
PERGAMON Computers and Mathematics Applications 45 (2003)

An lntemational Journal

computers &
mathematics
withqlpliccltlw

737-748
www.elsevier.com/locate/camwa

Learning Classification Rules
from Data

A. AN
Department of Computer Science

York University
Toronto, Ontario M3J lP3 Canada

aanBcs.yorku.ca

(Received October 2001; accepted January 2002)

Abstract-we present ELEMZ, a machine learning system that induces classification rules from
a set of data based on a heuristic search over a hypothesis space. ELEM2 is distinguished from
other rule induction systems in three aspects. First, it uses a new heuristic function to guide the
heuristic search. The function reflects the degree of relevance of an attribute-value pair to a target
concept and leads to selection of the most relevant pairs for formulating rules. Second, ELEM2
handles inconsistent training examples by defining an unlearnable region of a concept based on
the probability distribution of that concept in the training data. The unlearnable region is used
as a stopping criterion for the concept learning process, which resolves conflicts without removing
inconsistent examples. Third, ELEMS employs a new rule quality measure in its post-pruning process
to prevent rules from overfitting the data. The rule quality formula measures the extent to which a
rule can discriminate between the positive and negative examples of a class. We describe features of
ELEMZ, its rule induction algorithm and its classification procedure. We report experimental results
that compare ELEMZ with C4.5 and CN2 on a number of datasets. @ 2003 Elsevier Science Ltd.
All rights reserved.

Keywords-Machine learning, Rule induction, Classification, Data mining, Artificial intelligence.

1. INTRODUCTION

Machine learning is concerned with the question of how to construct a computer progr.am that
automatically learns new facts and theories from data. Rule induction is a special kind of machine
learning technique that ressons from specific cases to general principles that are expressible as
if-then rules. A number of rule induction systems, such as C4.5 [I] and CN2 [2], have been
constructed and applied to discover knowledge from data in different applications, yet many
suffer from poor performance in prediction accuracy in many practical domains. While it seems
unlikely to have an algorithm to perform best in all the domains of interest, it may well be
possible to produce learners that perform better on a wide variety of real-world domains.

To achieve this objective, we proposed ELEM2, a rule induction method that employs new
strategies to enhance the induction and classification processes. In designing ELEM2, we adopt

This research was supported by grants from the Natural Sciences and Engineering Research Council (NSERC)
and the Institute for Robotics and Intelligent Systems (IRIS). I would also like to thank N. Cercone of University
of Waterloo for his suggestions on this work.

0898-1221/03/s - see front matter @ 2003 Elsevier Science Ltd. All rights reserved. Typeset by &@-%K
PII: SO898-1221(03)00034-S

738 A. AN

the separate and conquer learning strategy used by sequential covering algorithms, such as CN2 [z]
and PRISM [3]. Th ese algorithms induce one rule at a time by selecting attribute-value pairs.
remove the data the new rule covers, and iterate this process. However, ELEM2 differs from
other sequential covering algorithms in several aspects.

First, to select an attribute-value pair, ELEM2 employs a new heuristic function for evaluating
attribute-value pairs. Various evaluation criteria have been used in different learning algorithms.
For example, ID3 [4] employs an entropy-based information gain to find the most relevant at-
tribute to grow decision trees. PRISM [3] uses another form of information gain which can be
characterized in terms of apparent classificatory accuracies on the training set to measure the rel-
evance of attribute-value pairs with respect to a target concept. LEM2 [5] basically considers as
the most relevant selector the attribute-value pair that has the largest ,coverage over the positive
examples. We argue that both coverage and information gain should be considered when mea-
suring the relevance of selectors. Selectors that cover a large number of positive examples may
also cover negative examples well. On the other hand, when only considering information gain,
no matter whether the consideration is in terms of entropy or apparent classificatory accuracies,
such consideration can lead to generation of rules covering few examples [I]. Such rules tend to
have higher predictive error rates [6]. We propose an alternative evaluation function. The new
function is defined in terms of both a classification gain and the coverage of an attribute-value
pair over a set of the training data and also reflects the degree of relevance of the attribute-value
pair to a target concept with regard to the trainii?g data.

