Mach Learn (2017) 106:799-836 @ CrossMark
DOI 10.1007/510994-016-5617-1

Memory-adaptive high utility sequential pattern mining
over data streams

Morteza Zihayat! - Yan Chen! - Aijun An!

Received: 29 April 2016 / Accepted: 18 November 2016 / Published online: 2 February 2017
© The Author(s) 2017

Abstract High utility sequential pattern (HUSP) mining has emerged as an important topic
in data mining. A number of studies have been conducted on mining HUSPs, but they are
mainly intended for non-streaming data and thus do not take data stream characteristics
into consideration. Streaming data are fast changing, continuously generated unbounded in
quantity. Such data can easily exhaust computer resources (e.g., memory) unless a proper
resource-aware mining is performed. In this study, we explore the fundamental problem of
how limited memory can be best utilized to produce high quality HUSPs over a data stream.
We design an approximation algorithm, called MAHUSP, that employs memory adaptive
mechanisms to use a bounded portion of memory, in order to efficiently discover HUSPs
over data streams. An efficient tree structure, called MAS-Tree, is proposed to store potential
HUSPs over a data stream. MAHUSP guarantees that all HUSPs are discovered in certain
circumstances. Our experimental study shows that our algorithm can not only discover HUSPs
over data streams efficiently, but also adapt to memory allocation with limited sacrifices in the
quality of discovered HUSPs. Furthermore, in order to show the effectiveness and efficiency
of MAHUSP in real-life applications, we apply our proposed algorithm to a web clickstream
dataset obtained from a Canadian news portal to showcase users’ reading behavior, and to
a real biosequence database to identify disease-related gene regulation sequential patterns.
The results show that MAHUSP effectively discovers useful and meaningful patterns in both
cases.

Editors: Nathalie Japkowicz and Stan Matwin.

B Aijun An
aan@cse.yorku.ca

Morteza Zihayat
zihayatm @cse.yorku.ca

Yan Chen
ychen@cse.yorku.ca

Department of Computer Science and Engineering, York University, 4700 Keele Street, Toronto,
ON M3J 1P3, Canada

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5617-1&domain=pdf
http://orcid.org/0000-0003-1765-5751

800 Mach Learn (2017) 106:799-836

Keywords High utility sequential pattern mining - Data streams - Approximation algorithms

1 Introduction

Sequential pattern mining is an important task in data mining and has been extensively
studied by many researchers (Mooney and Roddick 2013). Given a dataset of sequences,
each containing a list of itemsets, sequential pattern mining is to discover sequences of
itemsets that frequently appear in the dataset. For example, in market basket analysis, each
sequence in the dataset represents a list of transactions made by a customer over time and each
transaction contains a set of items purchased by the customer. Mining sequential patterns
from this dataset finds the sequences of itemsets that are frequently purchased by customers
in the time order. Despite its usefulness, sequential pattern mining has the limitation that
it neither considers the frequency of an item within an itemset nor the importance of an
item (e.g., the profit of an item). Thus, some infrequent sequences with high profits may
be missed. For example, selling a TV is much more profitable than selling a bottle of milk,
but a sequence containing a TV is much more infrequent than the one with a bottle of milk.
These profitable patterns address several important questions in business decisions such as
how to maximize revenue or minimize marketing or inventory costs. Obviously, identifying
sequences with high profits is important for businesses. Recently, high utility sequential
pattern mining has been studied to address this limitation (Ahmed et al. 2011; Yin et al.
2012; Zihayat et al. 2015). In high utility sequential pattern mining, each item has a global
weight (representing e.g., unit price/profit) and a local weight in a transaction (representing
e.g., purchase quantity). A sequence is a high utility sequential pattern (HUSP) if and only if
its utility (calculated based on local and global weights of the items it contains) in a dataset is
no less than a minimum utility threshold. HUSP mining is very desirable to many applications
such as market analysis, web mining, bioinformatics and mobile computing.

Although some preliminary works have been conducted on this topic, existing studies
(Ahmed et al. 2011; Wang et al. 2014; Yin et al. 2013; Shie et al. 2013) mainly focus on
mining high utility sequential patterns in static databases and do not consider the real-world
applications that involve data streams. In many applications, such as web clickstream mining,
network traffic analysis, intrusion detection and online analysis of user behavior, streaming
data are continually generated in a high speed. Mining algorithms need to process the data in
one scan of data. The data in the data stream may be analyzed when a new instance arrives or
when a new batch forms. A batch is a set of M instances that occur during a period of time.
In the instance-based approaches, when a new instance is generated in the stream, it will be
analyzed immediately. In contrast, batch-based approaches process the stream when a new
batch forms. Batch processing is more efficient when the system can wait to form a batch
of instances. Generally, there are three main types of stream-processing models: damped
window based, sliding window based and landmark window based.

In the damped model (also called time-fading model), each record (e.g., an instance/a
batch of instances) is assigned with a weight that decreases over time. Therefore, in this
model, recent data are more important than old ones. However, it is difficult for the users
who are not domain experts to choose an appropriate decay function or decay rate for this
model. The sliding window model captures a fixed number of most recent records (e.g.,
instances/batches of instances) in a window, and it focuses on discovering the patterns within
the window. When a new record flows into the window, the oldest one is expelled from the
window. In this model, the effect of the expired old data is eliminated, and the patterns are

@ Springer

Mach Learn (2017) 106:799-836 801

mined from the recent data in the window. The first two models place more importance on
recent data than old ones (e.g., by assigning a weight to each data record which decreases over
time in the damped window or using a fixed amount of recent data in the sliding window). This
characteristic is very useful for the applications where users are more interested in finding
patterns or interesting phenomenon hidden in the most recent data. Moreover, focusing on
recent data can detect new characteristics of the data or changes in data distributions quickly.
However, in some applications long-term monitoring is necessary and users may want to
treat all data elements starting from a past time point equally and discover patterns over a
long period of time in the data stream (Manku and Motwani 2002). The landmark window is
used for such a purpose, which treats all data records starting from a past time point (called
Landmark) until the current time equally and discovers patterns over a long period of time
in the data stream. There are many applications where finding patterns over a long period of
time in the data stream is useful. For example, in web mining, we may want to discover user’s
browsing behavior since the website changed its layout; in healthcare, in a medical dataset
which contains medical treatments for a certain disease for different patients, doctors may
want to monitor the sequence of side-effects of a treatment since it started to be used; in DNA
data analysis, a domain expert may want to find disease-related gene regulation sequential
patterns after a treatment is started; in retail businesses, we may want to detect important
buying sequences of customers since the beginning of a year; and in an energy network, we
may want to find important event sequences since a new set of equipments was installed
to monitor the quality of equipments over its life-time. Monitoring only recent data (e.g, in
sliding windows) may miss such sequences that are important for decision making over a
long term.’

Considering all these applications, in this paper we aim at finding high utility sequential
patterns (HUSPs) over a landmark window. In particular, the landmark in our method is the
beginning of the data stream. Thus, we are dealing with the problem of incrementally learning
HUSPs over the entire data stream, which is more difficult than the sliding window-based
mining. In this paper, we assume that the data in the data stream arrive very fast and in a
large volume, hence mining algorithms need to process the arriving data in real time with one
scan of data. In this case, a complete re-scan of a long portion of the data stream is usually
impossible or prohibitively costly. Moreover, data can be huge and the available memory to
keep the information we need to find patterns, is limited.

Compared with other data stream mining tasks, there are unique challenges in discovering
HUSPs using a landmark window. First, HUSP mining needs to search a large search space
due to a combinatorial number of possible sequences. Second, the utility of a sequence does
not have the downward closure property (Shie et al. 2013; Yin et al. 2012), which would
allow efficient pruning of search space. That is, the utility of a sequence may be higher than,
equal to or lower than those of its super-sequences and sub-sequences (Shie et al. 2013;
Yin et al. 2012). This prevents the direct application of frequent sequential pattern mining
algorithms to HUSP mining. Consequently, keeping up the pace with high speed data streams
can be very hard for a HUSP mining task. A more important issue is the need of capturing
the information of data over a potentially long period of time. Data can be huge such that
the amount of information we need to keep may exceed the size of available memory. Thus,
to avoid memory thrashing or crashing, memory-aware data processing is needed to ensure
that the size of the data structure does not exceed the available memory, and at the same time
accurate approximation of the information needed for the mining process is necessary.

I Note that landmark models may not be suitable for some applications such as network traffic monitoring
and intrusion detection, in which users are more interested in the information that reflect recent data rather
than old ones.

@ Springer

802 Mach Learn (2017) 106:799-836

In this paper, we tackle these challenges and propose a memory-adaptive approach to
discovering HUSPs from a dynamically-increasing data stream. To the best of our knowledge,
this is the first piece of work to mine high utility sequential patterns over data streams in a
memory adaptive manner. Our contributions are summarized as follows. First, we propose a
novel method for incrementally mining HUSPs over a data stream. Our method can not only
identify recent HUSPs but also HUSPs over a long period of time (i.e., since the start of the
data stream). Second, we propose a novel and compact data structure, called MAS-Tree, to
store potential HUSPs over a data stream. The tree is updated efficiently once a new potential
HUSP is discovered. Third, two efficient memory adaptive mechanisms are proposed to deal
with the situation when the available memory is not enough to add a new potential HUSPs
to MAS-Tree. The proposed mechanisms choose the least promising patterns to remove from
the tree to guarantee that the memory constraint is satisfied and also that all true HUSPs
are maintained in the tree under certain circumstances. Fourth, using MAS-Tree and the
memory adaptive mechanisms, our algorithm, called MAHUSP, efficiently discovers HUSPs
over a data stream with a high recall and precision. The proposed method guarantees that the
memory constraint is satisfied and also all true HUSPs are maintained in the tree under certain
circumstances. Fifth, we conduct extensive experiments and show that MAHUSP finds an
approximate set of HUSPs over a data stream efficiently and adapts to memory allocation
without sacrificing much the quality of discovered HUSPs.

The paper is organized as follows. Section 2 provides relevant definitions and a problem
statement. Section 3 proposes the data structures and algorithms. Experimental results and
two applications of our proposed algorithms are shown in Sect. 4.1. In Sect. 5, we present
the related work. We conclude the paper in Sect. 6.

2 Definitions and problem statement

Let I* = {I}, I, ..., In} be a set of items. An itemset X is a set of items. An itemset-
sequence S (or sequence in short) is an ordered list of itemsets (X, X5, ..., Xz), where
X; € I* and Z is the size of S. The length of S is defined as Zizzl | X;|, where | X;| is the
number of items in itemset X;. A sequence of length L is called L-sequence. In this paper,
each itemset X, in sequence S, is denoted as Sfl.

In a data stream environment, sequences come continuously over time and they are
usually processed in batches (Manku and Motwani 2002; Mendes et al. 2008). A batch
By = {Si, Sit1,--., Si+m—1} is a set of M sequences that occur during a period of
time f#;. The number of sequences can differ among batches. A sequence data stream
DS = (B, By, ..., By, ...)isan ordered and unbounded list of batches where B; (| B; = ¢/
and i # j. Figure 1 shows a sequence data stream with 2 batches B; = {Sj, $2} and
By = {83, S4, Ss}.

SID | Sequence Data Ttem | Profit
5, | [S [SEt@2)b3)e2)}: 710, Die D@D} ST} w0
S, | SEbA)}: ST {(aA)(bS)e,) —
S; | ST, D} SE{@A(b5)e,D)}; S3:1@2)(e3)} c | 1
Bal s, [SEA@D0.5)e2)} a [¢

S5 | S5:{(c4)}

Fig. 1 An example of a data stream of itemset-squences

@ Springer

Mach Learn (2017) 106:799-836 803

Definition 1 (External utility and internal utility) Each item I € I* is associated with a
positive number p([), called its external utility (e.g., price/unit profit). In addition, each item
I in itemset X4 of sequence S, (i.e., Sf’) has a positive number g (7, Sﬁ{), called its internal
utility (e.g., quantity) of 7 in X, or S;i.

Definition 2 (Super-sequence and Sub-Sequence) Sequence o« = (X1, X2, ..., X;) isasub-
sequence of B = (X, X,, ..., Xj) (i < j) or equivalently B is a super-sequence of « if
there exist integers 1 <e; < ey < ---¢; < jsuchthat X; C X;l,Xz C X;z, ., X C X;,-
(denoted as o < B).

For example, if « = ({ac}{d}) and B = ({abc}{bce}{cd}), a is a sub-sequence of B and B is
the super-sequence of «.

Definition 3 (Utility of an item in an itemset of a sequence S,) The utility of an item /
in an itemset X, of a sequence S, is defined as u(/, S,d) = fu(p(),q, S,‘.i)), where f},
is the function for calculating utility of item / based on internal and external utility. For
simplicity, without loss of generality, we define the utility function as f, (p(1), g(1, S;l) =
pD) - q(I, 8.

Definition 4 (Utility of an itemset in an itemset of a sequence S,) Given itemset X, the
utility of X in the itemset X, of the sequence S, where X € X, is defined as u (X, Sfl) =

Drexull, S9).

For example, in Fig. 1, the utility of item b in the first itemset of S (i.e., Sl) is u(b, Sll) =
pb)-qb, S]I) = 3 x 3 = 9. The utility of the itemset {bc} in Sl1 isu({bc}, S}) = u(b, Sll) +
u(e, SH=9+2=11.

Definition 5 (Occurrence of a sequence o in a sequence S,) Given a sequence S, =

(Sr', Srz, ..., 8" and a sequence o = (X1, X2,..., Xz) where Sj' and X; are itemsets,
a occurs in S, iff there exist integers 1 < e¢; < e < -+ < ez < n such that
X1 C S, X, € 82,...,X7 C S/7. The ordered list of itemsets (S;', S5, ..., SF%)

is called an occurrence of « in S,. The set of all occurrences of « in S, is denoted as
OccSet(a, S;).

Definition 6 (Utility of a sequence « in a sequence S,) Let 6 = (Sy', S, ..., S¢?) be an
occurrence of « = (X1, X2, ..., Xz) inthe sequence S,. The utility of & w.r.t. 0 is defined as
su(a, 0) = Zizzl u(X;, S;"). The utility of « in S, is defined as su(«, S,) = max{su(c, 6) |
0 € OccSet(a, Sy)}.

Consequently, the utility of a sequence S, is defined and denoted as su(S,) = su(Sy, Sy).

