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Abstract—The pedestrian detection algorithms form a key
component in the multiple pedestrian tracking (MPT) systems.
Despite efforts to detect a pedestrian accurately, it is still a
challenging task. We propose a novel and efficient online method
to improve the performance of the multiple person/pedestrian
detector by introducing novel post-processing steps. These steps
use an adaptive approach to determine both area and confidence
score constraints for the output of any given multiple pedestrian
detector. In this paper, we focus on pedestrian detection in video
surveillance applications that require an automated, accurate
and precise pedestrian detection algorithm. We demonstrate
that the new steps make the multiple pedestrian detector more
accurate, precise and tolerant to false positive detections. This
is illustrated by evaluating the performance of the proposed
method in test video sequences taken from the Pedestrian
Detection Challenge, Multiple Object Tracking Benchmark
(MOT Challenge 2017).

Index Terms—Multiple object detection, Multiple pedestrian
detection, Convolutional neural network, Video surveillance.

I. INTRODUCTION

Pedestrian detection algorithms have received considerable

attention recently. The pedestrian detection results are used

in a wide range of applications in computer vision, such

as video surveillance, traffic safety, vehicle navigation and

sports analysis. In these applications, the pedestrian detection

algorithm should be accurate and precise. Despite efforts to

generate accurate and reliable pedestrian detections, it is still

a challenging task for researchers to develop a perfect Multiple

Pedestrian Detector (MPD).

Normally, MPDs produce both a bounding box and con-

fidence score for each detected pedestrian in a given video

frame. The confidence score represents the confidence level

of the detector in affirming that the object enclosed by the

bounding box is a person/pedestrian. The traditional approach

for pedestrian detection is based on background-subtraction

[1]- [4]. In this approach, pedestrians are detected in every

frame by segmenting the moving objects out of the back-

ground, while taking into account pixel-wise time consistency.

However, the background-subtraction methods are unreliable

and error-prone in noisy video sequences. For instance, the

background-subtraction methods detect all moving objects in

the scene even these that are not pedestrians [1]- [4].

In recent years, multiple pedestrian detection methods have

been developed either by using a deep Convolutional Neural

Network (CNN), or by building a specific pedestrian detector

added to these networks [5]- [10]. These CNN pedestrian

detection methods are able to learn discriminative features

directly from raw pixels of an image, and they are producing

a confidence score between zero and one for the detected

pedestrians. Hence, these methods have notable performance

gains over the background-subtraction methods, and they nor-

mally provide a high detection accuracy. Moreover, the CNN

pedestrian detection methods are generally robust to changing

background and to camera motion as compared to background-

subtraction methods.

In [7], a pedestrian detector is proposed by using the Faster

Region Convolutional Neural Network (Faster-RCNN). The

Faster-RCNN can be represented as an end-to-end framework

that consists of two sub-CNN networks. The first network

extracts features and proposes regions for the second network

which in turns classifies the object in the proposed relevant re-

gions. The Faster-RCNN parameters are shared between these

two networks and constitute an efficient framework for object

detection in general. Furthermore, the Faster R-CNN can be

viewed as a CNN based MPD without using any hand-crafted

features. The performance of this MPD based approach, here

referred to as FRCNN, is evaluated using the pedestrian

detection challenge in multiple object tracking benchmark

(MOT Challenge 2017) [11]. The confidence scores of the

reported pedestrian detections were between 0.05 and 1.0.

In [8], another MPD based approach is developed by using

a combination of an additional convolutional neural network

and the Faster R-CNN [7]. The additional network is used

to calculate the appearance descriptor value for each detected

bounding box. The calculated value is then used to determine

the data association metric for later stages. The performance

of this MPD, here referred to as KDNT, is evaluated using



the pedestrian detection challenge in multiple object tracking

benchmark (MOT Challenge 2017). The confidence scores of

the reported pedestrian detections were between 0.0990 and

0.9998. The KDNT detector was ranked as number one in the

MOT Challenge 2017 as of the writing of this paper (February,

2018).

In benchmark datasets, the pedestrian detector performance

is evaluated by comparing the reported bounding boxes with

the ground truth (GT) bounding boxes for each video frame.