Second, ELEM2 addresses the issue of handling inconsistent examples. Inconsistent examples
in the training set usually confuse a learning system when the system tries to identify common
properties of a set of objects. One way to handle this problem is to remove all or part of the
inconsistent examples to reduce confusion. This may not be a good idea, especially in very
noisy environments in which most of the examples may need to be eliminated. Also, inconsistent
examples may provide useful information for probability analysis during induction. To handle
this problem, ELEMZ defines an unlearnable region for each concept based on the probability
distribution of the concept over the training data. The unlearnable region of a concept is used
as a stopping criterion for the concept learning process: if the positive examples that are not
yet covered by the already generated concept descriptions fall into the unlearnable region of the
concept, the process for learning that concept stops.

Third, ELEM2 employs a new rule quality measure in its process of post-pruning rules. Post-
pruning is a technique that prevents a generated rule from overfitting the data. There have
been several post-pruning methods in the literature. For example, C4.5 [l] uses an error-based
technique called pessimistic pruning for pruning decision trees, which estimates the predictive
error rate of concept descriptions by adjusting the apparent error rate on the training set. Another
example is AQ15 [7], h h w ic associates conjunctions in a generated rule with weights and the ones
with the least weights were removed to avoid overfitting the data. The weight is defined as the
number of training examples explained uniquely by the conjunction. ELEM2 takes another route
in doing post-pruning. It defines a rule quality measure based on the relative distribution of a
rule with respect to the positive and negative examples the rule covers. The rule quality measure
is used in the pruning process to determine which part(s) of a rule can be removed.

The paper is organized as follows. In Section 2, we present the strategies that ELEM2 uses
to select attribute-value pairs. In particular, we describe how ELEM2 groups attribute-value
pairs to formulate a search space and how the evaluation function is defined. In Section 3, an
unlearnable region of a concept is defined which is used by ELEM2 for handling inconsistency
in the training data. In Section 4, we discuss the rule quality measure used by ELEM2 for
post-pruning generated rules. The ELEM2 induction algorithm and its classification strategy
are presented in Sections 5 and 6. In Section 7, an example is given to illustrate ELEM2’s rule
induction and classification processes. In Section 8, we report some experimental results for
evaluating ELEM2. Finally, we conclude the paper in Section 8.

~03 lvqq 30 asxm~~ a~gpps ay$ s! (% 5 w) 30 anlQA a~uwyyuP!s aq$ asnwaq s+ed anleA-a~nqyy2
asay!j JO 319 d~uo urexa 03 sn smoker! laylIn3 ‘Molaq paq!l%ap ‘s+d ay’eA-a?nqpy+ls %!palas “03
uoycwn3 uo!%enpAa mg .uoganpu! %u!mp pauyexa aq 0~ paau slwd anleA-anqyc uz Quo
‘po~laux Ino uj ‘alo3aJay;L .s$u!od-?na u Y$!M aqnqi”$?e ue 103 pauFe$qo aq uw sged uz 30 p)o$
B LLe~ sy$ uI .payelaua8 are ‘(*2 < TI) pwe (% 5 11) :sdnoB OMJ ‘(u ‘ . . . ‘1 = 2) % ?u!od-$n3
yava JOT .s?u!od-?n> 30 raqun-tu ayq s! u alay& ‘slgds Lseu!q u uo paseq ST poylaur Bu!dnoB
ay;~ ‘sa3uawuo3 ssaaold uog3npu! aq? alo3aq $no pa!lle?:, s! a?nqgqv 30 pu!y s!y$ 30 satyeA 30
Bu!dnolg ‘1 - u‘...‘~ = z 203 l+?x > 1x alayM ‘z) a$nqn?le snonuguo:, pazgalastp v 103 squ!od
-?na30~asayls!{Ux‘... ‘Zx L Ix} asoddns ‘[g] poq$aur uoyezgaalwp Dgwuo?ns UT? Su!GlddQ Lq .IO
synru”o3 uoyezgarwp pagddns-lasn Bu!sn Lq pazgawlp aw sa%nqp%lye snonuyuo3 ‘~~373 UJ