For example, in Fig. 1, the set of all occurrences of the sequence « = ({bd}{c}) in S3
is OccSet({{bd}{c}), S3) = {61: (S}, 53), 62: (S1, S3)}. Hence su(a, $3) = max{su(w, 61),
su(a, 02)} = {14, 16} = 16.

Definition 7 (Utility of a sequence « in a dataset D) The utility of a sequence « in a dataset
D of sequences is defined as su(«, D) = ZerD su(e, Sy), where D can be a batch or a
data stream processed so far.

The total utility of a batch By is defined as Up, = ZS,eBk su(Sy, Sy). The total utility of
a data stream DS; = (B1, By, ..., B;) is defined as Ups, = ZBkeDS,- Up,.

@ Springer

804 Mach Learn (2017) 106:799-836

Table 1 Summary of notations

Notation Description

u(X, S;I) Utility of item/itemset X in the itemset X4 of Sy
a=xp « is a subsequence of B, or « occurs in 8
OccSet(a, Sy) Set of all the occurrences of « in sequence S,
su(a, Sy) Utility of a sequence « in sequence Sy

U, Total utility of a batch By

Ups; Total utility of a data stream DS;

a<lB « is a prefix sub-sequence of

rsu(a, D) Rest utility of sequence « in dataset D
LBMA Leaf Based Memory Adaptation

SBMA Sub-Tree Based Memory Adaptation

Definition 8 (High utility sequential pattern) Given a utility threshold § in percentage, a
sequence « is a high utility sequential pattern (HUSP) in data stream DS, iff su(c, DS) is
not less than § - Upg.

Problem statement Given a utility threshold § (in percentage), the maximum available
memory availMem, and a dynamically-changing data stream DS = (By, By, ..., Bi,...)
(where batch B; contains a set of sequences of itemsets at time period ¢;), our problem of
online memory-adaptive mining of high utility sequential patterns over data stream DS is to
discover, at any time #; (i > 1), all sub-sequences of itemsets whose utility in DS; is no less
than § - Upgs, where DS; = (By, Ba, ..., B;) under the following constraints: (1) the memory
usage does not exceed availMem, and (2) only one pass of data is allowed in total.

For convenience, Table 1 summarizes the concepts and notations we define in this paper.

3 Memory adaptive high utility sequential pattern mining

In this section, we propose a single-pass algorithm named memory adaptive high utility
sequential pattern mining over data streams (MAHUSP) for incrementally mining an approx-
imate set of HUSPs over a data stream. Below we first present an overview of MAHUSP and
then propose a novel tree-based data structure, called memory adaptive high utility sequential
pattern tree (MAS-Tree), to store the essential information of HUSPs over the data stream.
Finally, we propose two memory adaptive mechanisms and use them in the tree construction
and updating process.

3.1 Overview of MAHUSP

Algorithm 1 represents an overview of MAHUSP. Given a utility threshold 6 (0 < § < 1) and
a significance threshold € (0 < € < §), as a new batch By forms, MAHUSP first applies an
existing HUSP mining algorithm on static data [e.g., USpan (Yin et al. 2012)?] to find a set
of HUSPs over By using € as the utility threshold. We consider this set of HUSPs as potential
HUSPs since they have the potential to become HUSPs later. What MAHUSP exports via €
to the user is a tradeoff between accuracy and run time. That is, if the user does not want to
miss any HUSPs over the data stream, MAHUSP should consider all patterns in the batch as

2 Note that USpan finds HUSPs with one-pass over data but is not an incremental learning algorithm.

@ Springer

Mach Learn (2017) 106:799-836 805

Algorithm 1 MAHUSP

Input: By, 6, €, availMem, mechanismType

Output: MAS-Tree, appHUSPs

: HUSPp, < HUSPs returned by USpan on By, using € - Up, as minimum utility threshold

: if MAS-Tree is empty (i.e. By is the first batch) then

Initialize MAS-Tree by creating root node

: end if

: Call Algorithm 2 to insert the patterns in HUSP g, into MAS-Tree using availMem and mechanismType
: if user requests for HUSPs over current data stream then

appHUSPs < potential HUSPs in MAS-Tree whose approximate utility is no less than (§ — €) - Upg
: end if

: return MAS-Tree and appHUSPs if requested

o I I N O e

Data stream (DS)

o B [B | [Bixs |[Busa] - -+

¥ X s
Apply USpan to find HUSPs over By using € . Ug, as the minimum utility threshold

Potential HUSPs in
batch By, (HUSPg,)

Foreach P € HUSPg, ‘

Memory is
to be
violated?

Call Memory adaptive mechanisms

| InsertPto MAS—Tree |

Return all patterns in MAS-Tree whose approximate utility
is no less than (8 — ¢€). Ups

Fig.2 MAHUSP workflow

potential HUSPs over the data stream. Due to the combinatorial explosion among items, the
task of finding all the patterns may not even finish in a promising time. Using €, MAHUSP
allows users to consider the patterns with utility no less than a reasonable threshold, set by
the user, in the batch as potential HUSPs over the data stream. Therefore, a smaller € value
leads to more accurate results but longer run time.

Given set of potential HUSPs in By, MAHUSP then calls Algorithm 2 to insert these poten-
tial HUSPs into the MAS-Tree structure. Algorithm 2 calls a memory-adaptive mechanism (to
be described) to ensure that the memory constraint is satisfied and the most potential HUSPs
are kept in the tree. The MAS-Tree contains the potential HUSPs and their approximated
utilities over the data stream. Finally, if users request to find HUSPs from the stream so far,
MAHUSP returns the set of all the patterns (i.e., appHUSPs) in MAS-Tree with approximate
utility more than (§ —€) - Ups, , where DS = (B, Ba, ..., Bi). In Sect. 3.6, we will explain
why we use (§ — €) - Upg as the utility threshold.

The aforementioned workflow is presented in Fig. 2. Below we first describe how MAS-
Tree is structured. Then the proposed memory adaptive mechanisms and tree construction
will be presented.

@ Springer

806 Mach Learn (2017) 106:799-836

3.2 MAS-Tree structure

We propose a novel data structure memory adaptive high utility sequential tree (MAS-Tree)
to store potential HUSPs in a data stream. This tree allows compact representation and
fast update of potential HUSPs generated in the batches, and also facilitates the pruning of
unpromising patterns to satisfy the memory constraint. In order to present MAS-Tree, the
following definitions are provided (Pei et al. 2004).

Definition 9 (Prefix itemset of an itemset) Given itemsets X = {I1, I, ..., [;} and X7 =
U, 1,,....1 j} (i < j), where items in each itemset are listed in a lexicographic order, X
is a prefix itemset of X, iff I} = I{, I = Ié, ...,and [; = Il./ (denoted as X| < X»). Note
that items in an itemset are arranged in the lexicographic order.

Definition 10 (Suffix itemset of an itemset) Given itemsets X| = {[1, I, ..., I;} and X, =
.5, ..., Ij} (i < j),suchthat X; < X». The suffix itemset of X, w.r.t. X is defined as:
X, — X = {Ii+l,1i+2,...,lj}.

For example, itemset X| = {ab} is a prefix itemset X, = {abce} and X, — X| = {ce}.

Definition 11 (Prefix sub-sequence and Prefix super-sequence) Given sequences o =
(X1, X2,...,X;)and B8 = (X/l, X/Z, e X;.) (i < j), « is a prefix sub-sequence (or prefix-
SUB in short) of § or equivalently S is a prefix super-sequence (or prefixSUP in short) of «
iff X1 =X, X2 = X5, ..., Xi—1 = X, |, X; < X, (denoted as & < f8).

Definition 12 (Suffix of a sequence) Given a sequence @ = (X1, Xo, ..., X;) asaprefixSUB
of = (X}, X,,....X;) (i <), sequencey = (X' — Xi, X'i1, ..., X';) is called the
suffix of 8 w.r.t. «.

For example, o = ({abc}{b}) is a prefixSUB of 8 = ({abc}{bce}{cd}) and B is the
prefixSUP of . Hence, suffix of 8 w.r.t. « is ({ce}{cd}).

In an MAS-Tree, each node represents a sequence, and a sequence Sp represented by a
parent node P is a prefixSUB of the sequence Sc represented by P’s child node C. The child
node C stores the suffix of S¢ with respect to its parent sequence Sp. Thus, the sequence
represented by anode N is the “concatenation” of the subsequences stored in the nodes along
the path from the root (which represents the empty sequence) to N. There are two types of
nodes in an MAS-Tree: C-nodes and D-nodes.

A C-node or Candidate node uniquely represents a potential HUSP found in one of the
batches processed so far. For example, there are 6 C-nodes in Fig. 3a representing 6 potential
HUSPs (i.e., ({ab}), ({abc}), ({bY{ab}), ({bHabc}), ({b}{b}), and ({b}{bc}{D})).

A D-node or Dummy node is a non-leaf node with at least two child nodes, representing a
sequence thatis not a potential HUSP but is the longest common prefixSUB of all the potential
HUSPs represented by its descendent nodes. In Fig. 3a, there is one D-node representing ({b}),
which is the longest common prefixSUB of four C-node sequences ({b}{ab}), ({b}{abc}),
({b}{b}) and ({b}{bc}{b}). The reason for having D-nodes in the tree is to use shared nodes
to store common prefixes of HUSPs to save space. Note that D-nodes are created only for
storing the longest common prefixes (not every prefix) of potential HUSPs to keep the number
of nodes minimum.

The MAS-Tree is different from the prefix tree used to represent sequences for frequent
sequence mining where all the sub-sequences of a frequent sequence are frequent and are
represented by different tree nodes. In a MAS-Tree, we do not store all subsequences of

@ Springer

Mach Learn (2017) 106:799-836 807

C]] new C-node
©new D-node
(a)

Fig. 3 a An example of MAS-Tree for B; in Fig. 1. Note that an underscore in a node name {_c} means
that the last itemset in the pattern of its parent, such as {ab}, belongs to the first itemset of the pattern of this
node. That is {ab} and {_c} forms {abc}, b MAS-Tree after inserting three patterns: ({ab}{bc}{d}), ({b}{a})
and ({b}{bcH{d})

potential HUSPs since a subsequence of a HUSP may not be a HUSP. For example, in
Fig. 1, given support threshold minSup = 2 and minimum utility threshold minUtil = 40,
sequence o = {b}{b, c} is a frequent pattern and its frequency in B; is 2. Since frequency
has the downward closure property, all of its prefix subsequences including o1 = {b} and
ar = {b}{b} are frequent patterns. Hence, all the subsequences are inserted as separate
nodes in the tree. On the other hand, although « is a HUSP in By (su(w, By) =41), its
prefix subsequences (e.g., su(ag, By) = 24, su(op, By) = 39) are not HUSPs in the batch
Bj. Therefore, we do not create nodes for o; and o» in MAS-Tree to consume less memory.
However, if we use the prefix trees used to represent frequent sequences, we have to create
nodes for o and «p, which is not memory efficient.

Let Sy denote the sequence represented by a node N. A C-node N contains 3 fields:
nodeName, nodeUtil and nodeRsu. nodeName is the suffix of Sy w.r.t. the sequence rep-
resented by the parent of N. nodeUtil is the approximate utility of Sy over the part of the
data stream processed so far. nodeRsu holds the rest utility value (to be defined in the next
section and used in memory adaptation) of Sy. For example, in Fig. 3a, the leftmost leaf
node corresponds to pattern {abc}. Its nodeName is {_c} (which is the suffix of {abc} w.r.t.
its parent node sequence {ab}) and its nodeUtil and nodeRsu are 39 and 54, respectively. A
D-node has only one field nodeName, storing the suffix of sequence it represents w.r.t. its
parent sequence.

3.3 Rest utility: a utility upper bound

Before we present how a MAS-Tree is built and updated, we first define the rest utility of a
sequence and prove that it is an upper bound on the true utilities of the sequence and all of
its prefix super-sequences (prefixSUPs).

Definition 13 (First occurrences of a sequence « in a sequence S,) Given a sequence S, =
(S!,82,...,8") and a sequence & = (Xi, X2,...,Xz), 6 € OccSet(a, S;) is the first
occurrence of « in S, iff the last itemset in 0 occurs sooner than the last itemset of any other
occurrence in OccSet(a, Sy).

Definition 14 (Rest sequence of S, w.r.t. sequence o) Given sequences S, = (S,1 , S,Z, St
and @ = (X1, X2, ..., Xz), where @ < S,. The rest sequence of S, w.r.t. «, is defined as:
restSeq(S,, a) = (S, S;"'H, ..., S"), where S is the last itemset of the first occurrences
of o in S;.

Definition 15 (Rest utility of a sequence o in a sequence S,) The rest utility of « in S, is
defined as rsu (e, Sy) = su(w, S;) + su(restSeq(Sy, @)).

@ Springer

808 Mach Learn (2017) 106:799-836

For example, given o = ({ac}{c}) and S} in Fig. 1, restSeq(S;, @) = {({(b, 1)(c, 1)(d, 1)}
{(c,3)(d, 1)}). Hence, su(restSeq(S1,a)) = 8 +7 = 15, then rsu(a, S1) = su(a, S1) +
15 = max{7,9} + 15 = 24.

Definition 16 (Rest utility of a sequence « in dataset D) The rest utility of a sequence « in

a dataset D of sequences is defined as rsu(o, D) = > s,ep Isu(a, Sr).

Theorem 1 The rest utility of a sequence o in a data stream DS is an upper-bound of the
true utilities of all the prefixSUPs of a in DS. That is, VB = «, su(B8, DS) < rsu(a, DS).

Proof We prove that rsu(a, S,) is an upper-bound of the true utilities of all the prefixSUPs of
« in sequence S,. The proof can be easily extended to batch By and data stream D S. Given
sequence ¢ = (X1, X2,...,Xu), and B = (X1, X2,..., X;W, XM+1, .-, XN), Where
Xu S X ;w According to Definition 6:

su(B, Sy) = max {su(B, 0) | 0 € OccSet(B, S;)}

Thus,
30, su(B, Sy) = su(B, o) (D
Sequence B can be partitioned into two sub-sequences: « = (X, X2,..., X») and
ﬂ, = (X3 — Xum, Xp41, ..., Xn). The Eq. 1 can be rewritten as follows:
104 € OccSet(w, S,) and Eléﬁ/ € OccSet(ﬁ/, Sy — 0q),
su(B. Sy) = su(et, 6a) +su(B, o))
Also, Yo, € OccSet(a, S;), su(a, 0q) < su(a, Sy) 3)
Similarly,
Yo, € OccSet (,3', S, — 5a) csu(B 3y) < su (ﬂ’, S, — 55,) 4)

where S, — 0, is a sequence consisting of all itemsets in S, which occur after the last itemset
in 04. Since S, — 0y < restSeq(S,, «), hence:

su(ﬁ/, 5,3’) < su(,B/, S — 0q) < su(ﬂ/, restSeq(S;, a))
< su(restSeq(S,, o)) ©)

From (3) and (5):

su(B, Sr) = su(e, o) + su(B’,)
< su(a, Sy) + su(restSeq(S,, «)) = rsu(a, S;).

