochastic decision problem are: state variable, decision

variable/function, transition function, and contribution function.

Given the main components of the model the objective function

can be defined accordingly.

State variable St : The state variable at time step t of a session is

defined as St = (ut , ct ,at ), where at is the article requested at time

t by the user, and ut and ct are the sum of utilities and costs of

visited and requested articles (including at ) by time t in the session,

respectively.

The state St encapsulates the accumulated information in a ses-
sion by time t , which is used to make the decision at time t . By
defining the state in this way, the next state will not depend on the

states before this state, which makes the decision process satisfy

the Markov property. Meanwhile, the state representation should

contain minimally necessary information, otherwise it may make

the problem computationally intractable. For example, listing all the

articles the user has visited in the session so far in a state results in

a much richer representation, but it causes the state space to grow

exponentially and makes the problem computationally intractable.

Decision function Xπ (St ): The decision function determines the

decision/action given state St using a policy π , where π is a function

that maps St into a decision/action. In our problem, there are two

possible decisions: presenting the paywall or not presenting it. The

decision function is defined as follows:

xt ≜ Xπ (St ) ≜



1 if π (St ) is “presenting paywall”

0 otherwise

(2)

where xt is called a decision variable indicating the decision taken

at time step t . In our framework, policy π is to be designed using a

data-driven method.

Transition function SM : This function depicts the way that the

proposed model evolves from one state to another one as a result

of decision and exogenous information (i.e., a requested article

at the next time step). The transition function SM determining

the transition from state St to St+1 given decision xt is defined as

follows:

St+1 = SM (St ,xt , ât+1) (3)

where SM maps the components of St to St+1 as follows:

if xt = 0

at+1 = ât+1 (4)

ut+1 = ut + ϕ (ât+1) (5)

ct+1 = ct +ψ (ât+1) (6)

else

at+1 = “paywall”

where ât+1 is the article to be requested at time t + 1. Note that

at time t , ât+1 is uncertain, and thus it is information that arrives
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exogenously, representing a source of randomness. As a result,

its utility ϕ (ât+1) and cost ψ (ât+1) are random. Also note that if

xt = 1 (i.e., the decision at time t is to present the paywall), we

assign paywall to at+1 to indicate the end state of the decision

process. We denote the end/paywall state as Sp .

Contribution function:The immediate contribution/reward func-

tion of decision xt in state St measures how much decision xt at
state St contributes towards the final objective of the decision pro-

cess, and is defined as follows:

C (St ,xt ) ≜



(ut − ϕ (at ))/(ct −ψ (at ) + 0.05) if xt = 1

0 if xt = 0 or St = Sp
(7)

Note that when xt = 1 (i.e., when the decision is to present the

paywall), at is not presented to the user, thus at ’s utility and cost

are not included in the accumulated utility and cost when the ratio

is computed in the contribution function. 0.05 in the denominator

is to avoid zero division. Also, we set the contribution to zero when

xt = 0, so that the contribution is only collected at the paywall time

because the contribution at the paywall time considers the utilities

and costs of all the articles that user reads in the whole session.

Paywall decision problem:We define the paywall decision prob-

lem as finding a policy π that maximizes the following objective

function:

E{
∞∑
t=0

γ t C (St ,X
π (St ))} (8)

where γ ≤ 1 is a discount factor (emphasizing that contributions in

the future is not important as the current time contribution).

4.2 Policy Design
Solving the optimization problem defined in (8) directly is compu-

tationally intractable [11]. In this section, we convert Equation (8)

into state value functions and analyze different possibilities for the

policy design, and in the next section discuss the proposed method.

Let V π (St ) (called the value of state St with respect to policy π )
be the expected total contribution of a session starting from state

St and following policy π . That is,

V π (St ) = E{
∞∑
t ′=t

γ t
′−t C (St ′ ,X

π (St ′ ))}

= C (St ,X
π (St )) + γE[V

π (St+1) |St ]. (9)

Clearly, Equation (9) is the same as the objective function (8) when

using St to denote the initial state. Thus, maximizing Equation (8)

is equivalent to maximizing (9).

Theorem 4.1. The optimal value of Equation (9) is given by:

V π ∗ (St ) = max

xt ∈{0,1}
{xtC (St ,xt ) + (1 − xt ) γE[V π ∗ (St+1) |St ]} (10)

where π∗ is the optimal policy and xt is the optimal decision at state
St based on π∗ (i.e., xt = Xπ ∗ (St )).