NOIlLL3313S UIVd 3in?VA-3UEIIKLiLV ‘2

740 -4 AN

2.2. Evaluating Attribute-Value Pairs

ELEM2 generates decision rules for a target concept by performing a general-to-specific search
in a hypothesis space. At each step of specialization, a heuristic function is used to evaluate
attribute-value pairs. The function assigns a significance value to each considered pair in order
for the most significant attribute-value pair to be selected. The significance function is defined
according to the relevance of an attribute-value pair to the target concept. An attribute-value
pair t is relevant to a concept c with respect to a set, S, of examples if

P(t) > 0 and P(c I t) # P(C)>

where P(t) denotes the probability that an example in S satisfies the relation expressed by t,
P(c) denotes the probability of the examples occurring in 5’ that belong to concept c, and P(c 1 t)
is the probability that an example in S belongs to c given that the example satisfies t. Under this
definition, t is relevant to the concept c if it can change the probability of c, or in other words,
if c is conditionally dependent on t.

In a set of training samples, there may exist more than one attribute-value pair that is relevant
to a concept. Some pairs may be strongly relevant, while others may not be so relevant. To
measure the degree of relevance, we use an evaluation function to assign a significance value to
each attribute-value pair. The function is defined as

SIG,(t) = P(t)(P(c 1 t) - P(c)). (1)

According to this definition, if P(c) t) = P(c), i.e., t is not relevant to the concept c, then the
degree of relevance oft to c is equal to 0; if P(c 1 t) # P(c , i.e., t is relevant to c, then the degree)
of relevance is proportional to both the difference between P(c 1 t) and P(c) and the coverage
of t over the training set currently being considered. The range of this function is (-l,l). If the
value stays positive, then the higher the value, the more relevant the attribute-value pair t with
respect to the target concept c; if the value is negative, the lower the value, the more relevant
the attribute-value pair 1 t (i.e., the complement of pair t) with respect to c. We use P(t) as
a coefficient of the function since we believe that, say, a 95% accurate rule which covers 1000
training cases is better than a 100% accurate rule that covers only one case. This helps avoid
the overfitting problem.

The significance function has a nice property, expressed as follows. Given a concept c and an
attribute-value pair t, it can be proved that [9]

SIG,(t) = -SIG,(-t). (2)

This means that the SIG values for a selector and its complement are additively inverse. This
observation allows us to narrow the search space of selectors by half since the value for one of
them can be obtained from the value for the other. Therefore, using this evaluation function is
more efficient in practice than using other functions that do not have this feature.

3. HANDLING INCONSISTENCY
In real-world applications, the set of training data may be inconsistent due to incomplete or

noisy information. Two examples are inconsistent if they have identical attribute values for the
condition attributes, but are labelled as belonging to different concepts. Inconsistent data in
the training set may confuse a learning algorithm and result in a failure in deriving decision
rules. ELEM2 handles the problem of inconsistency by computing an unlearnable region for each
concept, inspired by [lo]. Let R = {Xl, X2,. . ,X,}, w h ere Xi (1 2 i 5 n) is a set of examples
that are identical in terms of condition attribute values and there are a total of n sets of this
kind in the training set. We can predict that any example that matches the condition part of the

Learning Classification Rules

examples in Xi belongs to the concept c with the probability
that an example belongs to c given that the example is in Xi.
respect to a concept c is defined as [lo]

741

P(c / Xi), which is the probability
The classification gain of Xi with

CG,(Xi) = P(c 1 Xi) - P(c),

which measures how much is gained by classifying a new example into c based on the information
about the probabilities of the set Xi and the concept c. The negative region of a concept c is
defined as

NEG(c) = u X,,
P(clX,)<P(c)

which means, if CG,(Xi) 5 0, then Xi belongs to the negative region of c. The unlearnable region
of a concept c, denoted as URL(c), is defined as the set of positive examples of c that exist in
NEG(c).

During ELEM2’s rule induction, if the positive members of the currently considered set of
training examples belong to the unlearnable region of the target
for this concept stops. This prevents ELEM2 from learning from
do not provide positive classification gain.