3.4 MAS-Tree construction and updating

The tree starts empty. Once a potential HUSP is found in a batch, it is added to the tree.
Given a potential HUSP § in batch By, the first step is to find node N whose corresponding
sequence Sy is either S or the longest prefixSUB of S in MAS-Tree. Let su(S, By) be the
exact utility value of S in the batch By and rsu(S, Bi) be the rest utility value of S in the
batch By. If Sy is S and N is a C-node, then nodeUtil(N) and nodeRsu(N) are updated by
adding su(S, By) and rsu(S, By) respectively. If N is a D-node, it is converted to a C-node
and nodeUtil(N) and nodeRsu(N) are initialized by su(S, By) and rsu(S, By) respectively.

If Sy is the longest prefixSUB of S, new node(s) are created to insert S into the tree. In
this situation, there are three cases:

@ Springer

Mach Learn (2017) 106:799-836 809

1. Node N has a child node CN where S < Scy: for example, in Fig. 3a, if pattern S =
({p}{a}), node N with Sy = {b} is found. N has a child node CN where Scy = ({b}{ab})
and S < Scw. In this case, a new C-node C is created as child of N and parent of CN
where nodeName(C) is the suffix S w.r.t. Sy. Then nodeUtil(C) and nodeRsu(C) are
initialized by su(S, By) and rsu(S, By). Also nodeName(C N) is updated w.r.t. Sc. In
our example, a new node is created with {a}, 20, and 36 as nodeName, nodeUtil and
nodeRsu, respectively (see Fig. 3b).

2. Node N has a child node CN where Scy contains (but not exactly is) a longer prefixSUB
(i.e., Sprefix) of S than Sy: For example, in Fig. 3b, given pattern § = ({b}{bc}{d}),
su(S, By) = 17andrsu(S, B;) = 17,node N with Sy = ({b}{b}) is found. Its child node
CN where Scy = {{b}{bc}{b}) contains a longer prefixSUB of S, Syrefix = ({b}{bc}). In
this case, since Sp,¢fiy is the longest common prefixSUB of S and Scy, a new D-node D
corresponding to Sy .fix is created as child of N and parent of CN. Then a new C-node
C is created as child of D where nodeName(C) is the suffix of S w.r.t. Spefix. Its nodeUtil
and nodeRsu are initialized by su(S, By) and rsu(S, By) respectively. Also nodeName(C N)
is updated w.r.t. Sp. In the example, node D with nodeName(D) = {{_c}) is added as
child of N and parent of CN, and also node C where nodeName(C) = ({d}) is created
as child of D.

3. None of the above cases: for example in Fig. 3b, given pattern S = ({ab}{bc}{d}) whose
utility is 21 and rest utility is 21, node N with Sy = {ab} is found. Its child node
does not contain S or a longer prefixSUB of S. In this case, a new C-node C is created
as child of N where nodeName(C) is the suffix of S w.r.t. Sy. Also, nodeUtil(C) and
nodeRsu(C) are initialized by su (S, By) and rsu(S, By). In the example, node C where
nodeName(C) = ({bcH{d}), nodeUtil(C) = 21 and nodeRsu(C) = 21 is created as child
of N.

Figure 3b shows the updated tree after inserting three patterns ({b}{a}), ({ab}{bc}{d}) and
({b}{bc}{d}) to MAS-Tree presented in Fig. 3a.

Algorithm 2 shows the complete procedure for inserting the potential HUSPs found in
batch By to the tree. It first updates the tree using the patterns in HUSPp, that already
exist in the tree. This is to avoid the memory adaption procedure from pruning nodes that
will be inserted again soon in the same batch. For each pattern S in HUSP p,, Algorithm 2
finds node N where Sy is either S or the longest prefixSUB of S in the tree. If Sy is S,
Algorithm 2 updates values of nodeRsu(N) and nodeUtil(N) accordingly. If nodeName(N)
is the longest prefixSUB of S, the pattern S and node N are inserted into newPatSet g, . Each
pair in newPatSet g, consists of a new pattern and a pointer to the node associated to the
longest prefixSUB of the pattern in the tree. After the tree is updated using the existing
patterns, for each pair (S, N) in newPatSet g, , the pattern S is inserted into the tree, in which
Algorithm 3 is called to create a node for the tree in a memory adaptive manner described
below.

3.5 Memory adaptive mechanisms

When inserting a new node in MAS-Tree, if the memory constraint is to be violated, our
algorithm will remove some tree nodes to release memory. An intuitive approach to releasing
memory is to blindly eliminate some nodes from the tree. However, this approach could
remove nodes representing high quality HUSPs and make the mining results highly inaccu-
rate. Below we propose two memory adaptive mechanisms to cope with the situation when
memory space is not enough to insert a new potential HUSP in the tree. Our goal is to effi-

@ Springer

810 Mach Learn (2017) 106:799-836

Algorithm 2 Insert potential HUSPs into MAS-Tree
Input: MAS-Tree, HUSP p, , mechanismType, availMem
Output: MAS-Tree, currMem

1: newPatSetp, <
2: for VS € HUSPp, do

3: N <« The node with the longest prefixSUB of S in MAS-Tree
4: if Sy is the same as S then

5 if N is C-node then

6: nodeRsu(N) < nodeRsu(N) + rsu(S, By)
7 nodeUtil(N) < nodeUtil(N) + su(S, By)
8 else

9 Convert N to C-node

10: nodeRsu(N) < rsu(S, By) + maxUtil
11: nodeUtil(N) < su(S, By) + maxUtil

12: end if

13: else

14: Add pair (S, N) to newPatSet g,

15: end if

16: end for

17: for ¥(S, N) € newPatSet g, do

18: CN <« A child of node N with longer common prefixSUB (i.e.,Spyefy) of S than Sy
19: if CN does not exist then

20: Sc <« suffix of S w.rt. Sy

21: Call Algorithm 3 to create C-node C as a child of N
22: else

23: if Sprefix is S then

24: Sc < suffix of S w.rt. Sy

25: Call Algorithm 3 to create C-node C as a child of N
26: else

27: Sp <« suffix of Spyefix W.LL. Sy

28: Call Algorithm 3 to create D-node D as a child of N
29: Sc < suffix of § w.r.t. Spyefix

30: Call Algorithm 3 to create C-node C as a child of D
31: end if

32: endif

33: end for

34: return MAS-Tree

ciently determine the nodes for pruning, without sacrificing too much the accuracy of the
discovered HUSPs.

Mechanism 1 [Leaf Based Memory Adaptation (LBMA)] Given a MAS-Tree, a pattern S and
the available memory availMem, if the required memory to insert S is not available, LBMA
iteratively prunes the leaf node N with minimum nodeUtil(N) among all the leaf nodes until
the required memory is released.

Rationale (1) A leaf node is easily accessible and we do not need to scan the whole tree
to find a node with low utilities. (2) A leaf node does not have a child, so it can be pruned
easily without reconnecting its parent to its children. (3) In case a great portion of nodes in
the tree are leaf nodes, leaf nodes with minimum utilities have low likelihood to become a
HUSP. Later we prove that LBMA is an effective mechanism so that all true HUSPs stay in
the tree under certain circumstances.

The second mechanism releases memory by pruning a sub-tree from MAS-Tree.

Mechanism 2 [Sub-Tree Based Memory Adaptation (SBMA)] Given a MAS-Tree, a pattern
S and available memory availMem, if the required memory to insert S is not available, SBMA

@ Springer

Mach Learn (2017) 106:799-836 811

iteratively finds node N with minimum rest utility (nodeRsu(N)) in MAS-Tree and prunes the
sub-tree rooted at N from MAS-Tree till the required memory is released.

Rationale Since in MAS-Tree a descendant of a node N represents a prefix super-sequence
(prefixSUP) of the pattern represented by N, according to Theorem 1, the rest utility of N
(nodeRsu(N)) is an upper bound of the true utilities of all its descendants. Therefore, if
node N has a minimum rest utility, not only the pattern represented by N is less likely to
become HUSP, but also all of its descendants are less likely to become HUSPs. Thus, we
can effectively remove all the nodes in the subtree rooted at N. Similar to LBMA, with this
mechanism there is no need to reconnect N’s parent with its children.

Algorithm 3 shows how the proposed memory adaptive mechanisms are incorporated
into node creation. It removes some nodes based on either LBMA or SBMA mechanism
when there is not enough memory for a new node. In addition, the following two issues are
addressed in this procedure.

Approximate utility When some C-nodes are removed from the tree, the potential HUSPs
represented by the removed nodes are discarded. If a removed pattern is a potential HUSP in
the new batch, the pattern will be added into the tree again. But its utility value in the previous
batches is not recorded due the node removal. To compensate this situation, we keep track
of the maximum value of the nodeUtil or nodeRsu of all the removed nodes, and add it to
the nodeUtil and nodeRsu of a new C-node. The maximum value is denoted as maxUtil in
Algorithms 2 and 3.

Node merging If the parent of a removed leaf node or subtree is a D-node and the parent
has a single child left after the node removal, the parent and its child are merged into a
single node (Lines 16—17 in Algorithm 3). This is to make the tree compact and maintain
the property of MAS-Tree (i.e., each node represents the longest common prefixSUB of its
descendants). Note that our strategy to remove either a subtree or a leaf node allows us to
maintain the MAS-Tree structure using such minimum adjustments.

Let L,y and NumPot be the average length and the number of potential HUSPs
respectively. The time complexity to find the node N to insert a pattern as its child
is O(NumPot X Lgyg). For LBMA, the time complexity for initializing and updating is
O (NumPot). The time complexity to apply SBMA is O (NumPot X Lgyg).

3.6 Mining HUSPs from MAS-Tree

As the data stream evolves, when the user requests to find HUSPs on the stream so far,
MAHUSP traverses the MAS-Tree once and returns all the patterns represented by a node
whose nodeUtil is no less than (§ — €) - Ups,, where DS = (By, By, ..., By) is the stream
processed so far. The reason for using this threshold is that a potential HUSP in a batch B;
may not be a potential pattern in batch B; and thus its utility in batch B; is not recorded
in the tree. However, since when we mine B; for potential HUSP, € - Up ; is used as the
threshold, the true utility of a non-potential pattern in B; can not be higher than € - Ug,.
Thus, nodeUtil(N) + € - Ups, is an over-estimate for the approximate utility of the pattern
represented by node N. Finding nodes whose nodeUtil(N)+e¢ - Ups, > 8- Ups, is equivalent
to finding those with nodeUtil(N) > (§ — €) - Ups,.

3.7 Correctness
Given a data stream DS, a sequence « and a node N € MAS-Tree where Sy is «, let

Stiree(a, DS) be nodeUtil(N) when availMem is infinite and there is no pruning, and let
Stgpprx(at, DS) be nodeUtil(N) when availMem is limited and pruning occurs.

@ Springer

812 Mach Learn (2017) 106:799-836

Algorithm 3 Memory Adaptive Node Creation

Input: S, su(S, By), rsu(S, By), nodeT ype, mechanismT ype, P (parent of the node to be created)
Output: node N, maxUtil

1: currMem < current memory usage

2: reqMem < memory usage for a node of nodeT ype for pattern S

3: while currMem + reqMem > availMem do

4: if mechanismType is LBMA then

5 Remove the leaf node node with minimum nodeUtil(node)

6: maxUtil < nodeUtil(node);
7

8

Adjust the amount of current available memory curr Mem

end if
9: if mechanismType is SBMA then
10: Remove the subtree rooted by node with minimum nodeRsu(node)
11: maxUtil < nodeRsu(node)
12: Adjust the amount of current available memory curr Mem
13: endif

14: if parent P of node has a single child C then

15: Merge P and C into one node

16: Adjust the amount of current available memory curr Mem
17: endif

18: end while

19: if parent P of node has been removed then

20: Call Algorithm 2 to get a new parent node and exit
21: end if

22: Create node N with pattern S

23: if nodeT ype is a C-node then

24: nodeRsu(N) < rsu(S, By) + maxUtil

25: nodeUtil(N) < su(S, By) + maxUtil

26: end if

27: currMem <« currMem + req Mem

28: return N, maxUtil

Lemma 1 Given a potential HUSP «, the difference between the exact utility of a and its
utility in MAS-Tree is bounded by € - Ups when availMem is infinite. That is, su(o, DS) —
Susree(t, DS) < € - Ups.

Proof According to Definition 7, su(«, DS) = ZB/,eDS su(a, Bj). Given batch By € DS, if
su(o, By) < € - Up,, then « is not returned by USpan. In this case € - U, is an upper bound
on utility of « in the batch By. Hence, su (o, DS) — Stree (0, DS) = ZBm eBser Sula, By) <
€y BeDS Up, < € - Ups, where BSet is the set of all batches that « is not returned by
USpan.

Lemma 2 Given potential HUSP «, the current MAS-Tree and C-node C where Sc is «,
Stgree(a, DS) < Suapprx(a’ DS).

Proof If node C is never pruned, then su gy, (@, DS) = Sutyree (cr, DS) which is nodeUtil (C).
Otherwise, since we have a node with pattern « in the tree, C has been added back to
the tree after removal. Assume that, when C was pruned from MAS-Tree, the value of
maxUtil was denoted as maxUtil|, and when C with pattern o was re-inserted, the value of
maxUtil was denoted as maxU'til,. According to Algorithm 2, the value of maxUtil never gets
smaller. Hence maxUtil; < maxUtil,. Once C was re-inserted into the tree, nodeUtil(C) was
incremented by maxUtil, which is bigger than or equal to maxUtily. Since sugppr (@, DS) =
nodeUtil(C), sugpprc(a, DS) > Styee(a, DS).