The performance on each individual frame is then averaged

over all the frames to obtain the final performance score of

the pedestrian detector [12]. Three main performance metrics

are calculated for each video frame. These metrics are: (i) True

positive (TP) representing the number of pedestrians/bounding

boxes that are detected and comply with the ground truth

(GT) (also called correct detection), (ii) False positive (FP)

representing the number of pedestrians that are detected but

not present in the GT (also called false alarm), and (iii) False

negative (FN) representing the number of pedestrians that are

not detected, but they are in the GT (also called detection

miss). Hence, each reported/detected bounded box is either

true positive or false positive, and each ground truth bounding

box is either true positive or false negative. So, there are no

true negatives.

In general, MPDs apply some constraints on the reported

bounding boxes to improve the pedestrian detection perfor-

mance (i.e. accuracy and precision). The two most common

constraints are the bounding box area/size and the bounding

box confidence score. Normally, MPDs apply a fixed lower

area threshold on the reported bounding box, so detectors

ignore any bounding box with area less than the predefined

lower area threshold. In other words, detectors will consider

only those pedestrian with area/size greater than the lower

area threshold as true positive [4]- [6]. On the other hand,

some pedestrian detectors apply a fixed confidence score

threshold on the reported bounding boxes to improve the detect

performance. Thus, the bounding boxes with confidence score

greater than the fixed threshold would be reported, and the

bounding boxes with confidence score lower than the fixed

threshold would be removed/ignored.

In [13], CNN MPD is used to detect pedestrians in a

given video frame, wherein the detected bounding boxes with

confidence score greater than 0.5 are accepted as true positive.

In [14], a fixed threshold for upper confidence is used to

create a confidential detection set, wherein detections with

low confidence scores are removed from the original detection

set at first step. In [15], fixed thresholds for upper and lower

confidence scores are used and a sparse optical flow filter is

applied to enhance the quality of detections, wherein the upper

and lower confidence score thresholds are fixed for all frames

in a given video.

In contrast, applying a lower confidence threshold on the

reported bounding boxes to detect all existing pedestrians in

the video frames at the cost of increasing the number of false

positive detections. This is the case for KDNT [8] and FRCNN

[7] where all detected bounding boxes are reported. It should
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Fig. 1: Three consecutive frames: (a) Frame 708, (b) Frame

709, and (c) Frame 710 as taken from the MOT17-05 video

sequence. The KDNT [8] detector detects the same pedestrian

with three different confidence scores in successive frames.������� ��		��
�	 �
�������
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Fig. 2: Same as Figure 1 except for the detection of a different

pedestrian using the FRCNN [7] detector. Three consecutive

frames: (a) Frame 666, (b) Frame 667, and (c) Frame 668 as

taken from the MOT17-05 video sequence. As was the case

for the KDNT detector, the FRCNN detector detects the same

pedestrian with three different confidence scores in successive

frames.

be noted that the same person can appear very differently

during its presence in a given video depending on the changes

in the background, local illumination, contrast, etc. Thus, the

same person may be detected with different confidence scores

in two consecutive frames. Therefore, applying upper or lower

confidence score thresholds is not a desirable a approach,

because the threshold value may vary during a given video

or over different videos. Furthermore, KDNT [8], FRCNN

[7] and some other MPDs generate pedestrian detections for

each frame independently, ignoring inter-frame relationships

that exist between consecutive frames. It should be noted that

if a pedestrian is present in a frame at time t− 1 with a high

confidence score it will most likely be present in the next frame

at time t. For the purpose of illustration, Figure 1 shows that

KDNT [8] detects the same pedestrian with three different

confidence scores in three consecutive frames. Figure 2 shows

similar example for the FRCNN [7] detector.

In this paper, we propose a novel and efficient real-time

method to improve the performance of multiple pedestrian

detector (MPD) by introducing post-processing steps. The

proposed method is causal so it only uses information from the

current frame and past frames. The proposed post-processing

steps use an adaptive approach to determine both area and

confidence score constraints, and these steps can work on the

output of any multiple pedestrian detector. For this purpose, we



select four of the state-of-the-art MPDs, namely KDNT [8] ,

FRCNN [7], SDP [16] and DPM [17], based on the pedestrian

detection challenge in multiple object tracking benchmark

(MOT Challenge 2017) [11]. The main contributions of this

paper are:

1) Remove outlier detections by using an adaptive area

threshold for each frame. We calculate both the lower

area threshold, denoted by θL, and the upper area

threshold, denoted by θH , for each frame. Hence, we

achieve a dynamic setup for both the lower and upper

area thresholds.

2) Adapt a dynamic approach to determine both the upper

confidence score threshold value, denoted by αH , and

the lower confidence score threshold value, denoted

by αL, for each frame. Hence, the upper and lower

confidence score thresholds are not fixed and they vary

with time for a given video sequence.

