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Abstract. Discovering association rules is one of the important tasks in data 
mining. While most of the existing algorithms are developed for efficient 
mining of frequent patterns, it has been noted recently that some of the 
infrequent patterns, such as indirect associations, provide useful insight into the 
data. In this paper, we propose an efficient algorithm, called HI-mine, based on 
a new data structure, called HI-struct, for mining the complete set of indirect 
associations between items. Our experimental results show that HI-mine's 
performance is significantly better than that of the previously developed 
algorithm for mining indirect associations on both synthetic and real world data 
sets over practical ranges of support specifications. 

1    Introduction 

Since it was first introduced by Agrawal et al. [4] in 1993, association rule mining has 
been studied extensively by many researchers. As a result, many algorithms have 
been proposed to improve the running time for generating association rules and 
frequent itemsets. The latest includes FP-growth [6], which utilizes a prefix-tree 
structure for compactly representing and processing pattern information, and H-mine 
[8], which takes advantage of a novel hyper-linked data structure and dynamically 
adjusts links in the mining process. 

While most of the existing algorithms are developed for efficient mining of 
frequent patterns, it has been noted recently that some of the infrequent patterns may 
provide useful insight into the data. In [13], a new class of patterns called indirect 
associations has been proposed and its utilities have been examined in various 
application domains. Consider a pair of items, x and y, that are rarely present together 
in the same transaction. If both items are highly dependent on the presence of another 
itemsets M, then the pair (x, y) is said to be indirectly associated via M. Fig. 1 
illustrates a high-level view of an indirect association. 

There are many advantages to mining indirect associations in large data sets. For 
example, an indirect association between a pair of words in text documents can be 
used to classify query results into categories [13]. For instance, the words coal and 
data can be indirectly associated via mining. If only the word mining is used in a 
query, documents in both mining domains are returned. Discovery of the indirect 
association between coal and data enables us to classify the retrieved documents into 



coal mining and data mining. There are also potential applications of indirect 
associations in many other real-world domains, such as competitive product analysis 
and stock market analysis [13]. 
 

 

Fig. 1. Indirect association between x and y via mediator M 

For mining indirect associations between itempairs, an algorithm is presented in 
[11, 13]. There are two phases in the algorithm: 

1. Extract all frequent itemsets using standard frequent itemset mining algorithms 
such as Apriori [3] or FP-growth [6]; 

2. Discover valid indirect associations by checking all the candidate associations 
generated from the frequent itemsets. 

 
In this paper, we propose a new data structure, HI-struct, and a new mining 

algorithm, HI-mine, for mining indirect associations in large databases. We show that 
they can be used as a formal framework for discovering indirect associations directly, 
with no need to generate all frequent itemsets as the first step. Empirical evaluations 
comparing HI-mine to two versions of the algorithm described above show that HI-
mine performs significantly better on both synthetic and real world data sets. 

The remaining of the paper is organized as follows. Section 2 reviews related work 
and briefly exhibits the contribution of the paper. Next, we present the HI-struct data 
structure and the HI-mine algorithm in Section 3. Our empirical results are reported in 
Section 4. Finally, we conclude with a summary of our work and suggestions for 
future research in Section 5. 

2    Related Work 

Let I = { i1, i2,…, im}  be a set of m literals, called items. Let the database D = { t1, t2,…, 
tn}  be a set of n transactions, each one consisting of a set of items from I and 
associated with a unique identifier called its TID. The support of an itemset A is the 
percentage of transactions in D containing A: sup(A) = ||{ t | t ∈ D, A ⊆ t} || / ||{  t | t ∈ 
D} ||, where ||X|| is the cardinality of set X. An itemset is frequent if its support is more 
than a user-specified minimum support value. 
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2.1    Negative Association Rules 

An association rule A �  B is a conditional implication among itemsets A and B, 
where  A ⊂ I, B ⊂ I and A ∩ B = ∅. The confidence of an association rule r: A �  B is 
the conditional probability that a transaction contains B, given that it contains A. The 
support of rule r is defined as: sup(r) = sup(A∪B). The confidence of rule r can be 
expressed as conf(r) = sup(A∪B)/sup(A). 