4. POST-PRUNING INDUCED

concept, the induction process
the inconsistent examples that

RULES

Noise or coincidental regularities in training data can lead to the learning algorithm to produce
long and distorted concept descriptions, which cover a small number of anomalous examples in
the training set. These descriptions are commonly known as small disjuncts [6]. Generating these
small disjuncts not only increases the induction time and the complexity of the concept description
but also decreases predictive performance of the learned knowledge on unknown objects since the
rules applied to the noisy examples may misclassify correct examples. Post-pruning is a technique
that rule induction algorithms use to handle the small disjunct problem. Post-pruning allows
the induction process to run to completion (i.e., form a concept description completely consistent
with the training data or as nearly consistent as possible if the complete consistency is impossible)
and then ‘post-prunes’ the over-fitted concept description by removing the components deemed
unreliable. A criterion is needed in post-pruning to check whether a component in a concept
description should be removed.

In ELEM2, a rule quality measure is used as a criterion for post-pruning. The measure is
inspired by a query term weighting formula used in probabilistic information retrieval [ll]. The
formula measures the extent to which a query term can discriminate between relevant and irrele-
vant documents. To use the formula in rule induction, we make an analogy and consider a rule as
a query term in the information retrieval setting and positive or negative examples as relevant or
irrelevant documents, respectively. Therefore, we can use the same formula to measure the extent
to which a rule (r) can discriminate between the positive and negative examples of a concept (c)
as follows:

JYr I c)(l - fYr I -4)
Q(T) = log P(’ 1 -c)(l - P(’ 1 c)).

Using simple proportion estimations of the two probabilities, the formula becomes

Q(r) = log
m(N-n-Mtm)

(n - m)(M - m) ’

where N is the total number of examples in the training data, M is the number of positive
examples of concept c in the training data, n is the number of examples covered by rule r, and m
is the number of positive examples covered by rule T. Practically, to prevent zero division and
avoid infinite rule quality values, the formula is further adjusted to

Q(T) = log (m + 0.5)(N - n - M + m + 0.5)
(n-m+0.5)(M-m+0.5) ’

742 A. AK

The process of post-pruning a rule is to recursively

1. Compute a rule quality value for the rule:
2. Check the pairs in the reverse order in which

conduct the following.

they were selected to see if a pair can be
removed without causing the rule quality to decrease. If yes, remove it.

This process is repeated until no pair can be removed.

5. THE ELEM2 RULE INDUCTION ALGORITHM

ELEM2 learns a set of rules for one concept at a time. For each concept, it learns a disjunctive
set of conjunctive rules and uses a sequential covering strategy to learn this set of rules, i.e., it
induces one rule at a time, removes the data covered by the rule and then iterates the process.
The learning algorithm is described as follows. For each concept c, we have the following.

1.
2.
3.

4.

5.

6.
7.

8.
9.

10.

Compute the unlearnable region of c: URL(c).
Let CS be the current training set.
Calculate the significance value, SIG,(avi), f o each attribute-value pair UIJ, in the attri-
bute-value pair space with respect to CS.
Select the pair av for which SIG,(av is a maximum. If more than one pair has the)
maximum SIG, value, select among them the pair that covers the most training examples
in CS. If another tie occurs, select the pair whose attribute has the highest priority.2 If
a further tie occurs, i.e., the attributes in question have the same priority, select the pair
that is examined first.
If the attribute a in the selected pair av is a nominal attribute and a~ is single-valued,
dynamic grouping is performed as follows:

(a) let TCS be the set of examples in CS that are not covered by av;
(b) compute the SIG values of all other pairs of attribute a with respect to TCS;

(c) group with uw the pairs whose SIG value is greater than or equal to SIG,(aw).
Remove from CS the examples that are not covered by UV.
Repeat Steps 3-6 until CS contains only examples of the concept c or the positive examples
it contains belong to URL(c). The induced rule r is a conjunction of all the attribute-value
pairs selected.
Post-prune the induced rule r.
Remove all the examples covered by this rule from the current training set.
Repeat Steps 2-9 until all the examples of c have been removed or the remaining examples
of c belong to URL(c).