3) Impose the inter-frame relationship by propagating the

high confidence pedestrian detections from the previous

frame to the current frame. Motivated by the fact that if

a pedestrian present in a frame at time t− 1 with high

confidence score it is most likely to be present in the

next frame at time t.

II. PROPOSED METHOD

The proposed method is described in terms of the pro-

posed post-processing steps. These post-processing steps en-

able MPDs to be more accurate, precise and tolerant to

false positive detections in generating pedestrian detections.

An adaptive approach has been used to set both area and

confidence score constraints.

A. Post-Processing Step 1: Remove outliers in detections

MPD estimates the position and size of bounding box for

of the detected pedestrians. To reduce the number of false

positive, we calculate the area of the detected bounding boxes

and analyze the area distribution in each frame. For frame

at time t, the bounding boxes with associated area less than

the lower area threshold, denoted by θtL, will be removed.

Also, the bounding boxes with associated area greater than

the upper area threshold, denoted by θtH , will be removed. To

set the values for θtL and θtH threshold parameters, we adapt

a dynamic approach. For each frame, we calculate both mean,

denoted by µA, and standard deviation, denoted by σA, for the

area distribution. Then, we eliminate any detected bounding

box associated with area above θH = (µA + 2σA), and any

bounding box associated with area below θL = (µA − 2σA).
Hence, we are able to remove outlier pedestrian detections

for each frame. It should be noted that around 95.45% of

the sample data lie between θL = (µA − 2σA) and θH =
(µA + 2σA). Let di denotes a detection in a given frame,

Dt = {d0, d1, · · · , dN} be the set of original detections in the

frame at time t where N is the total number of detections,

Dt
A = {d0, d1, · · · , dM} be the set of detections in the frame

at time t after running Step 1 where M ≤ N , and Area(di) be

the area of di. So the conditional proposition with quantifier

represents Step 1 is

∀di ∈ Dt : θtL ≤ Area(di) ≤ θtH → di ∈ Dt
A

B. Post-Processing Step 2: Propagate the high confidence

pedestrian detections from previous frames

Motivated by the fact that if a pedestrian is present in a

frame at time t − 1 with a high confidence score it is most

likely to have a pedestrian in the next frame at time t. As

discussed earlier and shown in Figure 1 and 2, applying a

fixed upper or lower confidence threshold is not a desirable

approach, because a good threshold value may vary over

different frames in a video. We adapt a dynamic approach

to set the upper confidence threshold value for a frame at

time t, which is denoted by αt
H . In each frame, we analyze

the distribution of the confidence scores for the detected

bounding boxes, and we use the third quartile value as the

upper confidence threshold. The third quartile, denoted by Q3

, is the median of the upper half of the data set. So, 25%
of the detected bounding boxes would have confidence scores

more than αt
H = Q3. Similarly, we adapt a dynamic approach

to set the lower confidence threshold for the frame at time

t, which is denoted by αt
L. We use the first quartile as the

low confidence threshold value. The first quartile, denoted by

Q1, is the median of the lower half of the data set. So, 75%
of the detected bounding boxes would have confidence scores

more than αt
L = Q1. We follow Algorithm 1 to propagate

the high confidence pedestrian detections from the previous

frame, and create the final detection set for the current frame.

In addition to containing the high confidence detections from

the current frame, the final detection set also contains the

high confidence detections from the previous frame that have

significant overlaps with the low confidence detections in the

current frame. It should be noted that we calculated the values

of αt
H and αt

L for each frame in real-time.

Notation: Let Dt
C = {d0, d1, · · · , dR} be the set of detec-

tions in the frame at time t where R ≤ M ≤ N after executing

Algorithm 1 , Dt
HL = {dhl0 , dhl1 , · · · , dhlZ} be the set of all

detections in the frame at time t that have confidence score

greater than αL where Z ≤ R, Dt
LL = {dll0 , dll1 , · · · , dllW }

be the set of all detections in the frame at time t that have

confidence score less than αL where W ≤ R and Z+W = R,

Dt
HH = {dhh0

, dhh1
, · · · , dhhV

} be the set of all detections

in the frame at time t that have confidence score greater than

αH where V ≤ Z ≤ R, conf(di) be the confidence score of

di, and IOU(dx, dy) denotes the intersection-over-union of the

bounding boxes of detections dx and dy .