The importance of extending the current association rule framework to include 
negative association was first pointed out in [5]. In the case of negative association 
rules we are interested in finding itemsets that have a very low probability of 
occurring together. That is, a negative association between two itemsets A and B, 
denoted as BA �  or BA � , means that A and B appear very rarely in the same 
transaction. Mining negative association rules is impossible with a naïve approach 
because billions of negative associations may be found in a large dataset while almost 
all of them are extremely uninteresting. This problem was addressed in [14] by 
combining previously discovered positive associations with domain knowledge to 
constrain the search space such that fewer but more interesting negative rules are 
mined. 

2.2    Indirect Association and INDIRECT Algorithm 

Indirect association is closely related to negative association, they are both dealing 
with itemsets that do not have sufficiently high support. Indirect associations provide 
an effective way to detect interesting negative associations by discovering only 
“ infrequent itempairs that are highly expected to be frequent”  without using negative 
items or domain knowledge. 

Definition 1 (Indirect Association) 
An itempair { x, y}  is indirectly associated via a mediator M, if the following 
conditions hold: 

1. sup({ x, y} ) < ts (Itempair Support Condition) 
2. There exists a non-empty set M such that: 

(a) sup({ x}  ∪ M) ≥ tf, sup({ y}  ∪ M) ≥ tf  (Mediator Support Condition) 
(b) dep({ x} , M) ≥ td, and dep({ y} , M) ≥ td, where dep(P, Q) is a measure of the 

dependence between itemsets P and Q. (Mediator Dependence Condition) 
The thresholds above are called itempair support threshold (ts), mediator support 

threshold (tf), and mediator dependence threshold (td), respectively. In practice, it is 
reasonably to set  tf  ≥ ts. 

In the database and probability theories, an indirect association is a well-know 
property of embedded multi-valued dependency (EMVD) and probability conditional 
independence, where it is sometimes called an “ induce dependence” . [16] includes a 
comprehensive discussion on an independence in a small context becoming a 
dependence in a larger context in both the database and probability settings. 

In this paper, we use the notation <x, y | M> to represent the indirect association 
between x and y via M. And we use the IS measure [10] as the dependence measure 



for Condition 2(b). Given a pair of itemsets, say X and Y, its IS measure can be 
computed using the following equation: 
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where P denotes the probability that the given itemset appears in a transaction. 
An algorithm for mining indirect associations between pairs of items is given in 

[11, 13], which is shown in Figure 2. There are two major phases in this algorithm: 
(1) extract all frequent itemsets using Apriori (step 1) and (2) discover all indirect 
associations by (a) candidate generation (step 4) and (b) candidate pruning (steps 5-
8). In the candidate generation step, frequent itemset Lk is used to generate candidate 
indirect associations for pass k+1, i.e., Ck+1. Each candidate in Ck+1 is a triplet, <x, y, 
M >, where x and y are the items that are indirectly associated via the mediator M. 
Ck+1 is generated by joining the frequent itemsets in Lk. During the join, a pair of 
frequent k-itemsets, { x1, x2, …, xk}  and { y1, y2, …, yk} , are joinable if the two itemsets 
have exactly k-1 items in common and thus produce a candidate indirect association 
<x, y, M >, where x and y are the distinct items, one from each k-itemset, and M is the 
set of common items. For example, two frequent itemsets, { a, b, c, d}  and { a, b, d, e} , 
can be joined together to produce a candidate indirect association, <c, e, { a, b, d} >. 
Since the candidate associations are created by joining two frequent itemsets, they all 
satisfy the mediator support condition. Therefore, in the steps for candidate pruning, 
only itempair support condition and mediator dependence condition are checked.  