When the rules for one concept have been induced, the training set is restored to its initial state
and the algorithm is applied again to induce a set of rules describing the next concept.

6. CLASSIFICATION USING RULES

Three cases are possible for matching an example with a set of rules: there may be only one
match (i.e., the example matches only one rule), more than one match (i.e., the example matches
more than one rule), or no match (i.e., the example does not match any rules). We refer to
these three cases as single-match, multiple-match, and no-match. The single-match is not a
problem since the example can be classified into the concept indicated by the matched rule. In
the multiple-match case, if the matched rules indicate the same concept, then the example is
classified into this concept. If the matched rules do not agree on the concepts, then ELEM2
computes a decision score for each concept that the matched rules indicate. The decision score

‘In the ELEM2 implementation, we allow the user to specify priorities of the attributes. An attribute that has a
higher priority is considered to be more important or more relevant to the learning task.

Learning Classification Rules 743

of a concept c is defined as
n

DS(c) = ~Q(rt,,
i=l

where T, is a matched rule that indicates c, n is the number of this kind of rules, and Q(r,) is the
quality of rule ri. ELEM2 classifies the example into the concept with the highest decision score.

In the case of no-match, partial matching is considered where some attribute-value pairs of a
rule may match the values of corresponding attributes in the new example. A partial matching
score between an example e and a rule r with n attribute-value pairs, m of which match the
corresponding attributes of e, is defined as follows:

PMS(r) = f x Q(r).

Based on the partial matching scores of the partially-matched rules, ELEM2 assigns a decision
score to each concept indicated by these rules. The decision score of a concept c is defined as
follows:

DS(c) = xPMS(ri),
i

where i ranges from 1 to the number of partially matched rules indicating concept c. In decision
making, the new example is classified into the concept with the highest value of the decision
score.

7. AN EXAMPLE

Consider the data set shown in Table 1. The data set describes a set of patients in terms of
four attributes: headache, pain, temperature, and flu. Suppose that attribute flu is the decision
attribute and others are condition attributes, which means that the values for flu represent the
concepts that we are concerned about and we would like to induce rules from this data set so
that the rules can be used to predict whether a patient has flu based on the values of the patient
for the three condition attributes.

Table 1. An example data set.

Patients Headache

Xl yes

22 yes

13 yes

14 no

x5 no

26 no

X? no

X8 no

x9 Xl0

"10 no

Pain

Yes

Y-

Y=
no

Y=

no

yes
no

Yes
no

Temperature

normal

high

very high

high

normal

high

very high

high

very high

high

Flu

no

yes

yes

no

no

no

Yes

yes
no

no

7.1. Inducing Rules

To learn rules for concept (flu = yes), ELEM2 conducts the following.

1. Compute the unlearnable region of the concept by
?? dividing the training examples into the following subsets according to their condition

attribute values:
Xl = {n);

x2 = (22);

744 A. AN

x3 = (23);

x4 = {~4,Qi,%~1o};

x5 = (x5);

x6 = {x7,29};

?? computing the classification gain of each subset with respect to the concept3:
CG(suzyes) (Xi) = P((flu = yes)JXi) - P((flu = yes)) = -2/5;
CGcs,,,,) (X2) = P((flu = yes)IXs) - P((flu = yes)) = 3/5;
CGls,,,,,) (Xs) = P((flu = yes) 1x3) - P((flu = yes)) = 3/5;
CGcs,,,,,,(X4) = P((flu = yes)/X4) - P((flu = yes)) = -3/20;
CGcs,,,,)(Xs) = P((flu = yes)(Xs) - P((flu = yes)) = -2/5;
CGts,,,,,,(Xs) = P((flu = yes)jXs) - P((flu = yes)) = l/10;

?? computing the negative region of the concept, which is the union of the subsets whose
classification gain is negative:

NEG((flu = yes)) = Xi u x4 u x5 = (~1, 54,25, ~6, ~8, ~10);

?? computing the unlearnable region of the concept by selecting the positive examples
of the concept in the negative region:

URL((flu = yes)) = {zs}.

2.
3.