Proof. According to Equation (9) and Bellman’s Principle of

Optimality [14] that states an optimal policy has the property that

whatever the initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard to the state

resulting from the first decision, we have:

V π ∗ (St ) = max

xt ∈{0,1}
{C (St ,xt ) + γE[V π ∗ (St+1) |St ]} (11)

where xt = Xπ ∗ (St ). We need to show Equation (11) is equivalent

to (10). There are two possible decisions in state St :
a) If xt = 1, the paywall is presented and thus St+1 = Sp (the

end state). Since no contribution can be obtained at the end state

and the process ends, E[V π ∗ (St+1) |St ] = 0. Thus, according to (11),

V π ∗ (St ) = C (St ,xt ) = xtC (St ,xt ).
b) If xt = 0, C (St ,xt ) = 0 according to (7). Thus, according to

(11), V π ∗ (St ) = γE[V (St+1) |St ] = (1 − xt )γE[V (St+1) |St ].
The final optimal value based on (11) is the maximum value

between case (a) and (b) and obviously can be written by Equation

(10). □

Equation (10) provides the insight on how to make an optimal

decision for the paywall decision problem. At each state we can

make the decision by comparing the optimum value of the state with

the expected optimum value of the next states. Note that the value

of a next state is computed recursively. One common approach to

solve the Equation (10) is value (or similarly policy) iteration [14],

which initializes the optimum value of each state randomly or

using a guess and updates the value iteratively using the immediate

contribution and the expected value of the future states according

to the value function until convergence. However, this type of

methods only applies to problems whose states are discrete and

enumerable. The state space in our model is not discrete, so the

iteration over the whole space is not possible.

An approach that avoids the iteration over the whole state space

is to use the value function approximation [11, 16], inwhich the value
function V (S ) is estimated explicitly by representing states with

features and learning a model, e.g., linear combinations of features

and neural networks, using, e.g., the gradient descentmethod.While

feature extraction from our states can be done, its process is not

trivial if we would like use features from the articles involved in

a state. In addition, to obtain the target value (e.g., V(S)) for the

gradient descent training, an immediate reward is needed as part of

the target value. However, in our problem, the reward function is

very sparse. Moreover, our environment changes over time where

new articles arrive frequently which may cause the state transition

function and thus the value function change over time. Re-learning

or updating the learned value function online may not be feasible.

Alternatively, it is possible to design a policy function directly

by solving an approximation of the problem over a horizon. This

class of techniques is called lookahead policy in approximate dy-

namic programming, and is distinguished from the value function

approximation in that it uses random samples to simulate the future

and make decisions directly based on the simulated future online

without explicitly learning a value function.

4.3 Lookahead Paywall Policy
In this section, we propose a solution that uses the lookahead tech-
nique to estimate the decision function directly. In our solution,

we replace the expectation in Equation (10) with an estimation. In

particular, we make the following approximations when formulat-

ing the model: 1) we uses a short horizon H to limit the number of
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future time steps to look into, and 2) instead of using the full set of

possible outcomes, we use Monte Carlo sampling to select a subset

of outcomes starting at time t . Moreover, we use the two-stage

approximation for decision making. That is, we assume that we

are in a known state St at time t ; the second stage starts at time

t + 1, where we have different sample paths (i.e., realizations) of

the future states from time t + 1 to t + H . Let ω be a sample path

of possible article requests from time t + 1 to t + H (which are sto-

chastic), and S̃t ′ (ω) and x̃t ′ (ω) be the state and decision variables

at time t ′ for the sample path ω accordingly (when we are in time

t ). Decisions are based on all stochastic variables over the horizon

t to t + H as follows:

Xπ ∗ (St ) = arg max

xt , x̃t ′ (ω )∈{0,1},
t+1≤t ′≤t+H,∀ω ∈Ω

{xtC (St ,xt ) (12)

+ (1 − xt )
∑
ω ∈Ω

p (ω)
t+H∑
t ′=t+1

γ t
′−t C (S̃t ′ (ω), x̃t ′ (ω))}

where, Ω is the set of sample paths. In fact, at time t , we solve the
problem optimally over horizon t to t +H (using sampling) and find

xt , x̃t+1 (ω) to x̃t+H (ω). However, we are not interested in values

of x̃t+1 (ω) to x̃t+H (ω). We are only interested in xt , which is a

decision at time t . After decision xt is made, we advance through

time and the process is repeated. Note that in Equation (12), xt is
common among all realizations. This procedure results in a simple

and efficient method which can be applied to each article request

in a session online.