Lemma 3 For any potential HUSP «, if Susree (@, DS) > maxUtil, @ must exist in MAS-Tree.

@ Springer

Mach Learn (2017) 106:799-836 813

Proof We prove it by contradiction. Assume that there is a HUSP g, where maxUtil <
SUsree(B, DS), and node N with nodeName(N) = B does not exist in the tree. Since
0 < maxUtil < sugee(B, DS), at some point, B was inserted to the tree. Otherwise,
Susree(B, DS) = 0. Since N does not exist in MAS-Tree, it must have been pruned after-
wards. Let util,;; and rsu g denote nodeUtil(N) and nodeRsu(N) respectively when N was
last pruned. Based on Lemma 2, suye. (B, DS) < Sugppre(B, DS), where sugppre (B, DS) =
utilyy, at the time N was pruned. So Suse. (8, DS) < util,y. Based on the memory adap-
tive mechanisms, util,;y < maxUtil. Hence, Sue.(B8, DS) < util,; < maxUtil, which
contradicts the assumption. Thus, if maxUtil < su.(cot, DS), @ is in the tree.

Theorem 2 Once the user requests HUSPs over the data stream DS, if maxUtil < (§ — €) -
Ups, all the high utility sequential patterns will be returned.

Proof Given a high utility sequential pattern «, according to Definition 7, su(c«, DS) >
6 - Ups. On the other hand, based on Lemma 1, € - Ups > su(a, DS) — suyee(a, DS). Thus,
€ - Ups + Sugree(a, DS) > su(a, DS).

According to Definition 7, € - Ups + Susree(at, DS) > 8 - Ups. Hence:

SUtree (0, DS) > (8 — €) - Ups > maxUtil.

According to Lemma 3, o must exist in the tree. On the other hand, based on Lemma 2,
Stgppri(0t, DS) > suyee(a, DS) > (6 — €) - Ups. Hence, a will be returned by the algorithm.

While this theory only guarantees the perfect recall in certain situations, in the next section
we will show that our algorithm will return HUSPs with both high recall and high precision
in practice.

4 Experiments

In this section, the proposed algorithms are evaluated. All the algorithms are implemented in
Java. The experiments are conducted on an Intel(R) Core(TM) i7 2.80 GHz computer with
16 GB of RAM.

4.1 Datasets

To evaluate the performance of our proposed algorithms, experiments have been conducted
on two synthetic datasets and two real datasets:

1. DSI1:DI0K-C10-T3-§4-12-NIK this dataset is generated by the IBM data generator
(Agrawal and Srikant 1995). The parameters in DS1 mean that the number of sequences
in the dataset is 10K, the average number of transactions in a sequence is 10, the average
number of items in a transaction is 3, the average length of a maximal pattern consists of
4 itemsets and each itemset is composed of 2 items average. The number of items in the
dataset is 1k.

2. DS2:DI00K-C8-T3-S4-12-N10K the second synthetic dataset is also generated by the
IBM data generator (Agrawal and Srikant 1995). In this dataset, the number of sequences
is 100K and the average number of transactions in a sequence is 8. Similar to DS1, the
average number of items in a transaction is 3, the average length of a maximal pattern
consists of 4 itemsets and each itemset is composed of 2 items average. In this dataset,
the number of items in the dataset is 10k.

@ Springer

814 Mach Learn (2017) 106:799-836

Table 2 Dataset characteristics

Name #Seq(K) Avg. Trans. Length Type batchSize(K) availMem (MB)
DS1 10 10 Dense 1 100
Kosarak 25 3 Sparse, large 5 200
DS2 100 8 Dense, large 10 400
ChainStore 400 7.26 Dense, large 50 800

3. Kosarak this dataset contains web click-stream data of a Hungarian on-line news portal
(Fournier-Viger et al. 2013), which is a sparse dataset. The average length of transaction
in this dataset is 3.

4. ChainStore this dataset is a real-life dataset acquired from Pisharath et al. (2012), which
already contains internal and external utilities. In order to use this dataset as a sequential
dataset, we randomly grouped transactions into sequences so that each group represents
a sequence of transactions and each sequence contains 4—8 transactions.

We follow previous studies (Ahmed et al. 2010; Zihayat et al. 2015) to generate internal
and external utilities of items in the first three datasets. The external utility of each item is
generated between 1 and 100 by using a log-normal distribution and the internal utilities of
items in a transaction are randomly generated between 1 and 100.

Table 2 shows dataset characteristics and parameter settings in the experiments. We set
availMem heuristically based on the average memory to store the data structures used by
USpan and the average memory used by MAS-Tree over the datasets. The significance thresh-
old (i.e., €) is set as 0.5 x 4. For example, in DS2, when § = 0.0009, € = 0.00045. We will
later change these parameters (i.e., availMem, batchSize and significance threshold) to show
the performance of the algorithms under different parameter values.

In Sect. 4.8, to demonstrate the effectiveness and efficiency of MAHUSP on real-life
applications, we first conduct an analysis on a real web clickstream dataset obtained from
a Canadian news portal. Then, we apply our method to identify gene regulation sequential
patterns correlated with a specific disease from to a publicly available time course microarray
dataset.

4.2 Methods in comparison

To the best of our knowledge, no method was proposed to mine HUSPs over a data stream in
a memory adaptive manner. Therefore, the following methods are implemented to compare
with the proposed methods:

1. NaiveHUSP this method is a fast method to approximate the utility of a sequence over
the past batches using the utility of items in the sequence. That is, the utility of each
item over a data stream is tracked. Once a new batch arrives, the utility value of each
item in the new batch is updated. If the user requests HUSPs, the algorithm runs USpan
to find all HUSPs in the current batch B;. Then for each pattern «, the utility of o over
the data stream is calculated as follows: su(a, DS;) = su(a, Bi) + Y, u(I, DS;_1),
where su(a, B;) is the utility of « in the batch B; and u(/, DS;_1) is the utility of item
I over the data stream before batch B; arrives.

2. RndHUSP this method is similar to MAHUSP and is a memory-adaptive HUSP mining
approach over data streams. It runs USpan to find HUSPs in each batch and inserts them
to MAS-Tree. When a new node is inserted in MAS-Tree, if the memory constraint is to

@ Springer

Mach Learn (2017) 106:799-836 815

be violated, RndHUSP will remove some nodes to release memory. The mechanism to
releasing memory is to randomly eliminate some nodes from the tree.

3. USpan once a user requests HUSPs, USpan is run on the whole data stream (i.e., DS;)
seen so far using 6 - Ups; as the utility threshold to find the true set of HUSPs (i.e.,
eHUSP).

Moreover, in order to see the effect of different memory adaptive mechanisms, we evaluate
two versions of MAHUSP, named MAHUSP_S (which uses the SBMA mechanism) and
MAHUSP_L (which uses the LBMA mechanism).

4.3 Performance measures

Given eHUSP as the true set of HUSPs and appHUSPs as the approximate set of HUSPs
returned by a method, we use the following performance measures:

— Precision the average precision over data streams:

lappHUSPs () eHUSP|
|lappHUSPs)|

precision =

— Recall the average recall values over data streams:

|appHUSPs (| eHUSP|
|cHUSP|

recall =

F-Score the harmonic mean of precision and recall:

precision X recall
F-Score:2 x —
precision + recall

AvgTrueUtil the average true utility of patterns returned by a method.
Relative Utility Error The relative utility error is computed as the average utility error
compared with the exact utility of patterns returned by a method:

Z ApproxUtil(P)—TrueUtil(P)
PeappHUSPs TrueUtil(P)

lappHUSPs)|

Relative Utility Error =

where TrueUtil(P) is the true utility of P in the dataset and ApproxUtil(P) is the approx-
imate utility of P returned by the method.

— AvgLength the average number of items in patterns returned by a method is another
quality measure that we use in our experiments. Since MAHUSP_L iteratively prunes
the leaf nodes in the MAS-Tree, it may imply that patterns with long length may be
missed. Using this measure, we show that the average length of the patterns returned by
our methods is close to that of obtained by the exact method.

— Run Time the total execution time of a method over the input data stream.

— Memory Usage the memory consumption of a method.

4.4 Effectiveness of MAHUSP
In this section, the effectiveness of the methods is evaluated. For consistency across datasets,

in all figures presented in this section the minimum threshold is shown as a percentage (i.e.,
8) of the total utility of the current data stream in the dataset.

@ Springer

816 Mach Learn (2017) 106:799-836

OMAHUSP_S EMAHUSP_L [ONaiveHUSP B RndHUSP I

100 100
SAVER g5
=
5 501 § 50
g 25 g 25
&) & 0
3S3IeRLa gzZa2nSag
© e o< S S O S S S S o
Minimum utility threshold (%) Minimum utility threshold (%)
(Ds1) (Kosarak)
100 100
8 751 8
S 501 £50
g 25 525
gy il £
o O o0 (=3 S v ©O VN © v O
2828828 E8S5EEE8
S 8 8 8 S S <o S o o o o o o
Minimum utility threshold (%) Minimum utility threshold (%)

(DS2) (ChainStore)

Fig. 4 Precision performance on the different datasets

‘ OMAHUSP_S EMAHUSP L [ONaiveHUSP B RndHUSP ‘

100 100
g 75 4 g 75 A
3 50 A 35 01
153 53

B8 101 -

0 ‘ ‘ il 15 ‘ ‘ 0 T T T 1\ ‘l\]\ 1!

< A T O ® v A 2= 23

S g g g g S 2 S S S S o S o

Minimum utility threshold (%) Minimum utility threshold (%)

(DS1) (Kosarak)

100 100
g 75 A S 75 A
= 501 = 50 A
§ 25 4 Ei 25
~ S |

0]w T]w T 1\ T 1 = 0 T T T T T T l

S QA I v 0 o O S v O N O v O

23888%=¢% 38355883

oS o O o o o O o o o o o o <o

Minimum utility threshold (%) Minimum utility threshold (%)

(DS2) (ChainStore)

Fig. 5 Recall performance on the different datasets

4.4.1 Precision, Recall and F-Score

Figure 4 shows the precisions of the methods on the three datasets. The proposed methods
are more effective than NaiveHUSP and RndHUSP in terms of precisions. MAHUSP_L
outperforms MAHUSP_S in the most of the cases in DS1 and DS2. This is because the
approximate utility by LBMA is usually tighter than the one by SBMA, and thus there are
fewer false positives in the results.

Figure 5 shows the recalls of the methods, which indicate that our proposed methods are
much more effective than the other methods in all the datasets. Indeed, on DS1, MAHUSP_L
returns all the true patterns for each threshold value. Also, MAHUSP_S returns all the true
patterns for most threshold values on DS2 and Kosarak. MAHUSP_L and MAHUSP_S could

@ Springer

Mach Learn (2017) 106:799-836 817

‘ OMAHUSP_S EMAHUSP_L [ONaiveHUSP M RndHUSP

100 __100
S 75 < 75
2 50 S 50
3 %
xn 25 A i i = 25 4
=
0 T T T T 0 T T T
2??3.33?:2% 8 =22 =2 g
[= =) [=} S O O o o o <o
Minimum utility threshold (%) Minimum utility threshold (%)
(DS1) (Kosarak)
100 100
3 751 g 75 A
o 501 o 50
S 25 g 251
0 T =0 L
S A T O 0 o O S v O n O v O
D DD DD O A O O >~ > 0 0
S O O O O = == S oo o o <o <
S S 3 S S 3 S S S S S S S S
Minimum utility threshold (%) Minimum utility threshold (%)
(DS2) (ChainStore)

Fig. 6 F-Score performance on the different datasets

also achieve better performance than NaiveHUSP and RndHUSP on ChainStore dataset.
The results imply that the condition presented in Theorem 2 happens often and the pro-
posed memory adaptive mechanisms prune the nodes effectively. The average recall values
of MAHUSP_S on DS1, DS2, Kosarak and ChainStore datasets are 87, 95, 92 and 87%
respectively. These values for MAHUSP_L are 100, 94, 92 and 91% respectively.

Figure 6 shows the F-Score values for the four methods with different § values on the
4 datasets. In most of the cases, NaiveHUSP is the worst among the four methods. This is
because it estimates the utility of a sequence based on the utility of each item over the data
stream which is not an accurate approximation. Both proposed methods outperform the other
methods with an average F-score value of 90% over the DS1, DS2 and Kosarak datasets and
87% over the ChainStore dataset.

4.4.2 Average pattern length

Figure 7 shows the average length of patterns returned by the methods on different datasets.
As it is shown, the AvgLength values obtained by the MAHUSP_L and MAHUSP_S are simi-
lar to those of returned by USpan. Since MAHUSP_L prunes leaf nodes to release memory, its
AvgLength is generally lower than MAHUSP_S for different utility threshold values. More-
over, NaiveHUSP usually returns long patterns, since more items in the sequence leads higher
approximate utility, thus longer patterns are usually returned as HUSPs. In most of the cases,
RndHUSP returns patterns whose length is longer than those of returned by the exact method.
However, since the method prunes patterns randomly, in some cases (e.g., in DS1 when the
threshold is set to 0.44%) the average length of patterns is lower than the exact method’s.