 
 

 

 

 

 

 

Fig. 2. The INDIRECT algorithm 

There are two join steps in the INDIRECT algorithm. One is in the first phase for 
generating all the frequent itemsets with Apriori. In Apriori, the join operation is used 
to generate candidate frequent itemsets for pass k+1 based on the frequent itemsets in 
Lk. The other join operation is for generating candidate indirect associations, Ck+1, 
from Lk. Both candidate generation steps can be quite expensive, because each of 
them requires at most O(

�
k |Lk| × |Lk|) join operations. The join operation for 

generating indirect association candidates is more expensive than that in Apriori 
because the items in an indirect itempair, x and y, do not have to be the last item in 
each frequent itemset, whereas Apriori only combines itemsets that have identical k-1 
prefix items, assuming that all the items in an itemsets are sorted in lexicographic 

1. Extract frequent itemsets, L1, L2,…Ln, using frequent itemsets generation 
algorithm, where Li is the set of all frequent i-itemsets. 

2. P = ∅ (set of indirect associations) 
3. for k = 2 to n do 
4.     Ck+1 = join(Lk, Lk) 
5.     for each < x, y , M> ∈ Ck+1 do 
6.         if (sup({ x, y} ) < ts and dep({x} , M) ≥ td and dep({ y} , M) ≥ td) 
7.             P = P ∪ { < x, y , M>}  
8.         end 
9.     end 
10. end 



order. Moreover, no matter what implementation technique is applied, an Apriori-like 
algorithm may still suffer from nontrivial costs in situations with prolific frequent 
patterns, long patterns, or quite low minimum support thresholds. 

Is there any other way that we may reduce these costs in indirect association 
mining? Can we avoid generating all the frequent itemsets and a huge set of 
candidates, and derive indirect association directly using some novel data structure or 
algorithm? 

In the next section, we introduce our solution. The solution is based on the HI-
struct data structure and the HI-mine algorithm, which were inspired by a novel 
hyper-linked data structure, H-struct, and an efficient algorithm, H-mine, presented in 
[8]. H-struct and H-mine are designed for the purpose of mining frequent patterns. 
We modify both of them for learning indirect association. With HI-struct and HI-
mine, we do not need to find all the frequent itemsets before mining indirect 
associations nor we need to do any join operation for candidate generation. Instead we 
generate two new sets: indirect itempair set and mediator support set by recursively 
building the HI-struct data structures for the database. Then indirect associations are 
discovered from these two sets directly and efficiently. 

3   Mining Indirect Association Using HI-mine 

In this section, we first define indirect itempair set (IIS) and mediator support set 
(MSS). We then illustrate the general idea of HI-mine (Hyper-structure Indirect-
association Mining) using the two sets with an example. 

Definition 2 (Indirect Itempair Set) 
Let ts be the itempair support threshold and L be the set of frequent itemsets of a 
database D  with respect to ts. We define the indirect itempair set IIS of D as: 

IIS(D) = { <x, y> | { x}  ∈ L, { y}  ∈ L, and sup({ x, y} ) < ts}  

Definition 3 (Mediator Support Set) 
Let L be the set of frequent itemsets of a database D. Let tf be the mediator support 
threshold and td be the mediator dependence threshold. The mediator support set MSS 
of x ({ x}  ∈ L) is defined as: 

MSS(x) = { M | M ∈ L, sup(M ∪ { x} ) ≥ tf, and dep(M, { x} ) ≥ td}  
 
It’s trivial to prove that the following properties hold for each indirect association <x, 
y | M> of database D: 

1. <x, y> ∈ IIS(D); 
2. M ∈ MSS(x) and M ∈ MSS(y). 
And on the other hand, given x, y and M that have the above properties, <x, y | M> 

must be an indirect association of D. 



3.1    HI-struct: Design and Construction 

The design and construction of HI-struct for efficient indirect association mining are 
illustrated in the following example. The original transaction database TDB is shown 
in Table 1. The HI-struct of TDB is a dynamic data structure that changes during the 
process of recursively generating the indirect itempair set and mediator support sets. 

 
TID List of item_IDs 
T100 A, B, C, D 
T200 A, B, E, F 
T300 G, H 
T400 B, C 
T500 A, B, D, E, I 
T600 B, C, D 
T700 J, K 
T800 L, M, N 

Table 1. The transaction database TDB 

The initial HI-struct is constructed in the following steps. 
1. Scan the transaction database TDB once. Collect the set of frequent items F and 

their supports. Sort F in support descending order as L, the list of sorted 
frequent items. For the example database, L is { B, A, C, D, E} . Then a header 
table H is created, where each frequent item has an entry with three fields: an 
item-id, a support count, and a pointer to a queue. 