Initialize CS to be the current training set: (~1, ~2, . . . ,210).
Calculate the significance value of each attribute-value pair with respect to the concept
and CS. The results are shown in Table 2. In the calculation, probabilities are estimated
using frequencies.

Table 2. SIG values of attribute-value pairs in the first iteration.

4.

5.

6.

Attribute-Value Pair SIG Complement of the Pair SIG of the
Complement

(headache = yes) 0.08 (headache = no) -0.08

(pain = yes) 0.06 (pain = no) -0.06

(temperature = normal) -0.08 (temperature # normal) 0.08

(temperature = high) 0 (temperature # high) 0

(temperature = very high) 0.08 (temperature # very high) -0.08

Select pair (temperature # normal) from the table because it has the highest SIG
value (0.08) and it covers the most training examples in CS among the pairs whose SIG
value is 0.08. Since (temperature # normal) is not single-valued, the step of dynamic
grouping is skipped.
Update CS by removing the examples that are not covered by (temperature # normal).
The new CS is {22,53,24,56,57,58,29,~~0}.
Because CS contains negative examples and its positive examples ((~2, 273, 93, x8)) do not
all fall in URL((flu = yes)), which is {x8}, go back to Step 3 to calculate the SIG values
of the remaining attribute-value pairs based on the new CS. The results are shown in
Table 3.

Table 3. SIG values of attribute-value pairs in the second iteration.

31n the computation, probabilities are estimated using frequencies based on the training data.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Learning Classification Rules 745

In the table, (temperature = very high) is considered to be the complement of (temp-
erature = high) because (temperature # normal) has been chosen previously for the rule
being generated and all examples in CS satisfy the condition of (temperature # normal).
Two pairs ((headache = yes) and (pain = yes)) in Table 3 have the highest SIG value.
Select (pain = yes) because it has better coverage.
Since the attribute in the selected pair is nominal and the pair is single-valued, dynamic
grouping of values can be conducted4 by the following.

?? Set TCS to be the set of examples in CS that are not covered by (pain = yes), which

is (~4, ~6, ~8,210).

?? Calculate the SIG value of (pain = no) based on TCS. The value is 0.
?? Since the value is not as high as the SIG value for (pain = yes), no value is grouped.

Update CS by removing the examples that are not, covered by the selected pair (pain =
yes). The new CS is {~2,~3,~7,~9}.
Because the new CS contains a negative example (~9) and its positive examples do not
fall in URL((flu = yes)), go back to Step 3 to select another attribute-value pair based on
the new CS, which leads to selection of (headache = yes).
Update CS by removing the examples that are not covered by the selected pair (headache
= yes). The new CS is {zz,z~}.
Because the new CS contains only positive examples of the concept, the specialization
process for generating the first rule stops. The generated rule, denoted as ~1, is “if
(temperature # normal) and (pain = yes) and (headache = yes), then (flu = yes)“.
Post-prune rule ~1 as follows.

?? Computing the rule quality value for ~1:

Q(n) = log,,
(2 + 0.5) x (10 - 2 - 4 + 2 + 0.5) = I II4

(2-2+0.5)x (4-2+0.5) ’

?? Considering removing attribute-value pair (headache = yes) from the condition part
of ~1, which results in rule ~1~. Calculate the rule quality value of ~1~ as follows:

Q(~la) = log,,
(3 + 0.5) x (10 - 4 - 4 + 3 + 0.5) = o.932,

(4 - 3 + 0.5) x (4 - 3 + 0.5)

Since Q(rla) is less than Q(T~), pair (headache = yes) should not be removed.
?? Considering removing attribute-value pair (pain = yes) from ~1, which results in

rule ‘16. The rule quality value of ~lb is calculated as

Q(Tlb) = log,,
(2 + 0.5) X (10 - 2 - 4 + 2 + 0.5) = 1 114.

(2-2+0.5)x (4-2+0.5) ’

Since Q(rlb) is not less than Q(T~), pair (pain = yes) is removed. The resulting rule,
i.e., Tlb, is “if (temperature # normal) and (headache = yes), then (flu = yes)“.