IOU(dx, dy) =
|dx ∩ dy|

|dx ∪ dy|

III. EXPERIMENTAL DETAILS AND RESULTS

We evaluated and tested the proposed online method to

improve the performance of a given person/pedestrian detector

using the pedestrian detection challenge in multiple object

tracking benchmark (MOT Challenge 2017) [11]. For this



ALGORITHM 1. PROPAGATE THE HIGH CONFIDENCE

PEDESTRIAN DETECTIONS

Input: Detection set Dt
A = {d0, d1, · · · , dM} .

Output: Detection set Dt
C = {d0, d1, · · · , dR}.

Initialization: For the frame at t = 0
N1. Determine the α0

L = Q1 and α0

H = Q3 for confidence

score distribution of D0

A.

N2. At t = 0, all detections that have confidence scores

greater then αL are considered to be part of final detection

set. Hence, 75% of the detected bounding boxes are

included in the final detection set. So, the conditional

proposition with quantifier is

∀di ∈ D0

A : conf(di) ≥ α0

L → di ∈ D0

C

Loop Steps: Repeat Step L1 to L5 for each frame

L1. Determine the αt
L = Q1 and αt

H = Q3 for confidence

score distribution of Dt
A.

L2. Build sets Dt
HL and Dt

HH . Also, start building Dt
C by

using the following conditional proposition with quantifier

∀di ∈ Dt
A : conf(di) ≥ αt

L → di ∈ Dt
HL

∀di ∈ Dt
A : conf(di) ≥ αt

L → di ∈ Dt
C

∀di ∈ Dt
A : conf(di) ≥ αt

H → di ∈ Dt
HH

L3. Build sets Dt
LL by using the following conditional propo-

sition with quantifier

∀di ∈ Dt
A : conf(di) < αt

L → di ∈ Dt
LL

L4. Propagate high confidence previous detections by us-

ing the following compound conditional proposition with

nested quantifiers

∀dlli ∈ Dt
LL∀dhhj

∈ Dt−1

HH :

(

(IOU(dlli , dhhj
) ≥ 0.5) →

(

∀dhlk ∈ Dt
HL : IOU(dhhj

, dhlk) < 0.5 → dlli ∈ Dt
C

)

)

L5. Report Dt
C as final detections for the frame at time t.

purpose, we selected four of the state-of-the-art pedestrian

detectors, namely KDNT [8], FRCNN [7], SDP [16] and DPM

[17] based on the 2017 pedestrian detection MOT Challenge.

A. Evaluation metrics

We use the same quantitative evaluation criteria used in the

MOT Challenge [11], [12]. In the pedestrian detection chal-

lenge, multiple metrics are used to evaluate the performance of

any given pedestrian detectors. These metrics include multiple

object detection accuracy (MODA), multiple object detection

precision (MODP), average number of false alarms per frame

(FAF), total number of true positives (TP), total number of

false positives (FP), total number of false negatives (FN),

precision, recall, and average precision (AP) taken over a set

of reference recall values (0 : 0.1 : 1).

����������	��
�����
�������
���
��������


��������

(a)

����������	��
�����
�������
���
��������


��������

(b)

����������	��
�����
�������
���
��������


��������

(c)

Fig. 3: Part of the Frame-206 taken from the MOT17-04 video

sequence. (a) Four bounding boxes detected by KDNT detec-

tor, (b) The outlier (wrong) bounding box has been correctly

isolated by the proposed post-processing algorithm (Step 1

in Section II-A), (c) Three true positive bounding boxes are

correctly retained after applying the proposed method. The

complete video is available at

https://youtu.be/CytR_WFF5ys

B. Results

We applied the proposed post-processing steps in a sequen-

tial manner. For each frame at time t, we first performed the

post-processing Step 1, then post-processing Step 2. Figure 3

shows part/region of the Frame-206 taken from the MOT17-

04 video sequence. It can be seen from Figure 3(a) that the

KDNT [8] detector reported four bounding boxes in this region

where actually only three pedestrians exist. Figure 3(b) shows

that the proposed post-processing Step 1 is able to identify

the wrong bounding box as an outlier based on the area

constraint. Figure 3(c) shows that three true positive bounding

boxes are reported and the outlier bounding box is removed

after applying the proposed method. Therefore, the proposed

method reduces the number of false positive detections in this

frame which leads to reduction in the number of false alarms

per frame (FAF).