4.4.3 Average true utility
In this section, we evaluate the quality of patterns returned by the methods in terms of

the true utility of the patterns. Since the methods are approximate methods, the output set
usually includes some or all of the true HUSP and some patterns which may not returned

@ Springer

818 Mach Learn (2017) 106:799-836

O MAHUSP_S EMAHUSP_L B NaiveHUSP O RndHUSP 0O USpan

3.5

AvgLength
S-B > RO
AvgLength
g
3] W w

S A T O o A =ANR BOL L B
FTET T T RN : .
S S o 3 S o o e e e e e e
Minimum utility threshold (%) Minimum utility threshold (%)
(a) (V]

AvgLength
SRR VEEN

AvgLength
(I SRF NI N

S v © nn O wn O
S O O O o o <O O O >~ [~ 0 0 &N
222583 2222222
Minimum utility threshold (%) Minimum utility threshold (%)
(b) (b)

Fig.7 Average length of patterns returned by the methods on the different datasets. a DS1, b DS2, ¢ Kosarak,
d ChainStore

OMAHUSP_S EMAHUSP_L B NaiveHUSP 0O RndHUSP 0O USpan

30000
E 25000 = 4000
g 20000 g 3000
£, 15000 % 2000
= 10000
< <1
5000 000
0 0
SN T VO ®OoOA Sz gm
IIITII 00 S S S S oS o
Minimum utility threshold (%) Minimum utility threshold (%)
@ (0
40000 —
§ 30000 % 20000
=
£ 20000 510000 |
Z 10000 < ‘ |
0
8558823
: S oo oo oo
Minimum utili Minimum utility threshold (%)
(d)

Fig. 8 Average true utility of patterns returned by the methods on the different datasets. a DS1, b DS2, ¢
Kosarak, d ChainStore

by an exact method (e.g., USpan). In this section, we show that the average true utility of
patterns returned by MAHUSP is relatively high and is comparable to those of discovered
by USpan. Figure 8 shows the results in terms of AvgTrueUtil. In this figure, MAHUSP_L

@ Springer

Mach Learn (2017) 106:799-836 819

O MAHUSP S B MAHUSP L B NaiveHUSP O RndHUSP

1 w1

2 g
508+ 0.8
£061+ 20.6
2041 5:,0-4
2 Z
£ 0.2 1 502
o [}
7o bl = 0
O N T OV ® O A p= N Lt
<t T T NN . B
Minimum utility threshold (%) Minimum utility threshold (%)
() (c)
< 0.5 5 |
£ 04 G 08
2
£03 £ 006
§ 02 2 0.4
2
2 0.1 z 0‘(2)
T 0 &
~ S Voo uno
S2IERES EE558883
S222::C $383333
Minimum utility threshold (%) Minimum utility threshold (%)
(b) (d)

Fig. 9 Relative utility error performance on the different datasets. a DS1, b DS2, ¢ Kosarak, d ChainStore

and MAHUS_S outperform NaiveHUSP and RndHUSP. For example in DS1, the average
true utility of patterns returned by USpan is 25,000, while this value for MAHUSP_L and
MAHUSP_S is 23,000 and 20,000 respectively. This value for Naive HUSP and RndHUSP is
10,000 and 13,000 respectively.

4.4.4 Relative utility error

In this section, we evaluate the effectiveness of the approximate utility approach against the
exact results and provide the relative utility error of our methods on the four datasets. The
relative utility error values are provided for different minimum utility threshold values and
different datasets, in Fig. 9. In the figure, all values greater than 1 (which result from very
inaccurate approximate utility values) are shown as 1 to keep the figures more readable.
Since MAHUSP_L releases the memory based on the utilities stored in the leaf nodes, its
approximation is usually tighter than MAHUSP_S which approximate the utility based on
rsu values. As expected, the proposed methods outperform NaiveHUSP and RndHUSP and
the average values for MAHUSP_L on DS1, DS2, Kosarak and ChainStore are 0.03, 0.1, 0.4
and 0.1 respectively and for MAHUSP_S are 0.2, 0.15, 0.3 and 0.38 respectively.

4.5 Efficiency of MAHUSP
4.5.1 Running time

Figure 10 shows the execution time of each method with different threshold values. Since
NaiveHUSP only stores and updates the utility of each item over data streams, it is the
fastest method. However, it generates a high rate of false positives due to its poor utility
approximation. MAHUSP_L is slower than MAHUSP_S, since it prunes the tree node by

@ Springer

820 Mach Learn (2017) 106:799-836

OMAHUSP_S EMAHUSP_L B NaiveHUSP 0O RndHUSP O USpan|

300 1000
3 'S 800
200 n
Zé; g 600
£ 100 £ 400
= £ 200
£ 2
S o O O o o O
S Al O 0 O A
FT LT TR0
S S o oS oo
Minimum utility threshold (%) Minimum utility threshold (%)
(a) (c)
2000 2500
i g 2000
8 1500 2
2 £ 1500
g 1000 E 1000
£ 500 = 500
2 0 & 0
S VO n O Vo
SIIXKER £E8858&88
222SSzS3S SSsS3s33
Minimum utility threshold (%) Minimum utility threshold (%)
(b) (d)

Fig. 10 Execution time on different datasets. a DS1, b DS2, ¢ Kosarak, d ChainStore

node. RndHUSP is slower than NaiveHUSP since it updates the tree instead of utility of
items. But, it is a bit faster than the proposed method because the pruning strategy is a
random approach. Although these methods are faster than MAHUSP_L and MAHUSP_S,
they produce high rate of false positive and false negative patterns. USpan is the slowest,
whose run time indicates the infeasibility of using a static learning method on data streams
although it returns the exact set of HUSPs. The results show the unreasonable run time of the
exact method and its inapplicability in practice. Moreover, MAHUSP methods are only a bit
slower than random pruning method (RndHUSP). Considering the big difference between
them in precision and recall, it is very worthwhile to use the pruning strategies proposed in
this paper.

4.5.2 Memory usage

Figure 11 shows the memory consumption of the methods on different datasets for dif-
ferent values of 8. USpan is the most memory consuming method since it needs to keep
whole sequences in the memory. The memory usage of NaiveHUSP depends on the num-
ber of promising items in the dataset. For example, Naive HUSP uses more memory than
MAHUSP_S on Kosarak because this dataset is a sparse dataset and NaiveHUSP stores a
huge list of items and their utilities into the memory. Regardless of the threshold value and
the type of dataset, MAHUSP_S and MAHUSP_L guarantee that memory usage is bounded
by the given input parameter availMem.

4.6 Run time performance over incoming batches

Figure 12 shows the performance of the methods over the batches as the data stream evolves.
In this figure, the x-axes presents the number of batches in the current data stream and the y-

@ Springer

Mach Learn (2017) 106:799-836 821

* MAHUSP_S - MAHUSP L - NaiveHUSP -= USpan
= 10000 = 10000
2 =S
5, 1000 T g 1000 +—e—e—o o o |
2 100 % ” 2 e
=] A X X 100 +
3 RS 3
£ 10 i E 10 +—————+—
= TEIIITRA = gz 2wt 235
S oo oo oo S S S 3 S I S
Minimum utility threshold (%) Minimum utility threshold (%)
(a) (c)
= 10000 g 100000
% 1000 ,M S 10000 $—e—s——o—o—
& KKK 2
2008 e o S 1000 F—e—e—e—u—x
z
£ ol § 100 F—————
g T 5 S\ o o n o
9 S A T © xx O O 2 O O > > 0 X D
= 33323 =Q S SS9 s &3S
e e e e S S S 3 S S S
Minimum utility threshold (%) Minimum utility threshold (%)
(b) (d)

Fig.11 Memory usage of the algorithms (shown in logarithmic scale). a DS1, b DS2, ¢ Kosarak, d ChainStore

B MAHUSP_S BMAHUSP_L [ONaiveHUSP B USpan O RndHUSP ‘

1000 1000

Z 100 Z

“g’ g 100

% 10 é-

= £ 10
12345678910 2 3 4 5
Number of Incoming Batches Number of Incoming Batches

(a) (c)

_ 10000 10000

2 1000 g 1000

g 5

£ 100 £ 100

: :

210 g 10 =
123456782910 12345678
Number of Incoming Batches Number of Incoming Batches

(b) (d

Fig. 12 Run time performance over incoming batches (shown in the logarithmic scale). a DS1, b DS2, ¢
Kosarak, d ChainStore

axes presents the accumulated run time for different methods. The minimum utility threshold
is set to 0.46, 0.96, 0.15 and 0.75% on DS1, DS2, Kosarak and ChainStore respectively.
MAHUSP_S, MAHUSP_L and RndHUSP have the same run time on the first batch since they
all run USpan to find potential HUSPs and insert them to MAS-Tree. Their performances are
different in the subsequent batches since they use different memory adaptive mechanisms.
In the first batch, NaiveHUSP and USpan are faster than the other methods since they do
not insert patterns to the tree. However, as the stream evolves, USpan become slower since
it runs on the whole current stream to discover HUSPs. In general, Naive HUSP is the fastest

@ Springer

822 Mach Learn (2017) 106:799-836

EMAHUSP_S EMAHUSP_L

800 ~1000 ~1000
5 2 750 8 800
2 600 2 N
&z v500 o 600
g 400 2 £ 400
£ 200 = = 200
ER) E 0 2 o
¥ zzmszosszzss REESSESERERR SERSE28EEE8E
TINSSSSSERES ot N IR DA R R Tl hhhdhad e
RRRSEBEL 2w E & & ARRACOCARRAEES SRR ARARAEEE
RRAMCSCARRAREEE it 31313 MMM 5T E
°S8 °
Dataset- size of Batch Dataset- Significance threshold & (%) Dataset- availMem(MB)
(a) (b) (©
~ 100
£ 100 G100 X
< s < 75 ~ 75
g =4 2 50
z % g 0 2
S 25 g 25 g 25
=0 =0 = 0
= ZHEASESSS232E - SZRRIASIZREIR & z888g8888g88s8
Lty TSRS S 2Rz RRRRNRAEEE ST TS993 R %S
LRALOLB NN E & [aYaFaRVEVEVRaRaali=R- -] R2288822% 5§ 4
172 R 720 7%] = = S S .=
DQDMSSQQQE'SS [SASAS] DDMMMDDD55;§
SEZ 5
Dataset- size of Batch Dataset- Significance threshold € (%) Dataset- availMem(MB)
(d) (e) ®

Fig. 13 Parameter sensitivity on different datasets

method. Moreover, since MAHUSP_S, MAHUSP_L and RndHUSP apply memory adaptive
mechanisms in the consecutive batches they are slower than NaiveHUSP. MAHUSP_S works
a bit faster than MAHUSP_L since it prunes a subtree in each iteration. In this figure, we
can also observe that the total run time incurred by MAHUSP_S and MAHUSP_L increases
almost linearly as the stream evolves.

4.7 Parameter sensitivity analysis

In this section we evaluate the performance of MAHUSP_L and MAHUSP_S by varying the
batch size (batchSize), the significance threshold (¢) and the amount of available memory
(availMem). In all the experiments, § is set to 0.46, 0.096, 0.15 and 0.075% for DS1, DS2,
Kosarak and ChainStore respectively. Figure 13a, d present the results on DS/, DS2, Kosarak
and ChainStore when the number of sequences in the batch varies. The x-axes in each graph
represents the combination of the dataset name and the number of sequences in the batch
(i.e., batchSize). Figure 13a shows the trend in the execution time with different batch sizes.
In all the datasets, the run time decreases as batchSize increases since increasing the batch
size leads to generating less number of intermediate potential HUSPs. Figure 13d shows F-
Scores on different datasets. From Fig. 13d, we can observe that the F-Score of the methods
increases slowly with increasing batch sizes. Figure 13b, e show the results on Run time and
F-Score for different values of €. Each bar in the graphs is assigned to each dataset and value
of € is a percentage of §. As it is observed, a higher value of ¢ leads to a lower number
of HUSPs returned by USpan in each batch and thus the F-Score value decreases. On the
other hand, when the value of € increases the processing time decreases since the number of
HUSPs returned by USpan decreases.

Figure 13c, f present the results on different datasets for different values of availMem. In
the graphs, the x-axes represents the combination of the dataset name and the input parameter

@ Springer

Mach Learn (2017) 106:799-836 823

availMem. Figure 13c shows the execution time with different values of availMem. A higher
value of availMem enables MAS-Tree to store more potential HUSPs, hence LBMA or SBMA
is called less frequently to release the memory. Therefore, the execution time decreases when
the available memory increases. Figure 13f shows the results on F-Score. When the available
memory is small (e.g., SOMB in DS1), there are fewer HUSPs in the memory and usually F-
Score is lower. However, after a certain value of availMem, the performance of the proposed
methods is much higher.

4.8 Real-life applications

In this section, we demonstrate the effectiveness and efficiency of our method on real-life
applications. We first conduct an analysis on a real web clickstream dataset, called Globe,
obtained from a Canadian news portal to extract patterns in web users’ reading behavior.
Then, we deploy our method to a publicly available time course microarray dataset, called
GSEG6377 (McDunn et al. 2008), to identify gene regulation sequential patterns correlated
with a specific disease.

4.8.1 A utility based users’ reading behavior mining

News recommendation plays an important role in helping users find interesting pieces of
information. A major approach to news recommendation focuses on modeling web users’
reading behavior. This approach discovers users’ access patterns from web clickstreams using
various data mining techniques such as frequent pattern mining. Nonetheless, there are some
common deficiencies in the frequent pattern based approaches to web users’ reading behavior
mining. First, they discover users’ reading patterns based on the frequency of the news being
viewed by users, which may not accurately capture users’ interests. Second, the news domain
is a dynamic environment. When users visit a news website, they are usually looking for
important and up-to-the-minute information. However, the frequency-based approaches do
not consider the importance (e.g., recency) of a news article.

As the first application, we analyze a real-world web clickstream dataset, called Globe,
obtained from a Canadian news web portal (The Globe and Mail?). The dataset was created
based on a random sample of users visiting The Globe and Mail during a 6-month period in
2014. It contains 116,000 sequences and 24,770 news articles. Each sequence in the dataset
corresponds to the list of news articles read by a subscribed user in a visit.

News utility model Our goal is to take both news importance and interestingness into
account when discovering behavioral patterns related to users’ interests. Hence, we define
the utility model such that it considers both users’ interest in an article and the freshness of
an article. Here, we assume that more recent news are more important* and the time user
spends on a news article reflects his/her interest in the news, that is if the user is not interested
in the news, he/she does not spend much time reading it and vice versa.

Given news nw and user usr, the internal utility of nw with respect to usr is defined as
browsing time (in seconds) that usr spent on nw.> In addition, since the importance of nw is

3 http://www.theglobeandmail.com/.

4 Other importance measures can be used. In this experiment we chose to use recency to measure the impor-
tance of a news article.

5 We consider the time interval between two consecutive visited news articles as time spent of the former
article. The last visited news article is removed from the sequence since we cannot calculate its time spent.
We also consider the maximum time spent 15 min for news articles whose time spent is more than 15 min.