?? The pruning process is recursively applied to ?-lb, but no pair can be removed. There-
fore, Tlb is regarded as the first generated rule. we rename it as 7-1 for later use.

Set CS to be the training examples that are not covered by the already generated rule, ~1,

which is {51,Z4,Z5,Z6r27rZ8,29,~10}.

Since CS contains positive examples of the concept and not every positive example in CS
belongs to URL((flu = yes)), repeat the induction process starting from Step 3 to generate
other rules for the concept until CS contains no positive examples or the positive examples
it contains belong to URL({flu = yes)).

4Because attribute pain has only two values, only one value remains after (pain = yes) is selected. Therefore,
dynamic grouping is not actually conducted in the execution of ELEM2 because grouping with all remaining values
does not make sense. We list the dynamic grouping steps in this example only for the illustration purpose.

746 A. AN

Table 4. The set of induced rules

Rules Condition Decision Rule Quality

(temperature # normal)
Yes) I 1.114 I

and (headache = yes)
I I I I

72

r3

(temperature # normal)

(temperature = normal)

(flu = yes) 0.699

(flu = no) 0.699

I I r4 (headache = no) and
(temperature # very high) 1 (Au = no) / 0.623

I
1 I I I 1

To learn rules for concept (flu = no), the process is repeated. The final set of rules for both
concepts is shown in Table 4.

7.2. Classification

Suppose there is a new patient with symptoms described in Table 5. We would like to determine
whether the patient has flu by using the induced rules to classify the patient.5 To classify this
new example, we match the example with the induced rules. Two rules, r2 and r4, are found to
be matched with the exhmple. Because the matched rules classify the example into two different
classes, we compute a decision score for each of the two classes as follows:

DS((flu = yes)) = Q(rz) = 0.699,

DS((flu = no)) = Q(rd) = 0.623.

Since DS((flu = yes)) > DS((flu = no)), th e new example is classified into class (flu = yes).

Table 5. A new example

Patients Headache Pain Temperature Flu

z no Yea high 7

8. EMPIRICAL EVALUATION

To evaluate the system, we have conducted experiments with ELEMZ on a number of data
sets taken from the UC1 repository [12]. 0 ur objective is to check the usefulness of the rule
sets generated by ELEM2 in terms of their predictive accuracy. In our evaluation, we compare
ELEM2 to C4.5 and CN26.

We first conducted experiments on the MONK’s problems. The MONK’s problems are three
artificially constructed problems. Detailed descriptions of these problems can be found in [12].
Problem 1 (Ml) is in standard disjunctive normal form and is supposed to be easily learnable by
a symbolic learning algorithm such as C4.5, CN2, and ELEM2. Conversely, problem 2 (IMz) is
similar to parity problems. It combines different attributes in a way which makes it complicated
to describe in DNF or CNF using the given attributes only. Problem 3 (A&) is also in DNF.
However, the training data of Problem 3 contains 5% misclassification noise and serves to evaluate
the algorithms under the presence of noise.

On each of the MONK’s problems, we presented C4.5, CN2, or ELEM2 with a training set
and examined the predictive accuracy of the induced rules on a test set. Table 6 reports the

5The data set used in this example was artificially generated for illustration purposes. Hence, the rules induced
from the data set are of no medical value and are not supposed to be used in practice.
6We chose C4.5 and CN2 because they are two standard machine learning algorithms and their codes are available
to us. C4.5 has been widely used to compare with newly-proposed algorithms. We chose CN2 also because CN2 is
similar to ELEM2 in the aspect that they both use the “sequential covering” learning strategy. C4.5 can generate
both decision trees and decision rules. We chose to use generation of decision rules. When running C4.5, we used
option ‘-s’ to allow grouping of attribute values. Other options in C4.5 were kept as default settings. For CNZ,
we used the default settings which generate unordered sets of rule% and use Laplacian error estimate as the search
heuristic. For ELEM2, we used Version 3.4.