2. For each transaction Trans in TDB, select and sort the frequent items in Trans 
according to the order of L. Let the sorted frequent item list in Trans be [t|T], 
where t is the first element and T is the remaining list. [t|T] is called the 
frequent-item projection of transaction Trans. Add [t|T] to a frequent-item 
projection array, and append [t|T]’s index of the array to t’ s queue. Thus, all 
indexes of the frequent-item projections with the same first item (in the order of 
L) are linked together as a queue, and the entries in the header table H act as the 
heads of the queues. 

 

 

 

 

 

Fig. 3. The initial HI-struct of TDB 

The initial HI-struct of the example database is shown in Figure 3. Since all 
frequent item projections in our example database start with B, the queues for other 

Header Table of 
TDB 

B 5  
A 3  
C 3  
D 3  
E 2  

 

1 
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3 
4 
5 

 

Frequent-Item 
Projection 

1 B,A,C,D 
2 B,A,E 
3 B,C 
4 B,A,D,E 
5 B,C,D 
 



items than B are empty at the moment1. After the initial HI-struct is constructed, the 
remaining mining process is performed on the HI-struct only, without referencing any 
information in the original database.  Note that the frequent-item projection array 
contains only frequent items. Its size is usually much smaller than the original 
database. Therefore, the array may fit into main memory. 

The subsequent mining process involves building the indirect itempair set (IIS) of 
the database and the mediator support set (MMS) of each frequent item. We use a 
divide-and conquer strategy to build IIS and each MMS by partitioning each set into 
disjoined subsets and generating each subset in turn. Following the support 
descending order of frequent items: B, A, C, D, E, the complete indirect itempair set  
and mediator support sets of all the frequent items in our example database can be 
partitioned into 5 subsets as follows: (1) those containing item B; (2) those containing 
item A but no item B; (3) those containing item C, but no item B nor A; (4) those 
containing item D, but no item B nor A nor C; (5) those containing only item E. 
Clearly, all the frequent-item projections containing item B, referred to as the B-
projected database, are already linked in the B-queue in the header table, which can 
be traversed efficiently. In the next section, we will show that, by mining the B-
projected database recursively, HI-mine can find the indirect itempair set and 
mediator support sets (MSS) of all the frequent items in the first subset, i.e., all the 
indirect itempairs and support mediators containing item B. After that, each index in 
B-queue is added to the queue for the next item in the corresponding projection 
following B in the order of L to mine all the indirect itempair set and mediator 
support sets containing item A but not B. The HI-struct after this adjustment is shown 
in Figure 4. Note that B-queue is no longer needed and is thus removed. After the 
subsets containing A but not B are mined, other subsets of indirect itempair set and 
mediator support sets are mined similarly. 

 
 
 
 
 
 
 
 
 

Fig. 4. HI-struct of TDB after mining B-projected database 

3.2    HI-mine Algorithm 

The HI-mine algorithm mines the complete set of indirect associations based on a 
dynamically-changed HI-struct. There are two phases in the algorithm. In the first 
phase, we construct HI-struct and generate the indirect itempair set of the database 
and mediator support set of each frequent item. In the second phase, we generate all 

                                                           
1 The initial header table of a database may contain more than one queue. We use a simple 

example for the convenience of explanation. 

Header Table of 
TDB 

B 5  
A 3  
C 3  
D 3  
E 2  
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2 B,A,E 
3 B,C 
4 B,A,D,E 
5 B,C,D 
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the indirect associations based on the indirect itempair set and the mediator support 
sets. The algorithm is described as follows. 
 