@ Springer

http://www.theglobeandmail.com/

824 Mach Learn (2017) 106:799-836

Table 3 Top-4 HUSPs versus Top-4 FSPs with respect to time spent and support

Algorithm ID Pattern (title of the news in the pattern) Time spent Support
(min)
MAHUSP HUSP; Retiree, 60, wonders how long her money will last 1474 152
Which is better,a RRIF or an annuity? You may be
surprised
HUSP, Robin Williams warp-speed improvisation was almost... 1471 121
CBC lays off veteran sportscasters amid budget cuts
HUSP3 Israel prepares to ‘significantly’ expand campaign as 1212 116
UN chief...
MHI17: disaster ratchets up Russia-Ukraine tensions
HUSP4 Massive explosive decompression” downed MH17: Kiev 994 86
Canada should learn from Ireland’s housing crash
PrefixSpan FSP; CBC lays off veteran sportscasters amid budget cuts 576 286
Celine Dion takes indefinite break to focus on health,
family
FSPy La Prairie, Quebec mayor dies from wasp stings 380 254
Dufty billed taxpayers for attending funerals, RCMP
allege
FSP3 Supreme Court sides with Ottawa in multibillion-dollar ~ 536 247
EI case

MHI17: disaster ratchets up Russia-Ukraine tensions
FSP4 Controversial First Nation chiefs salary raises concern 830 220

Harper sticks to hard line on Hamas; U.S. condemns
Israel’s deadly...

The bold values show that our method works better than PrefixSpan in terms of time spent. However, PrefixSpan
could find the patterns with highest support

dynamic and varying from time to time, the external utility of nw is defined as:

1

accessDate(nw) — releasedDate(nw) + 1’

pnw) =

where accessDate is the date that usr clicks on nw and releasedDate is the released date of
nw. Note that 1 in the denominator is added to avoid zero division.

Given news nw and a visit S in the web clickstream dataset D, the utility of nw in S is
defined as: NUM (nw, S) = timeSpent(nw, S) x p(nw). Note that the utility model can be
plugged in as desired. The use of more sophisticated the utility model may further improve
the quality of the results.

We apply MAHUSP to discover HUSPs based on the above utility model. We also applied
PrefixSpan algorithm implemented by Fournier-Viger et al. (2013) to discover frequent
sequential patterns (i.e., FSPs) from the Globe dataset. Table 3 presents top-4 HUSPs and
top-4 FSPs of length 2, sorted by time spent and support respectively. Table 3 suggests that
the pattern with high support is not necessarily a pattern of users’ interest if we use time-spent
as the interestingness measure. It is because there exist less frequent patterns (e.g., HUSPI,
HUSP?2), which have higher time-spent than highly frequent patterns (e.g., FSPI, FSP2).
Moreover, Fig. 14 shows the sum of browsing time of two groups of patterns returned by
Prefixspan and MAHUSP. In this figure, the x axis refers to the top-k FSPs/HUSPs, while the

@ Springer

Mach Learn (2017) 106:799-836 825

2 20000
£ 15000 -+
= - MAHUSP
210000 +
£ 5000
=
0 +———+—
o) (=} (=3 (=3 (=3 [}
v (=} S (=} (=}
— o wv 2
K

Fig. 14 The sum of the browsing time of top-k HUSPs versus top-k FSPs on the Globe dataset

OMAHUSP_S HE MAHUSP L M NaiveHUSP

O RndHUSP™ O USpan
_ 3000 = 5000
g S 4000
g 200 % 3000 |
z 1000 :é 2000
Z g 1000 +
0 SAT OO OO § 0 |
oo ﬁ' © ®© o o o
22ggz==2 ggggges:
coocococococo Scocococooco o
Minimum utility threshold (%) Minimum utility threshold (%)
(@) (b)

Fig. 15 a Run time, b memory usage on the Globe dataset

y axis shows the sum of the time spent of the top-k patterns. The results show that MAHUSP
identifies the patterns with higher time spent even though they might not be as frequent as the
ones returned by PrefixSpan. These patterns can be directly used to produce recommenda-
tions to navigate users based on a semantic measure (e.g., news freshness and interestingness)
rather than a statistical measure (e.g., support). For example, in Table 3, if a user reads the
first article of HUSP| whose title is retiree, 60, wonders how long her money will last, we
can recommend the second article in HUSP with title which is better, a RRIF or an annuity?
You may be surprised. These patterns are also useful for the portal designers to understand
users’ navigation behavior and improve the portal design and e-business strategies.

We also evaluate the performance of MAHUSP in comparison to the other methods on
this dataset. Figure 15 shows the results in terms of run time and memory usage. NaiveHUSP
is the fastest method due to the fact that it only keeps the utility of each item over data
streams. However, its utility approximation is inaccurate and causes a high rate of false
positives. USpan is the slowest, since it re-runs the whole mining process on the current
data stream to discover HUSPs. Figure 15b shows the memory usage of the methods. Since
RndHUSP, MAHUSP_L and MAHUSP_S consume the same amount of memory, we only
present the results of MAHUSP_S, NaiveHUSP and USpan. Naive HUSP uses more memory
than MAHUSP_S on Globe since it needs to keep a huge list of items and their utilities into
the memory. Figure 16 shows the Precision, Recall and F-Score values for the four methods
with different § values on the Globe dataset. MAHUSP_S and MAHUSP_L outperform the
other methods significantly with an average Precision, Recall and F-score value of 95, 75
and 83% respectively, over the Globe dataset.

@ Springer

826 Mach Learn (2017) 106:799-836

‘ EOMAHUSP_ S MEMAHUSP L B NaiveHUSP [ORndHUSP

100 100 100
£ 80 80 9 80
g 60 £ 60 T 60
Z 40 = 40 Z 40
2 20 3 20 S 20
£ e =
0 0 = 0
S AT O 0O OO ST OO
e AR A A e I DDA AN
OO O OO S OO0 O —
Soocococoog ScooococssSo
Minimum utility threshold (%) Minimum utility threshold (%) Minimum utility threshold (%)
(a) (b) (©

Fig. 16 a Precision, b Recall and ¢ F-Measure performance on the Globe dataset

Table 4 (a) An example of a time course microarray dataset, (b) Fold changes of gene/probe values

@ ®
Patient IDs Genes TPy TP, TP3 TP; PatientIDs Genes TP} TP; TPz TP;

P Gy 240 546 100 S50 P Gy 1 22 —24 —48
G 321 98 454 974 G 1 —32 14 30
Gs 410 350 251 243 G 1 ~11 -16 -16

P, e 128 78 135 344 P, G 1 6.1 1.0 26
G, 253 820 482 90 Gy 1 32 1.9 -28
Gs 290 150 256 864 G 1 -19 —1.1 29

P3 Gy 600 188 99 40 Py Gy 1 -31 —-66 -15
G 500 555 510 80 G» 1 1.1 1.0 —62
Gs 200 400 350 450 G 1 2 1.7 22

4.8.2 Finding disease-related gene regulation sequential patterns from time course
microarray datasets

One of the most important problems arising from bio-applications is to discover meaning-
ful sequences of genes in microarray datasets (i.e., DNA or protein sequence databases).
Microarray is a powerful tools to provide information on relative levels of expression of
thousands of genes among samples. Table 4(a) shows an example of time course microar-
ray dataset consists of three patients whose IDs are P;, P, and P3. In this table, the gene
expression values of three genes G, G2 and G3 are presented over four time points samples
TPy, TP, TP3 and TP,.

In recent years, frequency-based sequential pattern mining methods (Bringay et al. 2010;
Cheng et al. 2013; Salle et al. 2009) have been extensively conducted on microarray datasets
as a promising approach to identify relationships between gene expression levels. In these
approaches (Bringay et al. 2010; Cheng et al. 2013; Salle et al. 2009), a gene regulation
sequential pattern is chosen as an interesting pattern based on the frequency/support frame-
work. However, frequency alone may not be informative enough for biologists in many
situations. For example, some genes are more important than others in causing a particular
disease and some genes are more effective than others in fighting diseases. The sequences
contain these more important/effective genes may not be discovered by the frequency-based
approaches, because these approaches neither consider the importance of each gene within
biological processes, nor temporal properties of genes under biological treatments.

@ Springer

Mach Learn (2017) 106:799-836 827

As the second application, we propose a new approach to identifying disease-related gene
regulation sequential patterns by taking the importance of genes with respect to a specific
disease and their temporal properties under biological treatments into account. We conduct
an analysis on a time course gene expression microarray dataset, called GSE6377 (McDunn
et al. 2008), downloaded from the GEMMA database.® Our aim is to mine cross-timepoint
gene regulation sequential patterns with respect to a specific disease. Below we first define
a utility model to discover disease-related gene regulation sequential patterns effectively
and then we present how a time-course microarray dataset is converted to a utility-based
sequential database. Finally, we apply MAHUSP to find disease-related gene regulation
sequential patterns from the dataset.

Gene utility model In each time point, a real value is assigned to each gene that specifies
the relative abundance of that gene in the time point. Each expression value in the dataset is
usually transformed as up-regulated (representing by + meaning that values are greater than a
threshold), down-regulated (representing by-meaning that values are less than a threshold), or
normal (neither expressed nor repressed) and only the gene expressions that are up-regulated
or down-regulated are preserved (Creighton and Hanash 2003). Hence, each gene (i.e., G,)
in a sample can be thought of as being two items, one item referring to the gene being up
(i.e., G+), the other referring to the gene being down (i.e., G,-) (Cheng et al. 2013). The
absolute expression value after this process is considered as internal utility since it determines
expression level of one gene in the sample. On the other hand, as mentioned before, some
genes are known by biologists and literature to be more important with respect to a particular
disease. The external utility of genes should represent the importance of genes with respect to
the disease. Hence, as the external utility of each gene, we use the gene-disease association
score proposed by DisGeNET.” This score takes the number and type of sources (level of
curation, organisms), and the number of publications supporting the association into account
to rank genes with respect to a specific disease. The score value is between 0 and 1. Hence,
the utility of a gene in a sample is defined as the gene-disease association score multiplied
by its expression level in the sample.

Converting microarray dataset into utility-based sequential database in order to mine
HUSPs from a microarray dataset, the dataset should be converted into a utility based sequen-
tial database. Similar to Cheng et al. (2013), we consider the first time point as a baseline
to derive the importance of each gene at each time point. Hence, the values in the table are
divided by the first time point values. Table 4(b) shows the divided values as a fold change
matrix. Then, we transform genes as up-regulated, down-regulated as follows. If the absolute
fold change value is more than a threshold, the gene is defined as an eligible gene. Similar
to Chang et al. (2008), the threshold is set as 1.5 and only eligible genes are preserved as
new items. Table 5 shows the converted dataset. For example, in patient P;, up-regulated
G1+(2.2) and down-regulated G,- (3.2) occur at the second time point and are considered to
occur within the same transaction. In this dataset, each gene is an item and each time point rep-
resents as an itemset. The set of time points (i.e., TPs) for each patient forms a sequence. The
absolute fold change value represents the internal utility for each gene in each time point. In
this study, the importance of G, represents the importance of both G,+ and G- gene items.

In order to evaluate our proposed gene utility model and also the performance of MAHUSP
to find disease-related gene regulation sequential patterns from a time course gene expression
dataset, we mine the GSE6377 dataset. McDunn et al. (2008) attempted to detect 8,793
transcriptional changes in 11 ventilator-associated pneumonia patients leukocytes across 10

6 http://www.chibi.ubc.ca/Gemma/home.html.
7 http://www.disgenet.org/web/DisGeNET/menu.

@ Springer

http://www.chibi.ubc.ca/Gemma/home.html
http://www.disgenet.org/web/DisGeNET/menu

828 Mach Learn (2017) 106:799-836

Table 5 Converted utility-based sequential dataset from time course microarray dataset in Table 4(a)

(a)

Patient ~ Sequence

IDs

Py {G1+(2.2)G- (3. 2)}2{G |- (2.4)G3- (1.6)}3{G |- (4.8) G+ (3.0)G3- (1.6)}4

Py (G 1+ (6.1)Gt (3.2)G3- (1.9 (G 1+ (1.0)Got (1.9)G5— (1.1)}3{G 1+ (2.6)Go— (2.8)G 5+
(2.9)}4

P3 (G- (B.1)Gy+ (LG5t 2.0))2(G - (6.6)G5+ (1.0)G 3+ (LD)3(G - (159G, (62)G34 22))4

(b)

Gene Gy Ga Gs3

Score 0.8 0.6 0.1

Table 6 Top-20 genes related to pneumonia

Rank Gene name Rank Gene name Rank Gene name Rank Gene name
1 CAT 6 SFTPD 11 CYP2J2 16 HMGBI1

2 SFTPA2 7 TLR2 12 F2 17 CR1

3 PECAM1 8 TLR6 13 CXCL3 18 FCGR2A

4 SFTPB 9 PDPN 14 CXCL2 19 MASP2

5 SFTPC 10 ITGB3 15 MBL2 20 IL17A

time points. Our goal is to decipher pneumonia-related gene regulation sequential patterns.
We have also downloaded disease-gene association scores from DisGenet which contains 40
genes.® Table 6 shows top-20 genes most related to pneumonia.

We apply MAHUSP to extract HUSPs based on the proposed utility model. We also run a
frequency-based algorithm, PrefixSpan (Pei et al. 2004), to discover frequent gene regulation
sequential patterns (i.e.,FFGSs) from the dataset. Table 7 shows top-4 HUSPs (e.g., disease-
related gene regulation sequential patterns) extracted by MAHUSP and top-4 FGSs extracted
by PrefixSpan, sorted by the utility value and support respectively. Given a gene regulation
sequential pattern S; and disease dis, we evaluate the quality of the results using popularity of a
sequence score (Bringay et al. 2010) which is defined as follows: Pop(«, dis) = W,
where w (i, dis) is the importance of popular gene i for disease dis. We consider the genes
presented in Table 6 as popular genes and w(i, dis) = 20 — rank(i, dis) + 1. For the genes
not presented in the list, w(i, dis) = 1. Table 7 suggests that the frequent gene regulation
sequential patterns are not necessarily popular w.r.t. the disease even though their support
value is more than 90%. This is due to the fact that these patterns are discovered based on
their frequency in the dataset which is not informative enough. On the other hand, MAHUSP
returns the patterns whose popularity is relatively high. These patterns help biologists select
relevant sequences according to a specific disease and also identify the relationships between
important genes and the other genes.