Algorithm 1 shows the designed approach for the paywall prob-

lem based on Equation (12). This algorithm receives the current

state St and navigational graph G and returns either 1 (i.e., show

the paywall after this state) or 0 (continue without showing the

paywall). Line 6-13 in the algorithm create a sample path (i.e., ω)
based on the potential sessions encoded in G. The only modifica-

tion is that we do not proceed with sampling if the entropy of the

current vertex is greater than 0.5. The entropy is calculated based

on the probability of adjacent/next articles (determined based on

weights of edges) in G as follows:

entropy (ai ) = −
∑

aj ∈Ne (ai ,G)

wi j∑
k wik

logb
wi j∑
k wik

(13)

where wi j is the weight of edge between node ai and aj in the

navigational graph, and Ne (ai ,G) is the set of neighbor vertices
of ai in G. Note that we utilize the relative entropy (i.e., the base

of log is b, where b is the number of adjacent vertices), so it is

always between 0 and 1. The reason for using entropy is that if

the article entropy is high, jumping to the next article is likely to

introduce some noise (i.e., irrelevant articles). In particular, line 8

samples a next potential article ât ′ from the set of neighbor vertices

in G (i.e.,Ne (at ,G)) based on the distribution Pr (G,Ne (at ,G)). In
this distribution, for each vertex the probability of each adjacent

vertex aj is calculated by dividing the weight of the outgoing edge

to aj by the sum of all weights of outgoing edges of the vertex in

navigational graph G. Line 16-20 determines the best paywall time

for different sample paths of articles by going over the states (line

17) in the path and finding the best contribution (line 18 and 19).

Note that we need to calculate the second part of Equation (12) if

we assume that xt is 0, and in case that xt equals 1, the first term

Algorithm 1: Lookahead Paywall Policy Algorithm

Input: St , G = (V, E,W )
Output: xt

1 P ← 0

2 for i = 1 to |Ω | do
3 at ← Requested article of St
4 ω ← []

5 t ′ ← t + 1, Stop ← False
6 while t ′ ≤ t + H and Stop = False do
7 if entropy (at ) ≤ 0.5 then
8 ât ′ ∼ Pr (Ne (at , G)) ▷ Ne is the set of

adjacent vertices for at
9 ω ← [ω , ât ′]

10 at ← ât ′

11 else
12 Stop ← T rue

13 t ′ ← t ′ + 1

14 Pi ← 0

15 S̃t ← St t ′ ← t + 1
16 while t ′ ≤ t + |ω | do
17 S̃t ′ ← SM (S̃t ′−1, 0 , ωt ′ ) ▷ ωt ′ is the article at

time t ′ in ω
18 if Pi < γ t

′−t C (S̃t ′, 1) then
19 Pi ← γ t

′−t C (S̃t ′, 1)

20 t ′ ← t ′ + 1

21 P ← P + Pi

22 if C (St , 1) > P/ |Ω | then
23 return 1

24 else
25 return 0

in the equation (12) results in the whole contribution. Given that

our sampling is unbiased, we have p (ω) = 1/|Ω |. Finally, we can
determine the best value for xt by comparing the contributions of

two cases (xt = 0 or 1) accordingly (line 22).

Algorithm 2: Adaptive Paywall Algorithm
Input: User Requests, Navigation Graph G

Output: Paywall decision
1 forall Requested article â do
2 if t = 0 then
3 Initialize the state S0
4 Show â

5 else
6 St = SM (St−1, xt−1, â)
7 xt ← LookaheadPaywallPolicy(St , G)
8 if xt = 1 then
9 Show paywall and terminate the session

10 else
11 Show â

12 t ← t + 1
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Algorithm 2 illustrates the overall procedure for the adaptive

paywall approach. It receives a user request and makes a decision

accordingly. Line 3 initializes the session by setting u0, c0, and
a0 of the first state (i.e., S0) to ϕ (a0), ψ (a0) and requested article

â accordingly. The algorithm always shows the first article (i.e.,

x0 = 0). If the requested article â is not the first one, we first change

the state to the next state (line 6), and then based on the result of

the policy (Algorithm 1) we either show the article, or go to the

paywall and terminate the session.