Figure 4 shows part/region from two consecutive frames

( 532 and 533) taken from the MOT17-04 video sequence.

From these two frames, it can be seen that the FRCNN

[7] detectors detect the same pedestrian with two different

confidence scores. In Figure 4(a), the pedestrian was detected

with a high confidence score of 0.92. However, in Figure 4(b),

the same pedestrian was detected with a low confidence score

of 0.10. Thus, the bounding box in Frame 533 is most likely to

be removed after applying a confidence threshold constraint.

This will lead to reduction in the number of true positive

detections in this frame. Figure 4(c) shows that the proposed

post-processing Step 2 is able to identify and recover the

pedestrian in Frame 533 despite a low confidence score.

The proposed post-processing steps are tested on the video

sequences taken from the pedestrian detection challenge–

MOT Challenge 2017. We applied the proposed method

on the four of the state-of-the-art pedestrian detectors,

KDNT [8], FRCNN [7], SDP [16] and DPM [17]. The

modified detectors are named as MKDNT (Modified-KDNT),

MFRCNN (Modified-FRCNN), MSDP (Modified-SDP) and

MDPM (Modified-DPM), respectively. Table I shows the



TABLE I: Performance results of the proposed methods, MKDNT, MFRCNN, MSDP and MDPM, and the four of the state-

of-the-art pedestrian detectors, KDNT [8], FRCNN [7], SDP [16] and DPM [17], on the pedestrian detection challenge-MOT

Challenge 207 (accessed on February 6, 2018).

MPD AP↑ MODA↑ MODP↑ FAF↓ TP ↑ FP↓ FN↓ Precision↑ Recall ↑ Total Dets

KDNT [8] 0.89 67.10% 80.10% 4.80 105473 28623 9091 78.70% 92.10% 134096

MKDNT (our) 0.89 75.90% 80.30% 2.70 103143 16185 11421 86.40% 90.00% 119328

FRCNN [7] 0.72 68.50% 78.00% 1.70 88601 10081 25963 89.80% 77.30% 98682

MFRCNN (our) 0.71 69.20% 78.40% 1.10 86086 6774 28478 92.70% 75.10% 92860

SDP [16] 0.81 76.90% 78.00% 1.30 95699 7599 18865 92.60% 83.50% 103298

MSDP (our) 0.81 77.40% 78.10% 0.80 93738 5024 20826 94.90% 81.80% 98762

DPM [17] 0.61 31.20% 75.80% 7.10 78007 42308 36557 64.80% 68.10% 120315

MDPM (our) 0.61 43.50% 76.00% 4.20 74546 24659 40018 75.10% 65.10% 99205

Evaluation metrics with symbol (↑) indicates higher score is better; while for evaluation metrics with symbol (↓) indicates
lower score is better
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Fig. 4: Corresponding windows taken from two consecutive

frames of the MOT17-04 video sequence: (a) Frame 532 and

(b) Frame 533. (a) shows the output of the FRCNN [7] detector

with a confidence score of 0.92, and (b) shows the output of

the FRCNN detector for the same pedestrian with a confidence

score of 0.10. (c) illustrates that the proposed post-processing

algorithm (Step 2 in Section II-B), is able to identify and

recover the pedestrian as a true positive detection even if it

is detected with a low confidence score in the frame 533, as

compared to frame 532. The complete video is available at

https://youtu.be/AynWszq7VZs

quantitative evaluations for the performance of the proposed

methods and the four of the pedestrian detectors, KDNT [8],

FRCNN [7], SDP [16] and DPM [17]. Also, this comparison

can be found in the MOT Challenge website,

https://motchallenge.net/results/MOT17Det/.

The performance of the proposed MKDNT method is com-

pared with the original KDNT [8] method. Table I shows

that the proposed MKDNT achieves better MODA, MODP,

FAF, FP, and precision as compared to KDNT. There were

significant improvements in terms of MODA, FAF, FP, and

precision metrics. MODA increases from 67.10% to 75.90%
with an improvement of 8.80%. FAF decreases from 4.80 to

2.70 with an improvement of 2.10. FP decreases from 28623
to 16185 with an improvement of 12438. Precision increases

from 78.70% to 86.40% with an improvement of 7.70%. It is

noted that even though the proposed MKDNT method reduces

the total number of detections from 134096 to 119328 (14768
detections are thrown out), it achieves better performance in

terms of MODA, MODP, FAF, FP, and precision compare to

KDNT. Moreover, the proposed MKDNT method provides a

similar AP score to that of KDNT, despite fewer detections.