Algorithm:    HI-mine. (Mine indirect associations using an HI-struct) 
Input:            A transaction database (D); itempair support threshold (ts); 
                       mediator support threshold (tf); mediator dependence threshold (td);  
Output:         The complete set of indirect associations between itempairs. 
Method: 
1. build the initial HI-struct for D which includes a header table H and the frequent 

item projection array. 
2. for each item i in the header table of HI-struct 
3. create header table Hi by scanning i-projected database in the same way as building  

header table H except that item i is not considered (see Figures 5, 10 - 13) 
4.     hi_mine(Hi) 
5.     insert all the indexes in i-queue to the proper queues in H (see Figure 4) 
6. end 
7. if IIS(D) ≠ ∅ then 
8.     for each itempair <x, y> in IIS(D) 
9.         SM ← MSS(x) ∩ MSS(y) 
10.        if SM ≠ ∅ 
11.              for each mediator M in SM 
12.                    output <x, y | M> 
13.    end 
14.else 
15.    output “ Indirect associations do not exit in this database”  
16.end 
 
procedure hi_mine(Hm) 
(Recursively mine the header table of itemset m and update IIS(D) and MSS(j), j ∉ m) 
1. for each item j in the header table Hm 
2.     if j's count > minimum mediator support count then 
3.         if IS(j, m) > td then 
4.             add m to MSS(j) 
5.         create header table Hmj by scanning  j-queue in Hm  (i.e., mj-projected  

        database) in the same way as building H except that item j and items in m are 
        not considered (see Figure 7) 

6.         hi_mine(Hmj) 
7.     else if the size of m is 1 and j's count < minimum itempair support count then 
8.         add <m, j> to IIS(D) 
9.     end 
10.    insert all the indexes in j-queue to the proper queues in Hm (see Figure 6) 
11.end 
 

Figures 5 to 13 show the execution of the algorithm on the transaction database 
TDB given in Table 1. The itempair support threshold ts and mediator support 



threshold tf are set to be 25% (minimum support count and minimum mediator 
support count are both 2)2, and the minimum dependence threshold td is 0.5.  

First, to find all the indirect itempairs and support mediators containing item B, a 
B-header table HB is created, as shown in Figure 5. In HB, every frequent item, except 
for B itself, has an entry with the same fields as H, i.e., item-id, support count and a 
pointer to a queue. The support count in HB records the support of the corresponding 
item in the B-queue. For example, since item A appears 3 times in the frequent-item 
projections of B-queue, the support count in the entry for A in HB is 3. 
 
 

 

 

 

 

Fig. 5. Header table HB and mining result 

By traversing the B-queue once, the set of locally frequent items, i.e., the items 
appearing at least 2 times, in the B-projected database is found, which is { A, C, D, 
E} . Since all the items in HB are locally frequent, there is no indirect itempair contains 
item B, and IIS(D) is empty after this scan. Because the minimum mediator support 
count is 2, we compute the IS measure between B and each item in HB: 

77.0533} ){} ,({ =×=ABIS  (2) 

77.0533} ){} ,({ =×=CBIS  (3) 

77.0533} ){} ,({ =×=DBIS  (4) 

63.0522} ){} ,({ =×=EBIS  (5) 

They all pass the minimum dependence threshold 0.5. Therefore, { B}  should be in 
the MMS of each of these items. The result is shown in Figure 5. 

After { B}  is inserted into MSS(A) in the above process, a header table HBA is 
created by examining A-queue in HB in the same manner as in generating HB from the 
B-queue in H. The header table HBA is shown in the most left part of Figure 6. Then, 
the algorithm recursively exams the BA-projected database to determine whether 
{ B,A}  belongs to the mediator support sets of items C, D and E. Since the local 
support count of C is less than 2, { B,A}  is not added to MSS(C) and the search along 
path BAC completes. But the index in the C-queue of HBA is inserted into the D-

                                                           
2 The two thresholds are of the same value here just for the convenience of explanation. They 

can be different. 

Header Table of 
{ B:5}  

A 3  
C 3  
D 3  
E 2  

 

1 
2 
4 
 
3 
5 

 

IIS(TDB) = ∅ 
MSS(A) = { { B} }  
MSS(C) = { { B} }  
MSS(D) = { { B} }  
MSS(E) = { {B} }  
 



queue of HBA because D follows C in the projection corresponding to the index, 
which is the first projection { B, A, C, D} . The resulting header table after this 
adjustment is shown in the middle of Figure 6. Since D is locally frequent and passes 
the dependence threshold, { B,A}  is added to MSS(D).  Then a header table HBAD (not 
shown here) is created, which contains no local frequent items, and thus search along 
path BAD completes. Similarly, { B,A}  is added to MMS(E), E-queue is adjusted, and 
the search along path BAE completes because header table HBAE contains no frequent 
items.  Thus, the process of mining the header table HBA finishes. 