The above algorithms makes decisions online by simulating fu-

ture states based on the navigation graph. New articles and changes

in user navigation patterns can be incorporated easily by updating

the graph. As long as the graph is updated, the algorithms can

capture the new changes in the environment.

5 EMPIRICAL STUDY
We applied and evaluated the proposed method on a real dataset

from The Globe and Mail
1
, a major newspaper in Canada.

5.1 Dataset
The Globe and Mail dataset is collected based on the omniture2 data
collection platform. Whenever a user reads an article, watches a

video or generally interacts with the news portal, a record called

hit is generated and stored. Typically, a hit contains information

such as user environmental variables (i.e., browser type, IP address),
user id (for a subscribed user), session id3, visited article id, click
timestamp as well as special events (e.g., subscription, sign in, etc).

The original dataset contains about 2 billion hits. We aggregate

and roll up the dataset from page view hits to session level (i.e.,

visit). Moreover, we calculate dwell time (i.e., the time that a user

spends on an article) using the difference between two consecutive

hits’ (e.g., articles) timestamps The last article in the session is

ignored since we cannot calculate its dwell time. We use the data

collectedwithin 2014-01 to 2014-07 for the evaluation purpose. After

preprocessing (i.e., aggregation), the dataset contains 4,913,423

sessions from subscribed users. We use sessions with minimum

10 articles as the test and the rest as the training set (e.g., to build

the navigational graph). The test data set provide real sequences

of article requests for use to evaluate the proposed method. A

minimum of length 10 gives usmore possible time points for making

paywall decisions in a session. The numbers of sessions in the

training and test sets are 4,806,204 and 107,219, respectively.

5.2 Utility and Cost Models
While the utility and cost of an article can be defined differently

in our model, we use two intuitive utility and cost models in our

experiments, namely, Engagement to Cost (E/C) and Acquisition to
Cost (A/C). For both models the cost (i.e.,ψ ) is defined as the article
length (in terms of the number of 1KB pages) as the lengthy articles

often need more efforts and resources to produce. The utilities for

these models are defined as follows:

1
www.theglobeandmail.com

2
https://my.omniture.com

3
In Omniture data collection platform, no activity in 30 minutes is considered as the

end of session.

• The utility of article a in (E/C) model is defined as:

ϕ (a) =
Total dwell time by all users on a

Total number o f visits o f a
(14)

where the unit of time is second.

• The utility of article a in (A/C) model is defined as:

ϕ (a) =
Total number o f visits o f a be f ore subscription

Number o f visits o f a
(15)

where the numerator is the number of subscribers who vis-

ited the article before the subscription (i.e., in the subscrip-

tion session).

Note that the second measure has very small values as the number

of subscribers is much smaller than non-subscribed users.

5.3 Baselines and Performance Measures
We compare the proposed Lookahead Paywall Policy (denoted as

LAP) model with the following baselines:

• Fixed Policy (FP): This is a commonly-used paywall mech-

anism which allows a user to visit a maximum number, T, of

articles during a session.

• Average Threshold (AT): This is a type of myopic pol-

icy [11] which defines the analytical decision function only

based on the current state using a threshold. The decision

function in this method is defined as follows:

xt ≜ Xπ (St |τ ) ≜



1 If (ut /ct ≤ τ )

0 Otherwise

(16)

where τ is set as the average ratio of the utility to cost,

calculated based on the sessions in the training set.

• Policy Function Approximation (PFA): This policy is

based on Equation (16), but the parameter τ is optimized us-

ing sessions in the training set. Given (16), the policy search

in the base optimization problem (8) is changed to a pa-

rameter search. Therefore, we can rewrite the optimization

function in (8) as:

max

τ
J (τ ) = max

τ
E{
∞∑
t=0

γ t C (St ,X
π (St |τ ))} (17)

Finding the best value of τ is a stochastic search problem.

However, we cannot compute J (τ ) in a compact form and

Xπ (St |τ ) is not differentiable. Therefore, we use finite dif-
ference gradient [6, 15] which is a common approach for

solving Equation (17).