Figure 17 shows the performance of different methods on the GSE6377 dataset in terms
of run time and memory usage. The dataset is a dense dataset and as we expected the number

8 For genes in the dataset which are not in the list, the minimum score in the list is considered as their score
value.

@ Springer

Mach Learn (2017) 106:799-836 829

Table 7 Top-4 HUSPs versus Top-4 FGSs with respect to utility and support

Algorithm ID Sequence of genes (e.g., «) Pop(a, Pneumonia) Utility (%)
MAHUSP HUSP, (F2, SFTPC)(F2, TLR6, SFTPC) 15.75 22
HUSP; (TLR6, SFTPC)(TLR6, SFTPC) 14.5 21
HUSP3 (SFTPC)(TLR6, SFTPC)(SFTPC) 14.5 21
HUSPy4 (SFTPC)(CRP)(SFTPC) 10.5 17
Algorithm D Sequence of genes (e.g., «) Pop(a, Pneumonia) Support(%)
PrefixSpan FSPy (DAD1) (RTCB, CAPNS1, ZNF146) 1 91
FSPy (RTCB) (SRSF9, SLC25A3) 1 91
FSP3 (DADI) (CAPNS1, ZNF146, RPS11) 1 91
FSPy (DADI1, RPS11)(CAPNSI) 1 91
OMAHUSP S B MAHUSP L H NaiveHUSP
ORndHUSP 0O USpan
15000 ~
512000 2 6000 -+
N~ Q
?E) 9000 é‘) 4000 +
= 6000 =)
£ 3000 £ 2000 -
" £
0 § 0 A
SN T v P Q
S558558 EEEEEE
S 3 S oS IS I S S S S 3 3
Minimum utility threshold (%) Minimum utility threshold (%)
(@) (b)
Fig. 17 a Run time, b memory usage on the GSE6377 dataset
OMAHUSP S B MAHUSP L HENaiveHUSP O RndHUSP ‘
_l1oo 100 100
£ 80 80 380
§ 60 £ 60 S 60
2 =]
3 40 5 40 Z 40
& 20 & 20 s 20
0 0 2 0
S N F O 0o O S N < O 0o O S N T © 0 O
P ST S S =1 [S S S S} [S S S S
o oo o o o S oo o o o S o o o 9o 9
S O o o o o o O O o o <o oS O O o o O
Minimum utility threshold (%) Minimum utility threshold (%) Minimum utility threshold (%)
(a) (b) (c)

Fig. 18 a Precision, b Recall and ¢ F-Measure performance on the GSE6377 dataset

of HUSPs is huge. For example, given threshold 0.07, there are 56,542,360 HUSPs in the
dataset. In this experiment availMem is set to 2 GB. The proposed methods are more efficient
than USpan. NaiveHUSP is the fastest method since it works based on item utilities in the
dataset to find HUSPs. But, its false positive rate is high due to its inaccurate approximate
utility. Figure 18 shows Precision, Recall and F-Score values for the four methods. In general,

@ Springer

830 Mach Learn (2017) 106:799-836

both proposed methods outperform the other methods with an average Precision, Recall and
F-score values of 75, 67 and 71% over the GSE6377 dataset.

4.9 Discussion

In reality, datasets can be sparse and/or dense in different domains. Considering the rationale
behind the proposed memory-adaptive mechanisms and the experimental results, the question
of what are the situations in which one mechanism is more effective and efficient than the
other one is addressed as follows.

Generally speaking, if data sharing is common such as in dense databases, the potential
HUSPs found in batches will have more overlaps in the tree. In this case, if a subtree is mistak-
enly pruned due to memory violation (e.g., a subtree whose root has minimum rsu and it does
not present a HUSP but its subtrees contain HUSPs), several high utility sequential patterns
will be missed concurrently. Therefore, SBMA strategy may downgrade the performance
on dense datasets. In such cases, pruning leaf nodes might be more effective (e.g., LBMA
strategy), since only one pattern, represented by the path from root to the leaf node with min-
imum utility, is pruned. On the other hand, if data sharing is rare such as in sparse databases,
potential HUSPs are generally stored as different branches and share less number of nodes
in the tree. In this case, pruning sub-tree to release memory might be more effective than
pruning leaf nodes. Our experiments assert such claims. For example, in the sparse dataset
Kosarak, MAHUSP_S outperforms MAHUSP_L in terms of running time and F-Score. On
the other hand, in the dense datasets, we noticed that MAHUSP_S did not perform as well as
MAHUSP_L.

Moreover, there is no precise relationship between € and the type of dataset. Generally,
a lower value of € creates a larger tree and thus the memory adaptive mechanisms may be
triggered more often to release the memory. Hence, the algorithm takes longer to find HUSPs.
In this case, if the selected memory adaptive mechanism (LBMA or SBMA) releases the
memory effectively (e.g., all (or most of) high utility sequential patterns remain in the tree),
then a lower value of € increases the effectiveness of the methods. Otherwise, not only it takes
longer to find the patterns, but also several true HUSPs will be missed. On the other hand,
a high value of € usually downgrades the effectiveness of the methods, since USpan returns
less number of patterns in the batch as potential HUSPs. According to the experiments, the
effectiveness of the algorithms on the sparse dataset Kosarak is more sensitive than dense
datasets (e.g., DS2) to the value of €. This is due to the fact that, in a sparse dataset, the
number of items compared to the number of sequences in the dataset is relatively high and
thus a HUSP occurs less often in different batches. Therefore, if € is set to a high value such
that a HUSP is not returned as a potential HUSP in a batch, it is less likely the same pattern
appears in subsequent batches again. In contrast, in dense datasets, a HUSP may appear more
often in different batches. In this case, the chance of finding the pattern as a potential HUSP
in several batches is higher, thus the results are less sensitive to the € value.

5 Related work
5.1 Sequential pattern mining over data streams
Sequential pattern mining plays an important role in data mining and several related algo-

rithms have been proposed such as AprioriAll (Agrawal and Srikant 1995), GSP (Srikant
and Agrawal 1996), FreeSpan (Han et al. 2010), PrefixSpan (Marascu and Masseglia 2005),

@ Springer

Mach Learn (2017) 106:799-836 831

SPADE (Zaki 2001) and SPAM (Ayres et al. 2002). These algorithms can be generally cate-
gorized as using a horizontal database (e.g., AprioriAll, GSP, FreeSpan and PrefixSpan) or a
vertical database (e.g., SPADE, SPAM and ClaSP). The AprioriAll and GSP algorithms use
candidate-generation-and-test methodology for mining sequential patterns. FreeSpan and
PrefixSpan discover sequential patterns by the pattern-growth methodology. The SPADE
and SPAM algorithms use different vertical representations for mining sequential patterns. A
vertical representation provides the advantage of calculating frequencies of patterns without
performing costly database scans. This allows vertical mining algorithms to perform better
on datasets having dense or long sequences than algorithms using the horizontal format.
Data stream mining is one of the most important and challenging topics in data mining. The
desired feature of stream mining algorithms is that when records are inserted into or deleted
from the database, the algorithms can incrementally update the patterns based on previous
mining results, which is much more efficient than re-running the whole mining process on
the updated database. Several studies such as Chen et al. (2005), Marascu and Masseglia
(2005), Ho et al. (2006), Raissi et al. (2006) and Chang et al. (2008) have been performed
for mining sequential patterns over data streams. MILE (Chen et al. 2005) is an efficient
algorithm to mine sequential patterns over data streams. The proposed algorithm recursively
uses the knowledge of existing patterns to mine the new patterns efficiently. One unique
feature of MILE is when some prior knowledge of the data distribution in the data streams is
available, it can be incorporated into the mining process to further improve the performance
of MILE. According to the experiments, MILE consumes more memory than PrefixSpan, so
the authors designed a solution to balance the memory usage and time efficiency in memory
limited environments. SMDS (Marascu and Masseglia 2005) extracts sequential patterns
over data streams and it has two main features: First, using a sequence alignment method,
SMDS summarizes batches of transactions. This process works based on a greedy clustering
algorithm. The algorithm provides distinct clusters of sequences by considering the main
features of web usage sequences. Second, frequent sequences found by SMDS are stored
in a prefix tree structure. This data structure enables SMDS to calculate the real support of
each proposed sequence. IncSpam (Ho et al. 2000) is single-pass algorithm to mine the set
of sequential patterns over a stream of itemset-sequences with a sliding window. The authors
proposed a bit-sequence representation to reduce the memory requirement of the online
maintenance of sequential patterns generated so far. The model receives the transactions
from the data stream and uses a bit-vector data structure, called Customer Bit-Vector Array
with Sliding Window (CBASW)), to store the information of items for each sequence. Lastly,
a weight function is adopted in this sliding window model. The weight function can judge the
importance of a sequence and ensure the correctness of the sliding window model. SPEED
(Raissi et al. 2006) identifies frequent maximal sequential patterns in a data stream. SPEED
is based on a new structure and on strict valuation of edges. Such a valuation is very useful
either when considering the pruning phase or when comparing sequences since we only
have to consider sequences embedded into the lattice sharing same valuations. At any time,
users can issue requests for frequent maximal sequences over an arbitrary time interval.
Furthermore, SPEED produces an approximate support answer with an assurance that it
will not bypass a user-defined frequency error threshold. SeqStream (Chang et al. 2008)
mines closed sequential patterns in stream windows incrementally. It works based on various
novel strategies to prune search space aggressively. SeqStream works based on a synopsis
structure called Inverse closed Sequence Tree (IS7) to keep inverse closed sequential patterns
in current window. There are two main tasks in SeqStream. The first one is to efficiently update
supports of tree nodes under when an element is inserted or removed. The second one is to
remove nodes that do not need to update or extend to eliminate the related support counting

@ Springer

832 Mach Learn (2017) 106:799-836

and node extension costs as much as possible. SeqStream uses an insertion database and
removal database to update the support information of current IST. These two databases are
usually much smaller than the whole database in the sliding window. Therefore the support
update task can be completed quickly. For the second task, SeqStream adopts various pruning
strategies to safely skip nodes that do not need to be handled.

On the other hand, several studies (Lin et al. 2013; Manku and Motwani 2002; Mendes
et al. 2008) have been conducted to use approximate approaches to discover frequent patterns
over the entire data stream. One of the first methods to find frequent pattern over the entire data
stream is proposed by Manku and Motwani (2002). In Manku and Motwani (2002), authors
presented algorithms for computing frequency counts of items exceeding a user-specified
threshold over data streams. They also proposed an extended version of the algorithm to
find frequent itemsets over data streams. Metwaly et al. (2005) proposed an algorithm which
returns a list of the most frequent items from a skewed data stream. Mendes et al. (2008)
proposed two methods (i.e., SS-BE and SS-MB) inspired by Manku and Motwani (2002) for
finding frequent sequential patterns over data streams. However, all these methods are for
finding frequent patterns and they do not have memory adaptive mechanisms. Although the
above algorithms are pioneers in sequential pattern mining, they treat all items as having the
same importance/utility and assumes that an item appears at most once at a time point, which
do not reflect the characteristics in the scenario of several real-life applications and thus the
useful information of sequences with high utilities such as high profits is lost. To address the
issue, high utility sequential pattern (HUSP) mining (Ahmed et al. 2011, 2010; Shie et al.
2013; Yin et al. 2012) has emerged as a novel research topic in data mining recently.

5.2 High utility sequential pattern mining

UMSP (Shie et al. 2013) was designed for mining high utility mobile sequential patterns.
Each itemset in a sequence is associated with a location identifier. With this feature, the utility
of a mobile sequential pattern is also a single value. The authors integrate mobile sequential
pattern mining with utility mining for finding high-utility mobile sequential patterns in this
paper. Two different types of methods, namely level-wise and tree-based ones, are proposed
for this problem. For level-wise method, an algorithm called UMSP;, (mining high Utility
Mobile Sequential Patterns by a Level-wise method) is proposed. Not only supports but
also utilities of patterns are considered in the level-wise mining processes. For tree-based
methods, two algorithms UMSPT (prg) (mining high Utility Mobile Sequential Patterns by a
Tree-based method with a Depth First Generation strategy) and UMSP7 prg) (mining high
Utility Mobile Sequential Patterns by a Tree-based method with a Breadth First Generation
strategy) are proposed. Both of the two tree-based algorithms use a tree structure named MTS-
Tree (Mobile Transaction Sequence Tree) to summarize the corresponding information, such
as locations, items, paths and utilities, in mobile transaction databases. UMSP searches for
patterns within MTS-Tree, which is efficient. However, due to the specific constraint on the
sequences, this algorithm can only handle specific sequences with simple structures (single
item in each sequence element, and a single utility per item). In Ahmed et al. (2011), an
algorithm is specifically designed for utility web log sequences. The utility of a pattern can
have multiple values, and the authors choose the utility with maximal values to represent
a patterns utility with two tree structures, i.e. UWAS-tree and ITUWAS-tree. The proposed
approach can handle both forward and backward references, static and dynamic data, avoids
the level-wise candidate generation-and-test methodology, does not scan databases several
times and considers both internal and external utilities of a web page. However, sequence
elements with multiple items such as ((c, 2)(b, 1)) can not be supported, and the scenarios

@ Springer

Mach Learn (2017) 106:799-836 833

considered are rather simple, which limit the algorithm’s applicability for complex sequences.
Ul and US (Ahmed et al. 2010) extend traditional sequential pattern mining. For mining
high-utility sequential patterns, they propose two new algorithms. (1) Utility Level which
is a high-utility sequential pattern mining with a level-wise candidate generation approach,
and (2) Utility Span which is a high-utility sequential pattern mining with a pattern growth
approach. A pattern utility is calculated in two ways. The utilities of sequences having
only distinct occurrences are added together, while the highest occurrences are selected from
sequences with multiple occurrences and used to calculate the utilities. However, the problem
definition in Ahmed et al. (2010) is rather specific. No generic framework is proposed which
has a clear process to transfer from sequential pattern mining to high utility sequence analysis.
Recently, Yin et al. (2012) proposed a new definition for high utility sequential patterns
mining, which aims at finding sequences having a maximum utility. Then, they proposed the
USpan algorithm for mining such patterns. USpan is the current best algorithm for mining
high utility sequential patterns. USpan is a general framework for high utility sequential
pattern mining. To satisfy Downward Closure Property, the authors have defined and used
Sequence Weighted Utilization (SWU) and Sequence Weighted Downward Closure (SDCP).
Based on the SWU of a pattern, an item is called promising if adding it to a candidate pattern
results in a new pattern whose SWU is greater than or equal to the minimum utility threshold.
Therefore, the pruning they perform before candidate generation is based on this SDCP.
Their proposed depth pruning is a Pruning After Candidate Generation (PACG) mechanism.
However, all of the HUSP mining methods were designed for static datasets, not for data
streams.