Learning Classification Rules 747

testing accuracy of each algorithm on each MONK’s problem. In all cases, ELEM2 produces
more accurate rules than CN2. For the simple problem Ml, both C4.5 and ELEM2 gives 100%
accurate predictions. For the difficult problem Mz, all three algorithms do not produce accurate
classification rules since the concept description languages used by the three algorithms do not
fit the problem well. Nevertheless, ELEM2 has the best classification accuracy among the three
algorithms. Problem MS is not difficult for the three learners, but it involves noisy data. From
the table, we can see that ELEMS better handles the noise in this problem than C4.5 and CN2.

Table 6. Comparison in predictive accuracy.

xi

-sd
Data Set1

Figure 1. Performance comparison of ELEM2 with C4.5 and CNZ.

To further compare ELEMZ with C4.5 and CN2, we conducted experiments with these algo-
rithms on 14 real-world data sets from the UC1 repository [12]. Figure 1 shows the accuracy
difference between ELEM2 and C4.5 and the accuracy difference between ELEM2 and CN2. The
accuracy of an algorithm on a data set is obtained by using ten-fold cross validation. A positive
bar in the figure indicates that ELEM2 performs better than C4.5 or CN2 on the corresponding
data set. The results show that ELEM2 outperforms C4.5 on 10 of the 14 data sets and that
it outperforms CN2 on 11 of the 14 data sets. The last column represents the average of the
accuracy differences on the 14 data sets, which indicates that ELEM2 is generally able to learn
more accurate representations of the hidden patterns in the data than C4.5 and CN2.

9. CONCLUSIONS

We have presented ELEMZ, a method for inducing classification rules from a set of examples.
ELEM2 employs a number of new strategies to improve the predictive performance of generated
rules. We proposed a significance function for evaluating attribute-value pairs based on the degree
of their relevance to a target concept. A new method for handling inconsistent training examples

by determining the unlearnable region of each concept is also presented. We also propose a rule
quality measure for use in the post-pruning process. Our experimental results show that ELEM2
outperforms C4.5 and CN2 in terms of predictive accuracies on most of the tested problems

REFERENCES
1. J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, (1993).
2. P. Clark and T. Niblett, The CN2 induction algorithm, Machine Learning 3, 261-283, (1989).
3. J. Cendrowska, PRISM: An algorithm for inducing modular rules, In Knowledge Acquisition for Knowledge-

Based Systems, (Edited by B. Gaines and J. Boose), Academic Press, (1988).
4. J.R. Quinlan, Learning efficient classification procedures and their application to chess end games, In Machine

Learning: An Artificial Intelligence Approach, Volume 1, (Edited by R.S. Michalski, J.G. Carbonell and
T.M. Mitchell), (1983).

5. J.W. Grzymala-Busse, LERS-A system for learning from example-s based on rough sets, In Intelligent
Decision Support: Handbook of Applications and Advances of Rough Sets Theory, (Edited by R. Slowinski),
pp. 3-18, Kluwer Academic, (1992).

6. R. Holte, L. Acker and B. Porter, Concept learning and the problem of small disjuncts, In Proceedings of the
lllh International Joint Conference on Artificial Intelligence, Detroit, MI, (1989).

7. R.S. Michalski, I. Mozetic, J. Hong and N. Lavrac, The multi-purpose incremental learning system AQ15
and its testing application to three medical domains, Proceedings of i4AAI 1986, 1041-1045, (1986).

8. A. An and N. Cercone, Discretization of continuous attributes for learning classification rules, In Proceedings
of the Third Pa&c-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-99), Beijing,
China, (1999).

9. A. An, Analysis Methodologies for Integrated and Enhanced Problem Solvzng, Ph.D. Thesis, Dept. of Com-
puter Science, University of Regina, Regina, Canada, (1997).

10. H.J. Hamilton, N. Shan and N. Cercone, RIAC: A rule induction algorithm based on approximate classifica-
tion, Technical Report CS-96-06, University of Regina, (1996).

11. S.E. Robertson and K. Sparck Jones, Relevance weighting of search terms, Journal of the American Society
for Information Science 27, 129-146, (1976).

12. P.M. Murphy and D.W. Aha, CJCI Repository of Machine Learning Databases, URL: http: //ww. its . uci
edu/ mlearn/MLRepository.html. For information contact ml-rapositorycDics.uci. edu., (1994).