In our experiments, we vary the value for T in the FP method. For

our proposed LAP method. We set γ to 1 (which means that the

future articles visits have the same value as the current one) and

the horizon size H in Algorithm 1 to 4 unless indicated otherwise

and sample size to 10 for all experiments.

We use the following performance measureswhen comparing the

methods. (1) Policy performance, which is defined as the average ra-

tio of aggregated utility of all articles in a session to the aggregated

cost of all articles in the session over all the tested sessions. The

utility of an article is defined using either the E/C or A/C model

(according to Equation (14) or (15)). Thus, we have two policy per-

formance measures: E/C based or A/C based. (2) Policy performance
at different percentages of articles delivered to users, which measures
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(a) E/C model (b) A/C model

Figure 4: Average policy performance of different methods.

the average utility-to-cost ratio of the sessions when a percentage

of articles is presented to users. Obviously, the higher the ratio,

the better the performance. (3) The percentage of active sessions at
each time point, which is the percentage of sessions that have not

received the paywall at each time point. A method A with more

active sessions at time t than method B is better at t if it has at least
the same or better policy performance than B at t . This is because
as long as the trade-off between cost and utility is fine, keeping the

user active without presenting the paywall can further engage the

user and also deliver advertisements.

5.4 Policy Performance Analysis
Figure 4 shows the overall average policy performance of the pro-

posed model compared to the baselines for the engagement (i.e.,

E/C) and acquisition (i.e., A/C) utility models. For the FP method,

the result is the average over T values ranging from 1 to 10. The

Lookahead Policy model (LAP) shows 28.4 % and 38.3 % perfor-

mance improvements over the traditional Fixed Policy (FP) for the

E/C and A/C model respectively. It also outperforms the Average

Threshold (AP) and Policy Function Approximation (PFA) on both

E/C and A/C models.

In Figure 5, we compare the policies at different T values, where

all policies are allowed to show maximum T articles. Figure 5a

illustrates the performance of the polices for the E/C model, which

shows that the commonly-used FP policy has the lowest perfor-

mance for all T values. It also shows that the performances of PFA

and AT are better than the other methods at the beginning when T
is small (i.e., less than 3). This is because they greedily terminate

sessions if the articles requested so far do not look promising based

on the threshold τ without looking at the future. On the other

hand, if the LAP method is forced to stop early, it does not have

the opportunity to make a better decision later on even if it finds

one by looking ahead. As T increases, LAP performs better as it

can present the paywall at a later time if it thinks it is better than

current ones. Another observation is while the performances of

all policies for the E/C model decline as we increase T (due to fact

that users may visit more engaging articles at the start of sessions),

the LAP policy outperforms the other policies by keeping alive the

sessions with the promising future. Finally, between PFA and AT,

PFA is marginally better than the AT method. Similar observations

are found in Figure 5b, which illustrates the performances of the

(a) E/C model (b) A/C model

Figure 5: Policy performance for different models.

(a) E/C model (b) A/C model

Figure 6: Policy performance vs. article delivery percentage.

policies for the A/C model at differentT values. The only difference

is that as T increases, LAP’s performance does not decline, which

means that the LAP policy successfully navigates users to the arti-

cles that are useful for user acquisition (i.e., those which have been

visited by the converted users and have good utility-to-cost ratios).

5.5 Performance vs. Delivery Percentage
In this section, we study the performance of each policy at different

percentages of delivered articles (similar to precision at each recall

level in information retrieval). To do this, for each policy and each

test session s and at each time point t (from 1 to 10), we compute the

percentage of delivered articles by time t as the number of articles

delivered by the policy by time t divided by the total number of

articles in session s , and also compute the ratio of the aggregated

utility to the aggregated cost of all the delivered articles in the

session by time t . In this way, for each policy and each session we

obtain 10 ⟨delivered article percentage, policy performance⟩ pairs,

one for each time point. We finally take an average of each pair

over all the test sessions for the policy. Thus, each policy has 10

averaged pairs, one for each time point. For the FP method, we vary

T from 1 to 10 to collect the data for each time point.