 
 
 
 
 
 
 
 

Fig. 6. Header table HBA and mining result 

After that, each index in the A-queue in table HB is appended to the queue of the 
next frequent item in the corresponding projection according to the order of L. The 
adjusted header table HB is shown in the most left part of Figure 7. After the above 
adjustment, the C-queue in HB  (also referred to as BC-queue) collects the complete 
set of frequent-item projections containing  items  B and C. Thus, by further creating 
a header table HBC (shown in the middle of Figure 7), the support mediators 
containing item B and C but not A can be mined recursively. Please note that item A 
appears in HBC because it does not belong to { B,C}  and it appears in the frequent-item 
projections of BC-queue. However, its queue is always empty, that is, we will not 
append any index to its queue after D-queue or E-queue in HBC has been mined since 
it has been considered in the mining of the BA-queue. Thus, the A-queue in HBC is 
marked with “ � ” . We need an entry for A here because we need to output the correct 
support mediators in MSS(A) if the local count of A is above the minimum mediator 
support count. The result is shown in Figure 7. The header table HBD and HBE, and 
their corresponding mining results are shown in Figure 8 and Figure 9 respectively. 

After the indirect itempairs and support mediators containing item B are found, the 
B-queue is no longer needed in the remaining of mining. Since the A-queue in header 
table H includes all frequent-item projections containing item A except for those 
projections containing both B and A, which are in the B-queue, we need to insert all 
the projections in the B-queue to the proper queues in H to mine all the indirect 
itempairs and support mediators containing item A but not B, and other subsets of 
them.  The header table H after this adjustment is shown in Figure 4. 

By mining the A-projected database recursively, we can find the indirect itempairs 
and support mediators containing item A but no B. The header table HA and the 
mining result are shown in Figure 10. Since C is locally infrequent with respect to A, 
pair <A,C> is added to the infrequent itempair set IIS(TDB). Notice that item B will 
not be considered in the rest mining processes since all the indirect itempairs and 
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IIS(TDB) = ∅ 
MSS(A) = { { B} }  
MSS(C) = { { B} }  
MSS(D) = { { B} ,{B,A} }  
MSS(E) = { {B} ,{ B,A} }  



support mediators containing B are already found, and B is frequent with all the other 
frequent items. 
 
 
 
 
 
 
 

 

Fig. 7. Adjusted header table HB, header table HBC and mining result 

 
 
 
 
 
 
 

Fig. 8. Header table HBD and mining result 

 
 
 
 
 
 

Fig. 9. Header table HBE and mining result 

Similarly, the mining process continues as shown in Figure 11 to 13. It is easy to 
see that the above mining process finds the complete indirect itempair set and 
mediator support sets because we partition the sets into disjoined subsets and mine 
each subset by further partitioning it recursively. The complete indirect itempair set 
and mediator support sets for our example database TDB are shown in Figure 13. 

After the sets are computed, the second phase of the HI-mine algorithm is to 
compute the set of mediators for each indirect itempair in the indirect itempair set IIS 
(see steps 7-15 in the HI-mine algorithm). For example,  the set of mediators for pair 
<A,C> in IIS(TDB) is computed by intersecting MSS(A) and MSS(C), which results in 
{ { B} ,{ D} ,{ B,D} } . Therefore, three indirect associations are discovered for pair 
<A,C>: 

<A, C | { B} >, <A, C | { D} >, <A, C | { B,D} > 
Similarly, the following indirect associations are discovered for pairs <C, E> and 

<D, E>: 
<C, E | { B} > 

Header 
Table of 
{ B:5}  

A 3  
C 3  
D 3  
E 2  

 

3 
5 
1 
 
4 
 
2 

 

Header 
Table of 
{ BC:3}  

D 2  
E 0  
A 1 �  

 