The proposed MKDNT method achieves these improvements

at the cost of decreasing TP by 2330 and increasing FN

by 2330. It should be noted that these 2330 TP detections

represent 16% from the total detections that are removed by

the proposed MKDNT method.

The performance of the proposed MFRCNN method is also

compared with the original FRCNN [7] method. Table I shows

that the proposed MFRCNN achieves better MODA, MODP,

FAF, FP, and precision as compared to FRCNN. MODA

increases from 68.50% to 69.20% with an improvement of

0.70%. MODP increase from 78.0% to 78.40% with an

improvement of 0.40%, FAF decreases from 1.70 to 1.10
with an improvement of 0.60. FP decreases from 10081 to

6774 with an improvement of 3307. Precision increases from

89.80% to 92.70% with an improvement of 2.90%. It is noted

that even though the proposed MFRCNN method reduces the

total number of detections from 114564 to 114564 (5822
detections are thrown out), it achieves better performance in

terms of MODA, MODP, FAF, FP, and precision as compared

to FRCNN. Moreover, the proposed MFRCNN method pro-

vides an almost similar AP score to that of FRCNN, even

though it used a lesser number of detections. The proposed

MFRCNN method achieves these improvements at the cost of

decreasing TP by 2515 and increasing FN by 2515. It should

be noted that these 2515 TP detections represent 43% of the

total detections that are removed by the proposed MFRCNN

method. Similarly, Table I shows that the proposed methods

MSDP and MDPM achieve better MODA, MODP, FAF, FP,

and precision as compared to SDP and DPM, respectively.

Table I shows that the proposed post-processing steps were

able to significantly improve the performance of KDNT,

FRCNN, SDP and DPM detection methods. It should be

mentioned that the improvements were achieved without any

extra training, fine-tuning or modification to the original de-

tection methods. Furthermore, the proposed detection methods

(MKDNT, MFRCNN, MSDP and MDPM) are more accurate,

precise and tolerant to noise detections/false positive detec-

tions than the original detection approaches. Table I shows

that the proposed method provides a higher improvement to

the performance of KDNT and DPM than FRCNN and SDP.

We believe that this is related to both how the detection

method is trained and how the true positive detections are



reported. For instance, the confidence scores of the reported

pedestrian detections from DPM [17] were between −0.5 and

4.8, whereas the confidence scores of the reported pedestrian

detections from SDP [16] were between 0.4 and 1.0. It can

be seen from Table 1 that KDNT and DPM reported more

detections than FRCNN and SDP, which resulted in improved

performance in terms of AP, TP, and FN.

Furthermore, the proposed post-processing steps work on

the output of a given pedestrian detector, and do not generate

any new pedestrian detections. Thus, if some pedestrians are

not detected by the pedestrian detector then the proposed

steps will not be able to recover these undetected pedestrians.

It should be noted that the average precision (AP) score

is considered strong evidence of improvement in terms of

both recall and precision parameters. Table I shows that the

proposed methods provide a similar or almost similar AP score

to that of the selected detection methods.

IV. CONCLUSION

In this paper, we have proposed a novel and efficient

online method to improve the performance of a given multiple

pedestrian detector (MPD). New post-processing steps have

been proposed to make the pedestrian detector more accurate,

precise and tolerant to false positive detections in generating

pedestrian detections. In the proposed post-processing steps,

an adaptive approach has been used to set both of the area

and confidence score constraints. For setting an adaptive area

constraint, the area distribution of the detected bounding boxes

in a given frame is analyzed, and then the upper and lower

area threshold are dynamically determined to remove outlier

detections. For setting an adaptive confidence constraint, the

confidence scores of the detected bounding boxes in a given

frame are sorted, and then the upper and lower confidence

thresholds are dynamically determined by using first and third

quartiles, respectively. In order to study the performance of

the proposed method, four of the-state-of-the-art pedestrian

detectors, KDNT [8], FRCNN [7], SDP [16] and DPM [17],

were selected. The results have shown that the proposed

method significantly improves the performance of the selected

detection methods without any extra training, fine-tuning or

modification to the original detection methods. Furthermore,

it has been shown that considering the inter-frame relationship

is essential to improve the performance of a given pedestrian

detector in video surveillance applications. Finally, it should

be noted that the proposed post-processing steps work on the

output of the pedestrian detectors, and these steps are not

limited to a specific pedestrian detector algorithm
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