Figure 6a shows the policy performance against the percentage

of delivered articles for the E/C model. As can be observed, at the

small article percentage levels (less than 15%), PFA and AT are

better than LAP and FP. However, as we increase the percentage of

articles, both LAP and FP outperform PFA and AT, with LAP being
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(a) Average active session (b) E/C model (c) A/C model

Figure 7: Active session for different utility to cost models.

Figure 8: performance
for different H .

Figure 9: Average Runtime per request.

significantly better than all other polices consistently. In particular,

LAP performs 31.0 % better than FP when 70 % of articles are shown

to users. Similar results are found in Figure 6b, which shows the

policy performance against the percentage of delivered articles for

the A/C model. For example, the LAP performance is 48.0 % better

than that of FP when 63 % of articles are shown to the users.

5.6 The Effect of Policies on Users’ Sessions
In this section, we investigate the effect of different policies on

the number of active sessions (i.e., the percentage of sessions/users

which have not received paywall before time point t ). Intuitively, an
online news agency prefers to have a high number of active readers

all the time as long as the articles the reader reads have good

utilities and their total cost is reasonable (i.e., the ratio of utility

to cost is acceptable). Keeping a user active without presenting

the paywall can further engage the user and allow more display

of advertisements. Figure 7a illustrates the average percentage of

active sessions (averaged over different time points in a session)

for both E/C and A/C models. As can be seen, LAP has more active

sessions on average compared to other policies. For example, the

average number of active sessions of LAP is 42.5 % and 66.0 % more

than PFA and AT methods respectively for the E/C model. Note that

we did not show the FP method in this study because all sessions are

active till timeT in FP (which is assumed to be 10). Figure 7b and 7c

illustrate the percentage of active sessions at different t values.
PFA and AT terminate many sessions at the beginning by showing

the paywall because close to half of the articles do not meet their

threshold which is the average or close to average utility-to-cost

ratio learned from the training data, while in LAP there are more

active sessions at all the time points and the percentage of active

sessions decreases more smoothly. Considering that LAP has better

utility-to-cost ratios than other methods at almost all the time

points (as shown in Figure 5), LAP is better as it has more active

users without sacrificing the utility-to-cost ratio.

5.7 Sensitivity and Runtime Analysis
We analyze the performance sensitivity of LAP policy with different

horizon sizes (i.e., H ). We change the horizon size H and calculate

the policy performance accordingly. Figure 8 shows the effect of

horizon sizeH on the LAP performance for the E/C and A/Cmodels.

As can be observed, by incrementing H , the performance increases

slightly for both E/C and A/C models, becomes stable in range of

2 to 4, and then starts to decline. This suggests that any value in

range 2 to 4 would be a good choice for this parameter. Figure 9

shows the average run time per request for the LAP method. The

experiments run on 2.2 GHz Intel Core i7 machine with macOS

operating system. As can be seen, the response time per request is

fast (a few milliseconds) and increases almost linearly with H .

6 CONCLUSION AND FUTUREWORK
We proposed an adaptive paywall mechanism for digital news me-

dia. The traditional paywall model allows a user to see a fixed

number of articles and then directs them to the subscription page.

We argued that this approach does not lead to more subscriptions

and sacrifices other business objectives (e.g., increasing the user

dwell time, the number of visits, etc.). We proposed a solution by

formulating the paywall problem as a sequential decision problem

that optimizes the ratio of the aggregated utility of the articles pre-

sented to the user to their aggregated cost. We defined our problem

and its components in an approximate dynamic programming par-

adigm, analyzed possible ways to solve it, and proposed a solution

that uses a data-driven lookahead policy. We applied the proposed

method to a real dataset from a national newspaper in Canada and

showed the benefits and superiority of the method over the exist-

ing method and other baselines. To the best of our knowledge, the

adaptive paywall problem has not been studied previously.

There are interesting directions for future work. The current

evaluation was done in an off-line setting to provide a proof of

concept. Before the system can be deployed, an online evaluation in

a real-world environment will be conducted. Another challenge is
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how to define the utility of a new article. In our experiment, we used

the dwell time or the number of visits to the article in the browsing

history. For new articles, such information does not exist. We are

working on how to predict the utility of an article based on its con-

tent and other information. We will also investigate how to model

the dynamics of utility and cost over time and incorporate it into the

proposed model. Finally, we hope what we have presented in this

paper can inspire others searching for solutions to similar problems.
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