5 
1 

 

IIS(TDB) = ∅ 
MSS(A) = { { B} }  
MSS(C) = { { B} }  
MSS(D) = { { B} ,{B,A} ,{ B,C} }  
MSS(E) = { {B} ,{ B,A} }  
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IIS(TDB) = ∅ 
MSS(A) = { { B} ,{ B,D} }  
MSS(C) = { { B} ,{ B,D} }  
MSS(D) = { { B} ,{B,A} ,{ B,C} }  
MSS(E) = { {B} ,{ B,A} }  
 

Header Table of 
{ BE:2}  
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C 0 �  
D 1 �  

 

IIS(TDB) = ∅ 
MSS(A) = { { B} ,{ B,D} ,{ B,E} }  
MSS(C) = { { B} ,{ B,D} }  
MSS(D) = { { B} ,{B,A} ,{ B,C} }  
MSS(E) = { {B} ,{ B,A} }  
 



<D, E | { A} >, <D, E | { B} >, <D, E | { A,B} > 
 

 
 
 
 
 

 

Fig. 10. Header table HA and mining result 

 
 
 
 

 

Fig. 11. Header table HC and mining result 

 
 
 
 
 
 

Fig. 12. Header table HD and mining result 

 
 
 
 
 
 

Fig. 13. Header table HE and mining result 

4    Experimental Evaluation and Performance Study 

In this section, we report our experimental results on the performance of HI-mine in 
comparison with two versions of the INDIRECT algorithm, INDIRECT-A and 
INDIRECT-F, which extract frequent itemsets using Apriori and FP-growth in the 
first step, respectively. 

Header Table of 
{ A:3}  

C 1  
D 2  
E 2  
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4 
 
2 

 

IIS(TDB) = { <A,C>}  
MSS(A) = { { B} ,{ B,D} ,{ B,E} }  
MSS(C) = { { B} ,{ B,D} }  
MSS(D) = { { B} ,{B,A} ,{ B,C} ,{ A} }  
MSS(E) = { {B} ,{ B,A} ,{ A} }  
 

Header Table of 
{ C:3}  

D 2  
E 0  
A 1 �  

 

1 
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IIS(TDB) = { <A,C>,<C,E>}  
MSS(A) = { { B} ,{ B,D} ,{ B,E} }  
MSS(C) = { { B} ,{ B,D} }  
MSS(D) = { { B} ,{B,A} ,{ B,C} ,{ A} ,{ C} }  
MSS(E) = { {B} ,{ B,A} ,{ A} }  
 

Header Table of 
{ D:3}  

E 1  
A 2 �  
C 2 �  
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IIS(TDB) = { <A,C>,<C,E>,<D,E>}  
MSS(A) = { { B} ,{ B,D} ,{ B,E} ,{ D} }  
MSS(C) = { { B} ,{ B,D} ,{ D} }  
MSS(D) = { { B} ,{B,A} ,{ B,C} ,{ A} ,{ C} }  
MSS(E) = { {B} ,{ B,A} ,{ A} }  
 

Header Table of 
{ E:2}  

A 2 �  
C 0 �  
D 1 �  

 

IIS(TDB) = { <A,C>,<C,E>,<D,E>}  
MSS(A) = { { B} ,{ B,D} ,{ B,E} ,{ D} ,{ E} }  
MSS(C) = { { B} ,{ B,D} ,{ D} }  
MSS(D) = { { B} ,{B,A} ,{ B,C} ,{ A} ,{ C} }  
MSS(E) = { {B} ,{ B,A} ,{ A} }  
 



All the experiments are performed on a 533-MHz Pentium PC machine with 128M 
main memory, running on Microsoft Window 2000 Professional. All the programs are 
written in Sun Java 1.3.1. We have tested the programs on various data sets. Due to 
space limitation, only the results on some typical data sets are reported here. Please 
note that run time used here means the total execution time, i.e., the period between 
input and output. Also, in all reports, the run time of HI-mine include the time of 
constructing HI-struct, and the run time of INDIRECT-F include the time of 
constructing FP-tree from the original database as well. 