5.3 High utility pattern mining over data streams

Several methods have been proposed to mine high utility itemsets (HUIs) from data streams
(Ahmed et al. 2012; Tseng et al. 2006; Li et al. 2008). THUI-Mine (Tseng et al. 2006) was the
first algorithm for mining temporal high utility itemsets from data streams. The underlying
idea of THUI-Mine algorithm is to integrate the advantages of Two-Phase algorithm (Liu
et al. 2005) with the incremental mining techniques for mining temporal high utility itemsets.
Later, two algorithms, called MHUI-BIT and MHUI-TID, were proposed in Li et al. (2008)
for mining high utility itemsets from data streams. Two effective representations of item
information, i.e., Bitvector and TIDlist, were developed and used in the proposed methods to
restrict the number of candidates and to reduce the processing time and memory usage. The
author proposed two algorithms to mine the set of high utility itemsets based on Bitvector and
TIDlist, respectively. However, the proposed representations become very inefficient when
the number of distinct items become large in a window. GUIDE is a framework proposed in
Shie et al. (2012) for mining a compact form of high utility itemsets from data streams with
different models (i.e. the landmark, sliding and time fading window models). It works based
on a tree structure, called MUI-Tree, which is constructed in one scan of the data stream.
HUPMS (Ahmed et al. 2012) is a recent method for mining HUIs from data streams, which
is based on the TWU model. The authors proposed a novel tree structure, called HUS-tree
(Incremental and Interactive Utility Tree for Stream data) to keep information about patterns
and their TWU values. HUS-tree has the build once mine many property for interactive
mining. In Ryang and Yun (2016), the authors proposed an algorithm, called SHU-Growth,
for mining high utility itemsets from a data stream. They first developed two techniques
called RGE and RLE, to decrease over-estimated utilities. They also proposed a novel tree
structure, called SHU-Tree. They designed methods to construct and update the tree in order
to utilize reduced over-estimated utilities. Since, the proposed method applies the sliding

@ Springer

834 Mach Learn (2017) 106:799-836

window model to mine HUIS, it stores the utility information of patterns for each batch of
transactions separately. Thus, it is not memory efficient to discover patterns over a long period
of time. Moreover, the proposed method is not a memory adaptive mining approach. In Kim
and Yun (2016), the authors proposed a tree-based algorithm for mining recent high utility
itemsets over data streams. The proposed algorithm applies the time decaying model and
diminishes the utilities of transactions according to their arrival-time in order to assign larger
weights to recent data. The algorithm regularly updates the utility information in the tree and
removes the nodes whose utility value is less than the threshold. Although the aforementioned
methods are efficient to discover high utility itemsets over data streams, they are not able
to discover HUSPs since they do not consider the ordering relationships between items or
itemsets. Considering the sequential orders between itemsets makes the mining process much
more challenging than mining high utility itemsets.

In Zihayat et al. (2015), we proposed a method called HUSP-Stream to discover HUSPs
over a time-sensitive sliding window. HUSP-Stream works based on a data structure named
HUSP-Tree which s to store the essential information for mining HUSPs over a time-sensitive
sliding window. HUSP-Tree can be easily updated when new data arrive and old data expire in
the window. When data arrive at or leave from a sliding window, HUSP-Stream incrementally
updates HUSP-Tree to find HUSPs based on previous mining results. During the mining
HUSPs in the current window, HUSP-Stream applies a new utility estimation model to more
effectively prune the search space. The proposed method applies the sliding window model
and is not able to find HUSPs over the entire data stream. HUSP-Tree (Zihayat et al. 2015)
is not applicable to store the information over a long period of time. Because the main
idea behind HUSP-Tree is to facilitate update procedure when a new transaction arrives at or
leaves from a the window. Hence, the nodes in the tree is designed such that it stores the utility
information per transaction. This data structure is not efficient for mining HUSPs over the
entire data stream, since it consumes more memory and it is not as compact as the proposed
tree structure in this paper. Moreover, HUSP-Stream applies an upper bound, called Suffix
Utility (i.e., SFU), to prune patterns during HUSP discovery in the current window. However,
SFU is different than the rest utility model proposed in this paper. SFU is an upper bound
of the utilities of some of its super-sequences (i.e., S-Concatenate super-sequences) while
rest utility is an upper bound of the utilities of all of the super-sequences. During memory
adaptive mechanism, we need an upper bound regardless of the type of super-sequences,
hence SFU is not applicable in our study.

6 Conclusions

We tackled the problem of memory adaptive high utility sequential pattern mining over data
streams. We proposed an approximation algorithm, called MAHUSP, to discover HUSPs over
anincrementally larger data stream. MAHUSP is based on a compressed tree structure and two
memory adaptive mechanisms that can adapt the memory usage to the available memory by
pruning the least promising part of the tree when necessary. We proved that MAHUSP returns
all the true HUSPs under certain circumstances. Our extensive evaluation of MAHUSP on
both real and synthetic datasets showed that MAHUSP effectively adjusts the memory usage
over the course of HUSP mining with very little overhead, and it returns more accurate
results than other methods in comparison. In order to further demonstrate the effectiveness
and efficiency of our method on real-life applications, we conducted an analysis on a real
web clickstream dataset, obtained from a Canadian news portal, to extract patterns in web

@ Springer

Mach Learn (2017) 106:799-836 835

users’ reading behavior. Then, we also applied MAHUSP to a publicly available time course
microarray dataset to identify gene regulation sequential patterns correlated with a specific
disease. The evaluation results showed that our method can effectively discover meaningful
patterns, which are useful in each of the applications. The results revealed the practical value
of this work in real-life applications in terms of discovering high utility sequential patterns
over data streams. In this study, we confine the resource to memory. As future work, we
will extend our method to consider new types of resources such as CPU. As another future
direction, we plan to discover top-k HUSPs over data streams to limit the search space and
thus the resource consumption.

References

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In ICDE (pp. 3-14).

Ahmed, C. F, Tanbeer, S. K., & Jeong, B. (2010). A novel approach for mining high-utility sequential patterns
in sequence databases. ETRI Journal, 32, 676—686.

Ahmed, C. F,, Tanbeer, S. K., & Jeong, B. (2011). A framework for mining high utility web access sequences.
IETE Journal, 28, 3—-16.

Ahmed, C. F, Tanbeer, S. K., & Jeong, B. S. (2012). Interactive mining of high utility patterns over data
streams. Expert Systems with Applications, 39, 11979-11991.

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Sequential pattern mining using a bitmap representation.
In Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining (pp.
429-435).

Bringay, S., Bringay, S., Roche, M., Teisseire, M., Poncelet, P., Rassoul, R. A., et al. (2010). Discovering
novelty in sequential patterns: Application for analysis of microarray data on alzheimer disease. Studies
in Health Technology and Informatics, 14(160), 1314-1318.

Chang, L., Wang, T., Yang, D., & Luan, H. (2008) Seqstream: Mining closed sequential patterns over stream
sliding windows. In Proceedings of the IEEE international conference on data mining (pp. 83-92).
Chen, G., Wu, X., & Zhu, X. (2005) Mining sequential patterns across data streams, Ph.D. thesis. University

of Vermont.

Cheng, C. P, Liu, Y. C,, Tsai, Y. L., & Tseng, V. S. (2013). An efficient method for mining cross-timepoint
gene regulation sequential patterns from time course gene expression datasets. BMC Bioinformatics,
14(12), 1-12.

Creighton, C., & Hanash, S. (2003). Mining gene expression databases for association rules. Bioinformatics,
19(1), 79-86.

Fournier-Viger, P., Gomariz, A., Soltani, A., & Gueniche, T. (2013) Spmf: Open-source data mining library.
http://www.philippe-fournier- viger.com/spmf/.

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., & Hsu, M. (2010) Freespan: Frequent pattern-projected
sequential pattern mining. In Proceedings of the ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 355-359).

Ho, C., Li, H., Kuo, F., & Lee, S. (2006). Incremental mining of sequential patterns over a stream sliding
window. In Proceedings of the ICDM workshops (pp. 677-681).

Kim, D., & Yun, U. (2016). Mining high utility itemsets based on the time decaying model. Intelligent Data
Analysis, 20(5), 1157-1180.

Li, H. F, Huang, H. Y., Chen, Y. C., Liu, Y. J., & Lee, S. Y. (2008). Fast and memory efficient mining of high
utility itemsets in data streams. In Proceedings of the 8th IEEE international conference on data mining
(pp- 881-886).

Lin, W. Y, Yang, S. F.,, & Hong, T. P. (2013). Memory-aware mining of indirect associations over data streams.
In IDAM 2013. Amsterdam: Springer.

Liu, Y., Liao, W., & Choudhary, A. (2005). A fast high utility itemsets mining algorithm. In Proceedings of
the 1st international workshop on utility-based data mining (pp. 90-99).

Manku, G. S., & Motwani, R. (2002). Approximate frequency counts over data streams. In Proceedings of
VLDB, (pp. 346-357).

Marascu, A., & Masseglia, F. (2005). Mining sequential patterns from temporal streaming data. In Proceedings
of the ECML/PKDD workshop on mining complex data (pp. 355-359).

@ Springer

http://www.philippe-fournier-viger.com/spmf/

836 Mach Learn (2017) 106:799-836

McDunn, J., Husain, K., Polpitiya, A., Burykin, A., Ruan, J., Li, Q., et al. (2008). Plasticity of the systemic
inflammatory response to acute infection during critical illness: Development of the riboleukogram. PloS
ONE, 3(2), e1564.

Mendes, L., Ding, B., & Han, J. (2008). Stream sequential pattern mining with precise error bounds. In /ICDM
"08 (pp. 941-946).

Metwaly, A., Agrawal, D., & Abadi, A. (2005). Efficient computation of frequent and top-k elements in data
streams. In ICDT (pp. 398—412). Berlin: Springer.

Mooney, C. H., & Roddick, J. F. (2013). Sequential pattern mining approaches and algorithms. ACM Computing
Surveys, 45(2), 19:1-19:39.

Pei, J., Han, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., & Hsu, M. (2004). Mining sequential patterns by
pattern-growth: The prefixspan approach. IEEE Transactions on Knowledge and Data Engineering, 16,
1424-1440.

Pisharath, J., Liu, Y., Ozisikyilmaz, B., Narayanan, R., Liao, W. K., Choudhary, A., & Memik, G. (2012).
Nu-minebench version 2.0 dataset and technical report. http://cucis.ece.northwestern.edu/projects/dms/
minebench.html.

Raissi, C., Poncelet, P., & Teisseire, M (2006). Speed: Mining maximal sequential patterns over data streams.
In Proceedings of the IEEE international conference on intelligent systems (pp. 546-552).

Ryang, H., & Yun, U. (2016). High utility pattern mining over data streams with sliding window technique.
Expert Systems with Applications, 57, 214-231.

Salle, P., Bringay, S., & Teisseire, M. (2009). Mining discriminant sequential patterns for aging brain. In
Artificial intelligence in medicine: 12th conference on artificial intelligence in medicine, AIME 2009,
Verona, Italy, Proceedings (pp. 365-369). Berlin: Springer.

Shie, B. E., Yu, P. S, & Tseng, V. S. (2012). Efficient algorithms for mining maximal high utility itemsets
from data streams with different models. Expert Systems with Applications, 39, 12947-12960.

Shie, B. E., Hsiao, H. F.,, & Tseng, V. S. (2013). Efficient algorithms for discovering high utility user behavior
patterns in mobile commerce environments. Knowledge and Information systems, 37(2), 363-387.
Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improve-
ments. In Proceedings of the international conference on extending database technology: Advances in

database technology (pp. 3—17).

Tseng, V. S., Chu, C. J., & Liang, T. (2006). Efficient mining of temporal high-utility itemsets from data
streams. In ACM KDD utility based data mining (pp. 18-27).

Wang, J. Z., Yang, Z. H., & Huang, J. L. (2014). An efficient algorithm for high utility sequential pattern
mining. In Frontier and innovation in future computing and communications (Vol. 301, pp. 49-56).
Amsterdam: Springer.

Yin, J., Zheng, Z., & Cao, L. (2012). Uspan: An efficient algorithm for mining high utility sequential patterns.
In Proceedings of ACM SIGKDD (pp. 660-668).

Yin,J., Zheng, Z., Cao, L., Song, Y., & Wei, W. (2013). Efficiently mining top-k high utility sequential patterns.
In IEEE 13th international conference on data mining (ICDM) (pp. 1259-1264).

Zaki, M. J. (2001). Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42, 31-60.

Zihayat, M., Wu, C. W., An, A., & Tseng, V. S. (2015). Mining high utility sequential patterns from evolving
data streams. In Proceedings of the ASE BigData & Sociallnformatics 2015, ASE BD&SI ’15 (pp. 52:1—
52:6). New York, NY: ACM. doi:10.1145/2818869.2818883.

@ Springer

http://cucis.ece.northwestern.edu/projects/dms/minebench.html
http://cucis.ece.northwestern.edu/projects/dms/minebench.html
http://dx.doi.org/10.1145/2818869.2818883

	Memory-adaptive high utility sequential pattern mining over data streams
	Abstract
	1 Introduction
	2 Definitions and problem statement
	3 Memory adaptive high utility sequential pattern mining
	3.1 Overview of MAHUSP
	3.2 MAS-Tree structure
	3.3 Rest utility: a utility upper bound
	3.4 MAS-Tree construction and updating
	3.5 Memory adaptive mechanisms
	3.6 Mining HUSPs from MAS-Tree
	3.7 Correctness

	4 Experiments
	4.1 Datasets
	4.2 Methods in comparison
	4.3 Performance measures
	4.4 Effectiveness of MAHUSP
	4.4.1 Precision, Recall and F-Score
	4.4.2 Average pattern length
	4.4.3 Average true utility
	4.4.4 Relative utility error

	4.5 Efficiency of MAHUSP
	4.5.1 Running time
	4.5.2 Memory usage

	4.6 Run time performance over incoming batches
	4.7 Parameter sensitivity analysis
	4.8 Real-life applications
	4.8.1 A utility based users' reading behavior mining
	4.8.2 Finding disease-related gene regulation sequential patterns from time course microarray datasets

	4.9 Discussion

	5 Related work
	5.1 Sequential pattern mining over data streams
	5.2 High utility sequential pattern mining
	5.3 High utility pattern mining over data streams

	6 Conclusions
	References