4.1    Test Data 

The algorithms are tested on two types of datasets: synthetic data, which mimic 
market basket data, and anonymous web data, which belong to the domain of web log 
databases. 

The synthetic datasets used in our experiments were generated using the program 
described in [3]. The first one is denoted as T10.I5.D20K. It contains 250 items and 
20,000 transactions. In this data set, the average transaction size and average maximal 
potentially frequent itemset size are set to 10 and 5, respectively. The second data set, 
denoted as T10.I5.D50K, contains 250 items and 50,000 transactions. 

The web dataset was obtained from http://kdd.ics.uci.edu/databases/msweb/ 
msweb.html. It was created by sampling and processing the www.microsoft.com logs. 
The data records the use of www.microsoft.com by 38000 anonymous, randomly-
selected users. For each user, the data lists all the areas of the web site that user 
visited in a one week timeframe. The data set contains 32711 instances (transactions) 
with 294 attributes (items); each attribute is an area of the www.microsoft.com web 
site. 

4.2    Performance Comparison of HI-mine and INDIRECT 

Our experimental results are reported in Figures 14, 15 and 16. Each figure depicts a 
run time comparison of the three algorithms (HI-mine, INDIRECT-A and 
INDIRECT-F) on a synthetic or real data set over different mediator support 
thresholds. In our experiments, the itempair support threshold is set to be the same as 
the mediator support threshold and the dependence threshold is set to be 0.1. From the 
figures, we can observe that HI-mine is a clear winner on all the three datasets. At 
high support threshold values, HI-mine and INDIRECT-F have similar performance 
and they both outperform INDIRECT-A. However, as the support threshold goes 
lower, the gap between INDIRECT-F and HI-mine and the gap between HI-mine and 
INDIRECT-A become larger. It is interesting to observe that the lines for HI-mine in 
the figures are quite flat, which means that the run time of HI-mine does not increase 
much as the support threshold goes lower. 

The reason that INDIRECT-F is better than INDIRECR-A is that FP-growth does 
not generate candidates when it generates frequent patterns and the generation of 
frequent patterns is based on a compressed tree structure (FP-tree), which is usually 
much smaller than the original database. However, INDIRECT-F generates 



candidates for indirect associations using a join operation. HI-mine does not perform 
any candidate generation. It discovers indirect associations directly based on the HI-
struct data structure. 
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Fig. 14. Run time comparison on synthetic data set T10.I5.D20K 
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Fig. 15. Run time comparison on synthetic data set T10.I5.D50K 

The reason that the run time of HI-mine does not change much with the support 
threshold is that, when the support threshold decreases, the number of frequent items 
increases, but the number of indirect associations may decrease because there are 
fewer indirect itempairs. On the other hand, the run time of INDIRECT depends 
primarily on the number of frequent itemsets generated by Apriori or FP-growth.  
Therefore, avoiding generating all the frequent itemsets in HI-mine makes it a big 
winner. 
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Fig. 16. Run time comparison on web log data 

5    Conclusions 

In this paper, we have proposed an efficient algorithm, HI-mine, which uses a new 
data structure, HI-struct, to discover all indirect associations between items. The 
salient features of HI-mine include that it avoids generating all the frequent items 
before generating indirect associations and that it generates indirect associations 
directly without candidate generation. We have compared this algorithm to the 
previously known algorithm, the INDIRECT algorithm, using both synthetic and real-
world data. As shown in our performance study, the proposed algorithm significantly 
outperforms the INDIRECT algorithm, which uses a standard frequent itemset 
generation algorithm such as Apriori and FP-growth to extract the frequent itemsets 
before mining indirect associations. 

In the future, we will work on scalability issues of HI-mine. The current version of 
HI-mine compresses the database into frequent-item projections. If the projected 
database fits into memory, there is no extra disk I/O in the subsequent mining process. 
Otherwise, multiple scans of (part of) the projected database (usually much smaller 
than the original database if the database is sparse) are needed in the process of 
learning the indirect itempair set and mediator support sets. We will work on the issue 
of how to further reduce disk I/Os when the database is huge, e.g., with millions of 
transactions. 
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